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Costless metabolic secretions as drivers of
interspecies interactions in microbial ecosystems
Alan R. Pacheco 1, Mauricio Moel2 & Daniel Segrè 1,2,3,4

Metabolic exchange mediates interactions among microbes, helping explain diversity in

microbial communities. As these interactions often involve a fitness cost, it is unclear how

stable cooperation can emerge. Here we use genome-scale metabolic models to investigate

whether the release of “costless” metabolites (i.e. those that cause no fitness cost to the

producer), can be a prominent driver of intermicrobial interactions. By performing over 2

million pairwise growth simulations of 24 species in a combinatorial assortment of envir-

onments, we identify a large space of metabolites that can be secreted without cost, thus

generating ample cross-feeding opportunities. In addition to providing an atlas of putative

interactions, we show that anoxic conditions can promote mutualisms by providing more

opportunities for exchange of costless metabolites, resulting in an overrepresentation of

stable ecological network motifs. These results may help identify interaction patterns in

natural communities and inform the design of synthetic microbial consortia.
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The astonishing number of microbial species observed in
nature1–3 seems to contradict classical ecological theory,
which predicts far less biodiversity in many nutrient-poor

environments4,5. A variety of explanations have been proposed as
possible solutions to this discrepancy6–10, including metabolic
cross-feeding11–13. This phenomenon, in which one species
produces metabolites that are then consumed by another, has
been shown to enhance the capacity of microbes to survive in
resource-poor environments14–16. However, it is not clear how
these cooperative phenotypes emerge, as they often involve the
exchange of metabolites that are costly for the producer. This
apparent altruism introduces the potential for the rise of cheating
organisms that do not contribute common goods but still benefit
metabolically from others, challenging community stability17.
Previous studies have addressed this dilemma in different
ways18–21, though some modes of exchange are not associated
with a drop in fitness22. Given the evolutionary dilemmas asso-
ciated with costly cooperation, we ask here whether the exchange
of metabolic secretions that do not impose an effective fitness cost
can in principle help account for the degrees of biodiversity
observed in nature.

It is known that microbes often secrete waste products (e.g.,
Escherichia coli secreting acetate under limited oxygen) that can
support other species15. This phenomenon may allow community
benefits to emerge as a product of otherwise selfish acts by
individual organisms. It is not obvious, however, whether such
behavior extends beyond a few fermentation byproducts or how
widely it varies across microbial species and environmental
contexts23. Moreover, it is not clear whether these byproducts
have the potential to enable or enhance growth of other species in
complex communities.

Here, we use computational metabolic modeling to explore the
environmental modifications brought about by “costless” meta-
bolite secretion, as well as the interspecies interactions enabled by
this type of exchange. For our purposes, we define a metabolite as
costless if the predicted growth rate of an organism secreting that
metabolite is not less than its growth rate when the metabolite is
not secreted. As we will illustrate in detail, the costless nature of a
given metabolic secretion is strongly dependent on environmental
conditions and may hinge on the techniques used to generate
predictions. Our computational framework is based on flux bal-
ance analysis (FBA)24, which we use to predict the growth phe-
notypes and beneficial interactions mediated by costless
metabolites for 24 microbial species under a large set of carbon
source combinations. Through this method, we obtain a global
view of cross-feeding opportunities that can mediate the emer-
gence of beneficial interactions and the maintenance of biodi-
versity in natural communities.

Previous computational models of microbial community
metabolism have yielded useful predictions on mutually beneficial
and competitive behaviors14,16,25–29. In this study, we evaluate
the impact of costless metabolic secretions by applying FBA to a
large space of microbial species and environmental conditions.
Moreover, we quantify the degree to which environmental vari-
ables, such as oxygen and carbon source, contribute to costless
metabolic secretions, interspecies interactions, and community
stability. Though the present work focuses on secretions and
interactions predicted computationally, we restricted our analysis
to microbes associated with high-quality and experimentally
verified in silico models, which have allowed us to make pre-
dictions consistent with previously established empirical knowl-
edge. However, the current analysis should be viewed as an
exploration of a large space of stoichiometrically possible costless
interactions (inscrutable to such an extent at the experimental
level), whose global patterns can motivate and inform future
experimental and theoretical endeavors.

Results
Metabolite secretion cost depends on environmental context.
Understanding whether the secretion of a metabolite by an
organism is associated with a decrease in fitness (interpreted here
as growth rate) is difficult to assess experimentally, but can be
readily calculated using genome-scale models of metabolism (see
Methods). For example, one can impose the secretion of a given
compound at a given rate vs, and then ask whether this constraint
is expected to cause the organism’s growth rate (vg,s) to be less
than its growth rate without this constraint (vg,0). A small set of
simulations of this kind for a single organism (Supplementary
Fig. 1) exemplifies the spectrum of possible outcomes: depending
on the carbon sources provided, different metabolites can be
produced either (i) at the expense of growth capacity, (ii) with no
apparent effect, or (iii) even to its benefit. For cases (ii) and (iii),
since fitness is not reduced by the metabolite secretion, vg,s ≥ vg,0.
The existence of solutions that satisfy this equation (i.e., flux
states that have higher growth in presence of a metabolic secre-
tion) forms the basis of our subsequent calculations. The above
equation can thus be viewed as the defining characteristic of a
costless metabolic secretion.

We note that while FBA provides mechanistic insight into the
tradeoff between metabolic reaction costs and benefits, current
predictions (including those on the costless nature of a metabolic
secretion) may depend on factors not captured by our method,
including temperature30, signaling and gene regulation31–35, pH
changes36, and explicit pathway-dependent cost of enzyme
production37. Our definition of “costless” may therefore be
interpreted as a heuristic that captures expected spontaneous
metabolite secretions, in contrast to secretion that would be
associated with a growth or fitness reduction.

Costless secretions promote environmental enrichment. Hav-
ing illustrated in an individual case how metabolite secretion
costs can strongly depend on carbon sources, we sought to map
the prevalence of costless secretions across a broad set of
organisms and environments. As an initial core analysis, we
carried out a total of 1,051,596 unique simulations, each with two
organisms from a set of 14 genome-scale models of facultative
anaerobes and two carbon sources from a set of 108 compounds
(Fig. 1, Supplementary Data 1, Supplementary Table 1). We chose
facultative anaerobes in order to enable a direct comparison of
secretion profiles in oxic vs. anoxic conditions. Each simulation
was conducted as an iterative process that emulates a coculture
experiment, uniquely defined by the organisms involved, the
carbon sources provided, and the availability of oxygen. At each
iteration, we used FBA to determine the ability of each organism
to grow on the provided medium, in addition to the set of
metabolites predicted to be spontaneously (i.e., costlessly) secre-
ted by each microbe. We incorporated several measures into these
simulations to minimize false-positive reporting of secreted
metabolites (see Methods).

If at the first iteration (c= 1, Fig. 1) at least one organism was
able to grow on the carbon sources provided, all newly
secreted costless metabolites were added to the medium for the
next iteration. This process was repeated until no new metabolites
were produced (defining a final iteration c= cs). Upon running
such simulations for all combinations of species and environ-
ments, we obtained distributions for the value of cs (Fig. 2a). A
majority of cases reached a steady state after only one iteration,
possibly due to organisms secreting multiple byproducts that only
contributed weakly to subsequent secretions.

In aggregate, our simulations showed a rightward shift in the
diversity of metabolites secreted under anoxic conditions when
compared to the number secreted when oxygen was available
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(Fig. 2b), as well as a shift in the quantity of metabolites secreted
between the first and last iteration of each simulation (Fig. 2c). This
latter effect reflects organisms taking up metabolites secreted by
themselves or their partner, and secreting different metabolites as a
response. Based on these results, we hypothesized that oxygen
availability would be among the best indicators of the metabolites
secreted in a simulation. To quantify this effect, we applied a
machine learning approach to a modified simulation set consisting
of all 14 organisms individually feeding on a single carbon source
(see Methods). Using this method, we found that sets of secreted
metabolites could be used to yield varying degrees of information
on simulation starting conditions. Specifically, oxygen availability,
species identity, and carbon source type could be predicted with
cross-validation accuracies of 93.4%, 58.0%, and 85.3%, respectively.
Notably, organism identity appeared to be not strongly associated
with specific costless secretions compared to carbon source and
oxygen. This may be due to the fact that, while an organism may
have a pathway to secrete a particular byproduct, utilization of that
pathway would be strongly contingent on the presence of the

necessary substrates. The observed associations of secretions with
the carbon source mirrored previous experimental observations,
which identified carbon sources as the main drivers of community
composition through metabolic cross-feeding13. While the specific
concentration of environmental substrates could in principle affect
predicted secretions, we found through dynamic FBA38,39 (dFBA)
simulations that substrate concentration had a negligible effect on
the identity of secreted metabolites (see Methods and Supplemen-
tary Data 2). Nonetheless, one should consider the possibility that
this result may be due to limitations of constraint-based modeling,
which may be overcome in future studies.

Useful costlessly secreted byproducts are abundant. Our ana-
lysis revealed that most organisms secreted a broad distribution of
metabolically useful compounds without cost in a variety of
environmental conditions (Fig. 3, Supplementary Fig. 4a).
Though inorganic compounds such as water and carbon dioxide
were, as expected, the most commonly secreted molecules across
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Fig. 2 Analysis of costlessly secreted metabolites in pairwise simulations. Only simulations that led to growth of at least one organism are shown.
a Distribution of number of expansions until final medium expansion iteration. Ninety-two percent of simulations reached a steady medium composition
after only one iteration with oxygen, compared to 82% of simulations without oxygen. b Distribution of the number of metabolites secreted into the
medium by one or both organisms in a pair after one iteration of FBA (c= 1). These distributions were unimodal for both conditions, centered between two
and three metabolites with oxygen and around five metabolites without oxygen. After this first iteration, the maximum number of secreted metabolites was
11 with oxygen and 16 without oxygen. In the anoxic simulations, the central carbon metabolites most commonly secreted after the first iteration were
fermentation byproducts such as acetate, formate, succinate, and ethanol. These metabolites were secreted in 87.5%, 74.5%, 25.7%, and 20.2% of
growth-yielding simulations respectively. With oxygen, the most commonly secreted central carbon metabolites after the first iteration were formate and
acetate, secreted in 46.8% and 18.3% of growth-yielding simulations, respectively. c Distribution of the number of metabolites secreted by one or both
organisms after the last iteration of FBA (c= cS). The last iteration is defined as the iteration in which no additional metabolites were released into the
medium. The total number of secreted metabolites followed similar distributions with a maximum at 18 and 21 metabolites for oxic and anoxic conditions,
respectively. Despite the large variability in number of expansions and number of secreted metabolites, we observe a poor correlation between these
distributions, indicating that a simulation resulting in a high number of expansions does not necessarily result in a high number of metabolites being
secreted (Supplementary Fig. 3)
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Fig. 1 Simplified schematic illustrating the in silico experiments. A growth medium (Mc) containing two carbon sources (α, β) with or without oxygen (Ω) is
provided to genome-scale metabolic models of two microbial organisms (i, j). If at least one organism grows, any costlessly secreted metabolites (σc) are
added to the medium, which is fed back to the organisms. This process is repeated for a series of iterations c, and terminates at iteration cs, defined as the
last iteration in which any new metabolites were secreted into the medium
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all simulations, nitrogen-containing compounds such as nitrite,
ammonium, and urea were secreted in 73.5% of the analyzed
cases, suggesting maintenance of an appropriate carbon-to-
nitrogen ratio in the cell. We note specifically that nitrite is
secreted in fewer than 100 simulations with oxygen, but its
secretion is prevalent in anoxic simulations—a phenomenon
previously observed in anaerobic enteric bacteria40. Moreover,
~10% of anoxic simulations resulted in at least one organism fully
reducing nitrate into nitrogen gas, suggesting that anaerobic
respiration was a preferred strategy in some environments.
Organic acids made up the second most abundant category of
costless secretions, followed by nucleotides, peptides, and carbo-
hydrates. Altogether, this space of secreted metabolites points to a
large variety of molecules that can be freely produced in resource-
poor environments.

Despite our careful design of the simulation process, it remains
difficult to quantify the degree to which these secretions will be
observed experimentally. For this reason, we have relied
exclusively on genome-scale metabolic models that have under-
gone experimental validation under conditions that in many cases
mirror those that we have simulated, in addition to imposing our
own set of constraints (see Methods). Moreover, though empirical
testing of every simulation we performed is inaccessible, we note
that experimental data from previously published work supports
key portions of our predictions (Supplementary Table 4). In an
additional effort to ensure the accuracy of the set of secreted
metabolites, we also carried out all simulations using alternative
objective functions. In particular, though optimization of growth
reflects the possibility of organisms “selfishly” growing as rapidly
as possible and “unintentionally” secreting useful metabolites,
alternative objective functions may best capture metabolic
regimes relevant across different conditions. We therefore
compared metabolite secretion profiles inferred by maximizing
growth to those obtained through minimization of biomass
production, as well as maximization and minimization of ATP
production. All objectives gave rise to secretion profiles highly
similar to each other, with an increase of only 0.18% of all
predicted metabolic secretions in the growth maximization
condition relative to the others (see details and results in
Supplementary Fig. 5, and Supplementary Table 5).

Given the abundance of secretions from different organisms,
we asked whether specific metabolite secretions were highly
correlated. We thus used a Spearman correlation analysis to
identify secretion patterns that appeared with high frequency
(Supplementary Fig. 6). In the presence of oxygen, we observed a
strong co-occurrence of glycerol, lactate, succinate, malate, and
acetate, which may reflect the high frequency of secretion of these

carbon-containing compounds. We also observed positive, but
weaker correlations between these metabolites and other central
carbon compounds such as fumarate, citrate, and 2-oxoglutarate.
Our analysis also pointed to the simultaneous release of multiple
nitrogen-containing compounds, chiefly urea, ammonium, and
nitrate. Without oxygen, we observed stronger correlations
between secretion of nitrogen-containing compounds and
fermentation byproducts. Amino acids also co-occurred with
high frequency without oxygen in patterns consistent with
examples of previously studied exometabolomic profiles, includ-
ing those showing co-secretion of central carbon intermediates in
E. coli and of amino acids in yeast41,42, as well as time-dependent
patterns of metabolites released simultaneously in soil commu-
nities43. These co-secretion profiles suggest that environments
modified by metabolic activities of existing organisms may be
simultaneously enriched by specific combinations of molecules.

Having mapped the space of metabolites secreted at no fitness
cost to the producer, we sought to understand which metabolites
could be subsequently taken up by other organisms. We found
that the organic metabolites most commonly exchanged across
species were central carbon intermediates, secreted mainly in
anoxic conditions (Supplementary Fig. 4b). These secretion
patterns mirrored those of anoxic gut bacteria, which divide the
task of digesting complex polysaccharides by exchanging
intermediate organic acids11,44. Importantly, we observed that
amino acids, secreted chiefly by Saccharomyces cerevisiae, but also
in a substantial number of simulations by Salmonella enterica,
Klebsiella pneumoniae, and E. coli, were among the most
frequently exchanged costless metabolites. This phenomenon
has been previously documented in relation to overflow
metabolism in S. cerevisiae45 and E. coli46,47, as well as in
yeast–bacteria symbioses48,49. This high prevalence of exchange
underscores the metabolic utility of these secreted byproducts.

Costless metabolite exchange enhances growth capabilities. We
next assessed how often the exchange of costlessly produced
molecules could directly enable growth of other organisms that
would otherwise not grow on the initial environmental nutrients.
Before taking into account the costless secretions, 18.2% and
11.9% of simulations predicted growth of both organisms with
and without oxygen, respectively (Fig. 4a). After the organism
pairs were allowed to exchange costlessly secreted metabolites,
our algorithm predicted a substantial increase in growth-
supporting environments (72.7% with oxygen and 82.5% with-
out oxygen relative to minimal medium), suggesting that
exchange of costlessly secreted metabolites can enable growth of
additional organisms in resource-poor environments.
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Fig. 3 Categorization of metabolites secreted costlessly in all simulations. a, b Categorization for all simulations with oxygen (a) and without oxygen
(b). Though inorganic waste products (e.g., water, CO2) make up the majority of unique metabolites secreted with and without oxygen, release of
potentially valuable metabolites such as organic acids, carbohydrates, and peptides is observed in a major subset of simulations. In anoxic simulations in
which at least one organism fully reduced nitrate into nitrogen gas, we observed a modest reduction in the number of fermentation byproducts secreted
(2.81 ± 1.11 metabolites for non-nitrate respirers vs 2.38 ± 0.54 metabolites for nitrate respirers)
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In addition to a global increase in growth capabilities due to
costless metabolite secretion, we observed species-specific growth
patterns that varied widely across our dataset (Fig. 4b).
Lactococcus lactis and Porphyromonas gingivalis, for example,
are host-associated microbes that are auxotrophic for a wide
range of metabolites and that often depend on metabolic products
from the host or other commensal microbes50,51. In our study,
these organisms failed to grow in all simulations even after
costless metabolites were made available by a partner. This failure
to sustain growth of highly dependent organisms suggests that
there is an upper limit to the degree to which costless metabolite
production can enable species growth, especially in the minimal
environments that were tested. Nonetheless, most of the
metabolites that these organisms require to grow were producible
separately by multiple species, suggesting a possible important
role of multi-partner cross-feeding interactions in complex
communities. Aside from these extreme cases, our analysis shed

light on the performance of generalist organisms, such as E. coli,
K. pneumoniae, S. cerevisiae, and S. enterica. These organisms
grew in at least half of all tested environmental conditions, in
contrast with organisms such as Methylobacterium extorquens or
Zymomonas mobilis, which exhibited much more limited pairwise
growth capabilities. The growth patterns of these latter organisms
suggest a greater dependence on the metabolic byproducts of
their partners, particularly in anoxic conditions.

As our study relied on a limited set of curated metabolic
models, we wondered how sensitive these results were to the
organisms being assessed. In order to explore possible bias, we
conducted additional simulations in which we binned organisms
by environmental habitat. These simulations were separated into
three sets: the first with 13 aquatic microbes grown aerobically,
the second with 12 soil microbes grown aerobically, and the third
with 12 human gut-associated microbes grown anaerobically.
These simulations employed additional genome-scale models
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Fig. 4 Growth outcomes of pairwise cross-feeding simulations. a Growth outcomes of all in silico experiments with and without oxygen, grouped by
pairwise growth phenotype. b Organism-specific growth outcomes. Size of circles represent the relative number of environments in which an organism was
able to grow out of 5774 in silico experiments with each partner. c, d Frequency of obligate pairwise growth by species in single carbon source simulations
for oxic (N= 69,420, c) and anoxic (N= 52,897, d) conditions. Each color ribbon is unique to an individual species pair. Width of ribbons is proportional to
the number of experiments in which obligate syntrophy was predicted for each species pair. Radial axis colors represent directionality of exchange: blue:
organism provided essential metabolites to partner organism in over 75% of simulations; red: organism received essential metabolites in over 75% of
simulations; gray: both organisms gave and received essential nutrients in most simulations. Most pairings of organisms were imbalanced, with one
organism more frequently providing essential nutrients to another. For example, with oxygen, Synechocystis relied on metabolites from nine different
organisms across the vast majority of simulations in which it grew with a partner. As all organisms were grown heterotrophically, carbon dioxide and
ammonium were the main byproducts that enabled growth of Synechocystis in these simulations. BS: B. subtilis, EC: E. coli, KP: K. pneumoniae, LL: L. lactis, ME:
M. extorquens, PA: P. aeruginosa, PG: P. gingivalis, RS: R. sphaeroides, SB: S. boydii, SC: S. cerevisiae, SE: S. enterica, SO: S. oneidensis, SS: Synechocystis, ZM: Z.
mobilis
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(including obligate aerobes or obligate anaerobes, see Supple-
mentary Data 1) that were not used in our core analysis of 14
facultative anaerobes. By analyzing the expanded set of organisms
in a habitat-specific manner, we found that exchange of costless
metabolites substantially improved the ability of minimal
environments to support pairwise growth in all three habitats
(Supplementary Fig. 7a). Notably, metabolite secretion and
exchange for aquatic and soil microbes resembled the profiles
found for the core organisms grown with oxygen (Supplementary
Fig. 7b, c, Supplementary Table 6). Conversely, the distribution of
secreted metabolites for gut-associated microbes featured wide-
spread secretion and exchange of organic acids that were similar
to those found across core organisms grown anoxically
(Supplementary Fig. 7d, Supplementary Table 6).

Costless metabolic exchange yields specific partnerships. After
analyzing general growth outcomes across our entire simulation
set, we sought to determine which specific organisms could not
grow without the costless secretions of a partner. Our simulations
identified a diverse space of such organisms, with most species
exhibiting at least one case of obligate syntrophy with all others
(Fig. 4c, d). Though many organisms had balanced distributions
of dependence (i.e., organism i enabled the growth of organism j
in some cases, and organism j enabled the growth of i in others),
the majority of such relationships were unidirectional. One
striking example of this phenomenon is that of cyanobacteria and
heterotrophic organisms, with Synechocystis depending frequently
on other organisms. We also observed that E. coli, Bacillus sub-
tilis, and S. cerevisiae, three species commonly used as model
microbial organisms, were more frequently the giving organisms
in cases of obligate syntrophy. These pairings not only shed light

on the mechanisms behind interspecies codependencies, but may
also serve as a map for assembling co-dependent synthetic
communities stabilized by costless metabolic exchange.

Carbon sources exhibit cooperativity in promoting growth. In
addition to characterizing the global space of in silico growth
phenotypes, we examined how cooperativity of carbon sources
could enhance growth capabilities in organism pairs. Drawing
from techniques used to quantify epistasic interactions52, we
defined the cooperativity index C of two carbon sources α and β
as the difference between the number of simulations that resulted
in growth from both carbon sources (gα,β) and the product of the
number of simulations that resulted from single carbon sources
(gα,gβ). These counts were normalized by the total number of
simulations involving the specific pairing of carbon sources being

analyzed (represented here by the combinatorial formula ðN
2
Þ),

as follows:
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This metric reflects the cooperative potential of each carbon
source pair relative to that of each carbon source in isolation.
Upon averaging a single carbon source over its cooperativity
index, we obtain a relative degree to which a carbon source
“depends” on another to sustain growth. By framing cooperativity
in this context, we observed that simple sugars such as glucose
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Fig. 5 Distribution of metabolic interaction types. a Schematic representation of interaction types arising from costlessly secreted metabolites. Competition
is defined as both organisms consuming the same carbon source. Commensalism is defined as a unidirectional exchange of one or more costlessly secreted
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and sucrose had relatively low cooperativity indices, that is, they
were able to sustain growth efficiently on their own. In contrast,
more complex molecules and dipeptides had higher average
cooperativity indices, indicating they performed better in the
presence of another carbon source. We grouped these average
cooperativity indices through hierarchical clustering (Supplemen-
tary Fig. 8, Supplementary Table 7) and observed general
clustering by carbon source type—especially with sugars and
amino acids appearing in distinct groups. This analysis illustrates
the nonlinear effects of adding additional nutrients to a minimal
medium, underscoring the observed complex metabolite usage
patterns in organism pairs.

Costless cross-feeding can offset competition for nutrients. Our
analysis so far has examined the contexts in which a metabolite
can be secreted costlessly, as well as the potential for these
metabolites to promote growth. Additional insight about the
relevance of these interactions can be obtained by comparing
them to ecological expectations of cooperation and competition.
Towards this goal, we defined six types of possible interactions:
non-interaction, commensalism (unidirectional exchange), and
mutualism (bidirectional exchange), each with or without com-
petition for a primary carbon source (Fig. 5a). We chose to
decouple competition for nutrients from exchange of secreted
metabolites in order to more fully understand the degree to which
the latter can promote organism coexistence despite resource
scarcity. When analyzing our dataset under this framework, we
found that competition for one or both carbon sources con-
stituted the majority of all interactions (Fig. 5b), as previously
observed experimentally53. However, these predicted competitive
phenotypes were observed to frequently occur simultaneously
with potentially beneficial interactions mediated by metabolic
byproducts.

Our modeling predicted bidirectional interactions to be far
more common without oxygen than with oxygen (Fig. 5c). We
obtained a more fine-grained perspective on costless metabolic
interactions by considering the distributions of interaction types
by species pairs (Fig. 5d). For example, the majority of pairings of
M. extorquens with B. subtilis, E. coli, and K. pneumoniae
exhibited commensal interactions (chiefly with M. extorquens
receiving). In contrast, the distribution of interactions shifted

toward mutualism when oxygen was made unavailable. These
patterns were also mirrored in a majority of individual species
pairings. As with the positive shift observed in the distributions of
secreted metabolites (Fig. 2b, c), we attributed the increased
prevalence of mutualistic interactions without oxygen to a greater
availability of metabolic byproducts that contributed to recipro-
city. To test this hypothesis, we performed a small subset of
“hybrid” in silico experiments, where we analyzed the interactions
that arose from one species being grown with oxygen and the
other without oxygen. We studied the examples of E. coli with B.
subtilis and S. enterica, whose pairwise simulations showed
greater amounts of mutualistic interactions without oxygen
(Fig. 6). These hybrid simulations demonstrated how an
organism grown anoxically can provide a higher number of
useful byproducts to its aerobic partner, leading to bidirectional
interactions when both are grown without oxygen.

We also analyzed the interaction type distributions of our
habitat-specific simulation sets. Though direct comparison
between oxic and anoxic conditions was not possible with these
organisms, we found their interaction patterns to be largely
comparable to those in our core set. This was particularly evident
when comparing competition and exchange patterns between our
core set grown with oxygen and the aerobic aquatic and soil
organisms (Supplementary Fig. 7e, f, h, i). We nonetheless
noticed a substantial difference between the interactions predicted
in the gut-associated microbes and our 14 core organisms grown
anoxically. In simulations of gut-associated organisms, we
predicted a lower frequency of competition and mutualism
(Supplementary Fig. 7g, j). We suspect that the widespread
costless secretion of amino acids by Bifidobacterium adolescentis
and Faecalibacterium prausnitzii may be skewing these distribu-
tions, as an abundance of valuable secreted byproducts may
preclude their partner organism from competing for primary
carbon sources and equally contributing to an exchange.

Costless secretions can produce stable interaction motifs.
Lastly, we combined data generated by our algorithm with eco-
logical network simulations to understand how the simultaneous
competition for common nutrients and cooperation through
costless metabolite exchange could jointly affect the stability of
pairwise consortia. Using the general interaction types outlined
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Mutualistic
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Fig. 6 Interaction type distributions from hybrid oxic–anoxic simulations for two organism pairs. a E. coli with B. subtilis. b E. coli with S. enterica. Both hybrid
simulations demonstrate that regardless of organism, availability of oxygen is a strong determiner of the potential for bidirectional exchange. When oxygen
is not provided to an organism in these simulations, it tends to provide metabolites to its partner, resulting in an abundance of commensal interactions.
These scenarios may act as a “stepping stone” toward fully anoxic environments, in which mutualistic interactions become more prevalent
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previously (non-interaction, commensalism, and mutualism with
and without competition), we first enumerated all possible
interaction network motifs (Fig. 7a) and calculated the frequency
with which each motif was observed in our simulation set
(Fig. 7b). For non-interacting motifs, our simulations predicted
an almost exclusive representation of relationships involving
competition for a primary carbon source. The distribution
between competitive and non-competitive motifs was more
balanced for commensal and mutualistic interactions, showing a
slight preference for interactions involving competition.

In order to simulate how these interactions could contribute to
stable symbioses, we created a dynamical chemostat model of two
arbitrary species consuming carbon sources and exchanging
costless metabolites according to each motif type (see Methods,
Supplementary Fig. 9). By varying the maximum specific growth
rates (μmax) of each species from 0 to 1 h-1, we simulated the
growth of the pair under each motif type for 500 h. If both species
survived at the end of the simulation, we marked the motif type as
stable at that combination of specific growth rates. We mapped
the space of stable species pairs under each motif type, observing
that competitive interactions generally had a reduced parameter
space for enabling stability (Fig. 7c). Notably, though motif N1b
was highly prevalent in the costless FBA simulation set, this motif
represents competitive exclusion and cannot result in long-term
stability. In contrast, though complete nutrient–organism ortho-
gonality can yield stability over the whole space of parameters
(N2a), this motif was not predicted to occur in the FBA simula-
tions. An intermediate case between these two extremes (N2b)
represents a balance between competition and independence with
respect to external carbon source utilization: in this case, which

frequently occurs in our dataset, stability is achievable only for a
narrow set of specific growth rates.

Our models predicted a marked increase in stability when
costless metabolite exchange was enabled. In motif C1a, for
example, the rate of costless metabolite secretion from organism 1
is enough to sustain organism 2, even when the specific growth
rate of organism 2 is greater. This nonintuitive space of stable
solutions is the result of the effective growth rate of organism 2
being reduced such that its rate of byproduct consumption does
not exceed the rate of secretion by organism 1. Nonetheless,
competition for primary carbon sources leads to decreases in the
space of possible stable solutions, as observed in motifs C1b and
C2b. In motif C2b, both organisms are competing for a carbon
source and organism 1 is providing one or more costless
metabolites to organism 2. Our dynamical modeling showed that
the specific growth rate of organism 1 must usually be greater
than that of organism 2 in order for both species to be stable.
When feedback is allowed to occur (mutualism), the potential for
stability greatly increases across our parameter space, even in the
presence of competition for carbon sources. These motifs, with
their associated prevalence data and dynamical properties, can
overall serve as an atlas for guiding the engineering of stable
synthetic consortia built off of costless metabolic relationships.

Discussion
We have investigated the pairwise growth phenotypes and inter-
actions of 24 diverse microbial species in over 2 million compu-
tational experiments. We found that resource-poor environments
can provide the basis for the release of a wide variety of useful
metabolic products secreted without cost by their producing
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organism; these costless metabolic products provide, in a manner
chiefly dependent on oxygen availability and environmental
composition, valuable environmental enrichment, nearly doubling
the potential of minimal environments to sustain growth. We
further found that exchange of costless metabolites established
beneficial uni- and bidirectional interspecies interactions, asso-
ciated with different chances of stability of the ensuing consortia.

Our iterative medium expansion method allowed us to observe
which metabolites were secreted in response to others in a
mechanistic fashion, highlighting the capability of costless
metabolites to enrich minimal environments and sustain biodi-
versity, even when organisms were competing for the same pri-
mary nutrients. Though spatial segregation of competing
organisms can also allow for stable communities9,39,54, purely
competitive phenotypes can lead to community collapse in
homogenous environments, which can limit taxonomic diversity
in nature55. By studying the prevalence of mutually beneficial
interactions in the presence of competition, our study can help
understand metabolic dynamics in resource-poor environments,
such as the oligotrophic communities found in the open ocean.
Costless secretions, some of which resemble the metabolic lea-
kages that underlie the Black Queen Hypothesis18,21, may also
contribute to the maintenance of small genomes in resource-poor
environments, as the metabolic needs of some organisms can be
fulfilled by others. Interestingly, the prediction that resource-poor
environments can lead to diverse secretions and thus to the
emergence and maintenance of beneficial interspecies interactions
is consistent with prior suggestions that resource abundance or
lack of stress may reduce the reliance of communities on meta-
bolic exchange56–60.

Our interaction analysis provides deeper mechanistic insight into
the increased prevalence of mutualistic interactions without oxygen,
a phenomenon that has been previously predicted computation-
ally27 and that provides a window into metabolic relationships in
environments harboring steep oxygen gradients, such as the human
gut61. By carrying out a set of hybrid oxic–anoxic in silico experi-
ments, we observed that the additional metabolites secreted
anoxically by a facultative anaerobe could provide valuable nutri-
ents for aerobically growing organisms. This phenomenon has been
suggested to play an important role in maintaining equilibrium in
communities at oxic–anoxic interfaces in the mammalian gut62,63

and could be the subject of further mechanistic studies.
Although our modeling method considered a wide space of

mechanistic constraints in predicting costless metabolic exchange,
we acknowledge that secretion patterns and exchange potential
are also defined by a variety of other biological factors that fall
outside the scope of our modeling framework29, such as tem-
perature30, signaling and regulatory-based decisions31–35, pH
changes and metabolite toxicity36, and concentration-dependent
thermodynamic gradients30,64. In addition, the cost of metabolite
secretion and the cooperative or competitive nature of an inter-
action may change when interpreted across different timescales23,
a quality that is not fully captured by the framework described
here. In spite of these limitations, however, our analysis is able to
demonstrate the plausibility of widespread costless cross-feeding
in nature. Our results can also serve as a basis for prioritizing
future specific experiments, for which model predictions could be
thought of as a null hypothesis against which to compare
empirical measurements. Dynamical modeling coupled with these
metabolic analyses could then be used to obtain the parameter
space most likely to yield desired stable partnerships in vivo.
Because this approach relies on screening, in a scalable way,
synergy-inducing environments, as opposed to engineering
individual strains, it can simplify the process of assembling syn-
thetic communities65 and enhance our understanding of
microbiomes.

Methods
Selection and modification of genome-scale metabolic models. A genome-scale
metabolic reconstruction was obtained for each of the 14 facultative anaerobic
organisms used in the analysis, as well as for the organisms used in our habitat-
specific simulations (Supplementary Data 1). Genome-scale metabolic models are
mathematical representations of an organism’s known metabolic network, which
are used to generate mechanistic predictions of growth and resource allocation in
a variety of environmental conditions. The process of generating a genome-scale
metabolic model has been outlined conceptually66–69 and described procedu-
rally70 by various groups, and generally comprises an automatic generation of a
model based on pathway and genome data followed by manual curation by
integrating phenotyping, metabolomic, or transcriptomic data71. We note that
although an automatically generated draft metabolic model can be constructed
for virtually any organism for which a genome annotation exists, the space of
high-quality, experimentally verified metabolic models that have undergone the
manual curation process summarized above is comparatively very small72. This is
due to the time and resources needed to complete the curation process, which can
span from 6 months70 to >10 years for the iteratively refined model of E. coli K-
1273. We nonetheless consider this process to be essential in producing models
that can generate the mechanistic cross-feeding predictions detailed here, which
rely on verified metabolic capabilities in monoculture.

The models used in this analysis span five taxonomic phyla, as well as a
variety of primary metabolic strategies (Supplementary Data 1). In addition,
these models describe several organisms that are commonly used for in vivo
studies (E. coli K-12, S. enterica LT2, and so on), making the resulting
costless cross-feeding predictions particularly useful for synthetic ecology
experiments and microbial community assembly. Importantly, each metabolic
model includes reactions that account for the energy requirements of organism
growth, as well as those of metabolite production and secretion. These
requirements are often incorporated as two key reactions: (1) NGAM, or non-
growth-associated ATP maintenance, which comprises an ATP hydrolysis step
that simulates ATP usage for processes that are not needed for growth; and (2)
GAM, or growth-associated ATP maintenance, which accounts for energy
usage in growth-associated processes such as macromolecule and protein
synthesis. A minimum level of flux (typically determined experimentally) must
flow through each of these reactions in order for the models to grow in silico.
In this way, energetic costs of growth and metabolite production and transport
are accounted for in the models.

Each model was imported into MATLAB (The MathWorks, Inc., Natick, MA)
using the constraint-based reconstruction and analysis (COBRA) Toolbox74, a
software platform for constraint-based modeling of metabolic networks. In order to
enable in silico cross-feeding to be correctly classified, the namespace of all of the
metabolic compounds in each of the models was standardized to be internally
consistent. This was performed via a computational pipeline with additional
manual curation for irregularly annotated metabolites.

Computational methodology description and inputs. Our computational
method comprises a set of programs written in MATLAB that use FBA to
mechanistically define the growth status and metabolic exchange of microbes
through costlessly secreted byproducts. Briefly, FBA is a mathematical method that
determines an optimal distribution of metabolic flux through a biochemical net-
work that will maximize a given objective, usually biomass24,70. An FBA problem is
framed in the context of several constraints, namely: (i) S, the stoichiometric matrix
of dimensions m × n where m is the number of metabolites and n is the number of
reactions in the model; (ii) v, the vector of all reaction fluxes; and (iii) vmin and
vmax, flux constraints placed on v, defined by enzymatic capacity and experimen-
tally measured uptake rates.

We employ FBA to determine if an organism is able to grow on the in silico
growth media conditions we define, in addition to which metabolites are taken up
and costlessly secreted. We first apply FBA by maximizing for growth and
obtaining an optimal growth rate for an organism, vg,0. To determine which
metabolites are secreted costlessly, we set this growth rate as a minimum for the
biomass flux and apply FBA again, recording any metabolites that were secreted
and the new growth rate, vg,s. We also apply the additional constraint of
minimizing all reaction fluxes across the network to more closely simulate efficient
use of the proteome and minimize cycling of metabolites through the network75.
Our linear program therefore becomes:

min vj j

s.t.:

S ´ v ¼ 0;

vmin � v � vmax;

vg;s � vg;0:
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This optimization aims to encompass any enzymatic cost incurred by the
organism in synthesizing and exporting any metabolite we deem to be costless.
During each step in which growth or metabolite absorption and secretion are
computed, FBA optimizations are performed separately for each in silico organism
i and j, with biomass production set as the objective function while minimizing the
sum of the absolute value of v. Because we focus on the emergence of potential
metabolic exchange through the availability of costlessly secreted metabolites, our
modeling framework purposefully keeps FBA optimizations separate for each
model without accounting for spatial or temporal community structure. It is also
for this reason that we establish the biomass fluxes of each in silico organism as the
objective functions to be optimized, as we are concerned with secretion of
potentially useful metabolic byproducts that arise out of “selfish” optimal growth.
This assumption of maximum growth with proteome optimality is also key for
translating these organisms and predictions to in vivo synthetic ecologies, where
biomass optimization more closely describes the behavior of organisms in batch or
continuous culture76. In simulations where we employed alternative objective
functions, we optimized either minimization of biomass production, maximization
of ATP production, or minimization of ATP production (all with a lower bound for
biomass flux set at 0.01 per hour) to compare secretion profiles to those observed
under biomass maximization. For ATP maximization and minimization functions,
we set the ATP maintenance reaction in each of the models as the objective.

Our algorithm requires six inputs: (1) a data structure containing the genome-
scale metabolic models to be used, (2) a list of carbon sources, (3) the number NM

of in silico organisms to be simulated together (for pairwise simulations NM= 2),
(4) the number NCS of carbon sources to be provided to each simulation, (5) a
Boolean variable Ω= {1,0} that specifies if oxygen will be made available to the in
silico organisms, and (6) a list of metabolites that makes up a simulated base
growth medium, Mmin. This base medium contains various nitrogen, sulfur, and
phosphorus sources, as well as vitamins, ions, and metals needed for growth of the
organisms (Supplementary Table 2).

We focused on pairwise species growth with two carbon sources (NM,NCS= 2).
Although each genome-scale metabolic model we used has been manually curated
to reflect in vivo metabolic capabilities, very few experiments have been performed
to verify FBA-generated predictions for more than a single species39,77. We
therefore limit the number of in silico species to two, in order to interpret the
growth and cross-feeding predictions with greater confidence. This limit also
constrains the combinatorial space of the simulations, which grows exponentially
and becomes numerically intractable with more models and carbon sources. In
addition, limiting simulations to NM= 2 allows for greater experimental
accessibility for assembling synthetic ecologies based on costless metabolite
exchange. Our algorithm can nonetheless be applied to any {NM, NCS >0}.

The list of all possible carbon sources was defined primarily from the carbon
sources contained in the BIOLOG Phenotyping MicroArray 1 (PM1) plate, which
is used for phenotyping and curation of genome-scale metabolic models78–80. The
carbon sources we selected are common mono-, di-, and polysaccharides, all 20
amino acids, dipeptides, and organic acids contained in the PM1 plate. We also
supplemented the list with additional carbon sources known to be consumed by the
in silico organisms, for a total of 108 (Supplementary Table 1).

To permit uptake of the metabolites in the medium, the constraint on the
uptake flux bound vmax for each exchange reaction pertaining to a medium
metabolite was removed in each of the models i and j. This bound was fully
removed (vmax= 1000 mmol × gDW−1 × h−1) for non-limiting medium
components, and was set to (vmax= 10 mmol × gDW−1 × h−1) for the growth-
limiting carbon sources α and β. This latter value is drawn from experimentally
estimated uptake rates of sugars by E. coli in exponential growth conditions73, and
is applied equally to all other species to simulate general availability of the carbon
sources in the environment. In all aerobic simulations, the maximum uptake rate
for oxygen was also unconstrained (vmax= 1000 mmol × gDW−1 × h−1), so as not
to explicitly model conditions similar to those of overflow metabolism. All other
exchange reaction vmax values are set to zero to block uptake of metabolites not in
the medium.

Computing growth, secretion, and cross-feeding. We describe the FBA opera-
tions at the core of our algorithm as a function F that, given a medium conditionM
and organisms i and j, outputs the binary growth status g of the organisms, as well
as the set of metabolites σ secreted costlessly by the organisms:

F M; i; jf gð Þ ¼ g; σf g: ð2Þ

Each in silico experiment E for a given organism pair with a pair of carbon
sources is made up of an initialization step, an expansion step consisting of series of
applications of F, and a completion step (Supplementary Fig. 2). In the
initialization step, two organisms i and j are selected, and a medium M0 is defined.
M0 contains the minimal medium Mmin, two carbon sources α and β, and the
variable Ω, which denotes the presence or absence of oxygen.

In the expansion step, the function F is applied for a series of iterations c. In
each iteration, F simulates the growth of both organisms in the current medium
condition and returns the Boolean growth statuses gc= {gi,gj} (where gi,gj= {0,1})
of both organisms and the set of any costlessly secreted metabolites, σc. To avoid
recording metabolites reported to be secreted only as a result of numerical

uncertainty in FBA, a minimal lower flux bound of 0.01 mmol × gDW−1 × h−1 was
applied as a cutoff for determining secretion. If at least one organism in the pair
grows, the medium is supplemented with σc:

Mcþ1 ¼ Mc þ σc: ð3Þ

As long as new metabolites continue to be secreted into the medium, that is,

Mc>Mc�1; ð4Þ

F continues to be applied. This stepwise expansion simulates the organisms
responding to the costlessly secreted metabolites being secreted and generating a
richer medium. The completion step occurs when no new metabolites are secreted,

Mc ¼¼ Mc�1 ð5Þ

and the final iteration before this stabilization occurs is defined as cS. Our algorithm
therefore carries out individual in silico experiments Eα;β;Ω

i;j , defined as the output
resulting from cs applications of F given organisms i and j, carbon sources α and β,
and the presence or absence Ω of oxygen:

Eα;β;Ω
i;j � gc;Mc

� �cs
c¼1¼ F M0; i; jf gð Þcsc¼1: ð6Þ

Dynamical modeling of interaction motifs. We designed a dynamical modeling
method to simulate the long-term stability of each pairwise interaction type
observed in our in silico experiments. We first established a graph theory frame-
work to map each simulation to a specific interaction motif, each of which
accounted for the general interaction type (non-interacting, commensal, or
mutualistic), the number of carbon sources consumed by the pair, and the com-
petition status for the carbon sources (“a” denotes no competition, “b” denotes
competition) (Fig. 5a). We next applied a differential equation-based growth model
to each specific motif. Since motifs with two carbon sources can be represented by
more than one motif topology, we selected one representative topology from these
motifs to simplify the space of dynamical modeling simulations. These equations
were modeled off Monod dynamics81 and are intended to simulate growth of
species in a chemostat, with constant replenishment of medium components. The
abundance of each organism si, in g/L, is modeled as follows:

dsi
dt

¼ siμmax;i
mα

ksi ;mα
þmα

 !
� Dsi; ð7Þ

where μmax,i is the maximum specific growth rate of organism i in h−1, mα is the
concentration of carbon source α in g × L−1, ksi ;mα

is the concentration of α at
which organism i reaches half its maximal growth rate in g × L−1, and D is the
chemostat dilution rate in h−1. If two carbon sources are present and the organism
is determined to take up both by the motif definition, the equation is modified to
include a carbon source β as follows:

dsi
dt

¼ siμmax;i
mα

ksi ;mα
þmα

 !
mβ

ksi ;mβ
þmβ

 !
� Dsi: ð8Þ

The concentrations of each carbon source are defined as follows:

dmα

dt
¼ Imα

� si
Kmα

μmax;i
mα

ksi ;mα
þmα

 !
� Dmα; ð9Þ

where Imα
is the nutrient stock concentration for mα in g × L−1, and Kmα

is the
ratio of nutrient consumed by the organism i in gnutrient × gcells−1. This equation is
modified with an additional term (organism j) to simulate competition for mα.

To simulate metabolic exchange, equations for the abundances of costlessly
produced metabolites (~m) in g × L−1 were defined as follows:

d~mi

dt
¼ k~mi

´ si �
sj

K~mi ;sj

μmax;j

~mi

ksj ;~mi
þ ~mi

 !
� D~mi ð10Þ

Here, metabolite ~mi is produced by organism i and consumed by organism j. k~mi
is

the synthesis rate of the metabolite in h−1, K ~mi ;sj
is the ratio of metabolite

consumed by the population sj in gmetabolite × gcells−1, and ksj ;~mi
is the concentration

of metabolite needed for the population sj to reach half of its maximum growth rate
in g × L−1.

We then combine Eqs. (7, 9, and 10) to fit the particular motif being modeled
(Supplementary Fig. 9). The values of the parameter values are described in
Supplementary Table 3 and are based on values reported by Smith82, Balagaddé
et al.83, and those based on reasonable estimates for resource consumption. For
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each motif, we vary the maximum specific growth rate of both organisms from 0 to
1 per hour and run the simulation for 500 h. If both organism abundances are
above 0.05 g × L−1 at the end of the simulation, we determine the motif to be stable
at the prescribed growth rates.

Support vector machine classification. We trained three separate support vector
machine (SVM) classifiers to quantify the degree to which oxygen availability,
species identity, and carbon source type contribute to the variability in secretion
profiles. SVMs were constructed using the MATLAB function “fitcsvm” for the
two-class oxygen availability vector, and using the MATLAB function “fitcecoc” for
the multi-class species and carbon source category vectors. Secretion profiles were
represented as a binary matrix, with each row representing a simulation and each
column denoting a metabolite. Cross-validation was performed by: (1) randomly
partitioning the matrix of secreted metabolites into 10 sets of equal size, (2)
training the classifier on nine of the sets and testing on the remaining sets, (3)
repeating training and testing for the remaining nine partitions, and (4) combining
accuracy statistics for each set.

Dynamic flux balance analysis simulations. We carried out a set of simulations
to determine the effect of substrate concentration on metabolite secretion patterns.
For these simulations, we used the COMETS (computation of microbial ecosystems
in time and space) software package39, which uses dFBA38 to integrate metabolic
fluxes over sequential time intervals. This method enables specification of substrate
concentrations as well as measurement of biomass growth and byproduct con-
centrations. As dFBA is more time- and computationally intensive than our pri-
mary FBA-based algorithm, we limited the number of COMETS simulations to
analyzing single organisms growing on one carbon source. For each
organism–carbon source pair, we ran COMETS with three different carbon source
concentrations (0.01, 20, and 200 mM) for a simulated 2 h to capture differences in
secreted metabolites. These combinations yielded a total of 9072 distinct
simulations.

Code availability. Code for running pairwise cross-feeding simulations is available
at github.com/segrelab/CostlessExchange.

Data availability
All supplementary tables are contained in the Supplementary Information file.
Additional data are provided in Supplementary Data files 1 and 2. Raw results data
for all pairwise cross-feeding simulations are available at github.com/segrelab/
CostlessExchange. A Reporting Summary for this Article is available as a Supple-
mentary Information file.
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