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Abstract. Aging is a significant risk factor for the development 
of bisphosphonate‑related osteonecrosis of the jaws (BRONJ). 
Accumulating evidence suggests that bone aging is associated 
with oxidative stress (OS), and OS is associated with osteone-
crosis. To elucidate the mechanisms of the onset of BRONJ, 
the present study focused on OS and the effects of treatment 
with the pro‑oxidant DL‑buthionine‑(S,R)‑sulfoximine (BSO), 
an oxidative stressor, on healing of a surgically induced 
penetrating injury of the palate. Six‑week‑old C57BL/6J mice 
were randomly divided into four groups (n=5 each) and treated 
with or without zoledronic acid (ZOL) and with or without 
BSO (experimental groups: ZOL, BSO, and ZOL+BSO; 
control group: saline solution). A penetrating injury of the 
midline palate was surgically created using a root elevator. 
ZOL (250 µg/kg/day) was injected intraperitoneally every day 
from 7 days prior to the surgical treatment to 4 days following 
the surgical treatment. BSO (500 µg/kg/day) was administered 
7 days prior to the surgical treatment as a single intraperitoneal 
injection. The maxillae were harvested at 5 days following the 
surgical treatment for histological and histochemical studies. 
The presence of empty osteocyte lacunae in the palatal bone 
was increased by ZOL and BSO treatment. The highest number 
of empty osteocyte lacunae was observed in the ZOL+BSO 
group. The number of tartrate‑resistant acid phosphatase‑posi-
tive cells was decreased by ZOL treatment and increased by 
BSO treatment. The number of canaliculi per osteocyte lacuna 
was significantly decreased by BSO treatment. The mineral 
apposition rate was significantly lower in the treatment groups 
than the control group. Bisphosphonates and OS suppressed 
bone turnover. The present study has demonstrated that BSO 

treatment affects osteocytes, and OS in osteocytes exacerbates 
impairment of the osteocytic canalicular networks. As a result, 
bisphosphonates and OS may induce osteonecrosis following 
invasive dentoalveolar surgery. OS has been identified as an 
additional risk factor for the development of BRONJ.

Introduction

Bisphosphonates (BPs) accelerate osteoclast apoptosis. The 
mechanism comprises strong inhibition of bone resorp-
tion (1,2). BPs are effective for the treatment of osteoporosis, 
Paget's disease, multiple myeloma, hypercalcemia of malig-
nancy and bone metastases from breast cancer and prostate 
cancer (3‑5). However, BP‑related osteonecrosis of the jaws 
(BRONJ) is a serious problem in patients treated with BPs (6,7). 
The risk factors for BRONJ comprise drug‑associated, local 
and demographic/systemic factors. Drug‑associated risk 
factors include the potency of the specific BP. Zoledronic acid 
(ZOL) is the most potent BP (8). It also carries the highest 
incidence of BRONJ (9). The drugs that have primarily been 
used in evaluated studies (10,11) on BRONJ arising in rodents 
under BP therapy following tooth extraction were ZOL and 
alendronate  (12). Local risk factors include dentoalveolar 
surgery, tooth extraction, periapical surgery and periodontal 
surgery including osseous injury. Systemic risk factors 
include corticosteroid therapy, diabetes and chemotherapeutic 
drugs (13). A number of animal models of BRONJ associated 
with risk factors such as corticosteroid therapy (14), vitamin D 
deficiency (15) and diabetes (16) combined with tooth extrac-
tion have also been established.

Aging is an additional significant risk factor for the 
development of BRONJ (17‑19). Bone aging is associated with 
oxidative stress (OS) as demonstrated in both human studies 
and animal models (20‑23). OS occurs as result of overproduc-
tion of reactive oxygen species (ROS) that is not balanced by an 
adequate level of antioxidants (24). BP treatment can produce 
OS (25), and continued local inflammation, either with or 
without an associated infective process (26‑29), can produce 
ROS. Khandelwal et al (30) previously reported that treatment 
with ZOL increased OS in the human breast cancer cell line 
MCF‑7, and this increase in OS was reversed by antioxidants. 
The authors reported that ZOL can induce a dose‑dependent 
but irreversible autophagy by its effect on the mevalonate 
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pathway and OS (30). It has also been demonstrated that OS 
is associated with osteonecrosis (31‑33). Ichiseki et al (34) 
have demonstrated that a single intraperitoneal injection of 
the pro‑oxidant DL‑buthionine‑(S,R)‑sulfoximine (BSO) 
(500 mg/kg), an oxidative stressor, in rats was by itself sufficient 
to induce osteonecrosis. Osteonecrosis in the femoral head 
was confirmed at 5 (2 of 20 rats, 10%), 7 (7 of 20 rats, 35%), 
and 14 days following BSO injection (8 of 20 rats, 40%) (34). 
To the best of our knowledge, no reports to date have described 
animal models of BRONJ associated with OS. To elucidate the 
mechanisms of the onset of BRONJ, the present study focused 
on OS and investigated the effects of ZOL and BSO in a short 
term on healing of surgically created palatal defects.

Materials and methods

Animal handling. The present study was approved by the 
Ethics Committee of the Hyogo College of Medicine (Hyogo, 
Japan; approval number 16‑078). Male 5‑week‑old C57BL/6J 
mice (n=40; body weight, 18‑21 g) were obtained from Japan 
SLC, Inc. (Hamamatsu, Japan). The animals were housed in a 
temperature‑, humidity‑, and light‑controlled room (23±3˚C; 
55±15%; 12‑h light‑dark cycle). Food and water were available 
ad libitum.

Agents. ZOL [2‑(imidazol‑l‑yl)‑1‑hydroxyethylidene‑1,1‑BP] 
and BSO (DL‑buthionine‑(S,R)‑sulfoximine) were purchased 
from Sigma‑Aldrich; Merck KGaA (Darmstadt, Germany).

Experimental methods and design. Following 1  week of 
acclimatization, the 6‑week‑old mice were randomly divided 
into four groups (n=5 each) and treated with or without ZOL 
and with or without BSO (experimental groups: ZOL, BSO, 
and ZOL+BSO; control group: saline solution; Fig. 1A). A 
penetrating injury of the midline palate was surgically created 
using a root elevator under anesthesia with 2% isoflurane (Pfizer 
Japan, Inc., Tokyo, Japan) (Fig. 1B). Dentoalveolar surgery 
is a risk factor for the development of BRONJ in patients 
receiving BPs (6). Therefore, tooth extraction is commonly 
used to induce osteonecrosis in animal models. In the present 
study, a penetrating injury of the midline palate was surgi-
cally created using a root elevator as a less invasive surgery 
than tooth extraction to minimize the suffering or distress 
of eating with missing teeth. No problems were associated 
with the presence of root fragments in the extraction socket. 
ZOL (250 µg/kg/day) and saline solution at the same dosage 
volume were injected intraperitoneally from 7 days prior to the 
surgical treatment to 4 days following the surgical treatment. 
The dosage and duration of administration of ZOL was based 
on the protocols described previously by Kobayashi et al (35). 
BSO (500 µg/kg/day) was administered 7 days prior to the 
surgical treatment as a single intraperitoneal injection. The 
total maxillae were then harvested en bloc 5 days following 
the surgical treatment (Fig. 1C).

Bone histomorphometric analysis. To determine the bone 
histomorphometric parameters of mouse femurs, the femurs 
from 4 mice in each group were harvested at the same time 
as the total maxillae, stored in 70% ethanol at 4˚C, and 
analyzed using a micro‑CT scanner (Scan Xmate‑L090; 

Comscan Techno Co., Ltd., Kanagawa, Japan). Scanning was 
conducted at 75 kV and 105 mA with a spatial resolution of 
~9.073 mm/pixel. For quantitative analysis, the bone volume 
(BV/TV), trabecular thickness (Tb.Th), trabecular number 
(Tb.N), and trabecular separation (Tb.Sp) were determined 
using TRI/3D‑BON software version R9 (RATOC System 
Engineering Co., Ltd., Tokyo, Japan).

Measurement of serum 8‑OHdG. Blood samples (0.8  ml) 
were collected from the left ventricle under anesthesia with 
2% isoflurane for serum analysis 6 h following treatment 
with or without ZOL and with or without BSO (n=5), and 
then they were euthanized by cervical dislocation. The 
8‑hydroxy‑2'‑deoxyguanosine (8‑OHdG) level has been 
widely analyzed as a marker of an individual's OS (36). The 
serum concentration of 8‑OHdG was measured using a highly 
sensitive ELISA kit (Highly Sensitive 8‑OHdG Check ELISA 
kit; cat. no. KOG‑HS10/E; Japan Institute for the Control of 
Aging; Nikken SEIL Co., Ltd., Shizuoka, Japan) according to 
the manufacturer's protocol. The absorbance at 405 nm was 
determined using a microplate reader (Benchmark Plus™ 
Microplate Spectrophotometer; Bio‑Rad Laboratories, Inc., 
Hercules, CA, USA).

Histopathology. The mice were euthanized by cervical 
dislocation under anesthesia, induced by the inhalation of 
5% isoflurane. The maxillae were harvested from the control, 
ZOL, BSO and ZOL+BSO groups. The tissue specimens were 
immediately placed in 10% neutral buffered formalin at room 
temperature for 24 h and decalcified in 10% ethylenediami-
netetraacetic acid at room temperature for 2 weeks. Paraffin 
sections (4‑µm‑thick) were cut using conventional methods 
and stained with hematoxylin and eosin (H&E). Sections were 
stained with hematoxylin for 5 min, washed with distilled 
water, dipped in 0.1% ammonium solution several times and 
washed again with 100% alcohol. The samples were stained 
with 1% eosin solution for 20 sec at room temperature. The 
region of interest (ROI) corresponded to the palatal bone 
including the surgically perforated part and alveolar bone. 
The total numbers of osteocyte lacunae and empty osteocytic 
lacunae were counted in four non‑overlapping defined ROIs 
at a magnification of x200 under light microscopy. Paraffin 
sections were cut again and stained with Alcian blue for 
30 min at room temperature to identify cartilage and bone 
under light microscopy (magnification, x200).

Tartrate‑resistant acid phosphatase (TRAP) staining was 
performed as described previously  (16). Briefly, samples 
were placed in 0.2 M acetate buffer [0.2 M sodium acetate 
and 50  mM L(+) tartaric acid in double‑distilled water; 
pH 5.0] for 20 min at room temperature. The sections were 
then incubated with 0.5 mg/ml naphthol AS‑MX phosphate 
(Sigma‑Aldrich; Merck KGaA) and 1.1 mg/ml Fast Red TR 
Salt (Sigma‑Aldrich; Merck KGaA) in 0.2 M acetate buffer 
for 1‑4 h at 37˚C until the osteoclasts appeared bright red (37). 
The number of multinuclear TRAP‑positive cells was counted 
in four non‑overlapping defined ROIs at a magnification of 
x200 under light microscopy.

For the canaliculi structure analysis, the bone sections were 
incubated at room temperature for 30 min in silver staining 
solution in the dark. The silver staining solution was prepared 
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by combining silver nitrate (2 volumes of 50% aqueous solu-
tion; Wako Pure Chemical Industries, Ltd., Osaka, Japan) and 
formic acid (1 volume of 1% solution containing 2% gelatin). 
The sections were washed in distilled water and transferred to 
a 5% aqueous sodium thiosulfate solution at room temperature 
for 5 min. The number of canaliculi per osteocyte lacuna 
(N.Ot.Ca/Ot.Lc.) were counted in 10 cells in 4 randomly 
selected non‑overlapping defined ROIs at x400 magnification 
under light microscopy.

Dynamic calcein labeling. At 9 and 2 days prior to euthanasia, 
5 mice in each group were administered an intraperitoneal 
injection of 10 mg/kg calcein (Dojindo Molecular Technologies, 
Inc., Kumamoto, Japan) for double labeling. Non‑fixed frozen 
sections (6‑µm thickness) from the maxilla were prepared 
with an adhesive film and a disposable tungsten carbide 
blade [Cryofilm type 2C(9) and SL‑T30 (UF), respectively; 
SECTION LAB Co., Ltd., Hiroshima, Japan] according to 
the method described by Kawamoto T and Kawamoto K (38), 
and calcein labeling was assessed. An Olympus fluorescent 
microscope (Olympus Corporation, Tokyo, Japan) was used, 
and the calcein double labels were analyzed with an excitation 
wavelength of 485 nm and an emission wavelength of 510 nm 
at a magnification of x200. The mineral apposition rate (MAR; 
µm/day), defined as the distance between the midpoints of the 
double label divided by the number of days between calcein 
injections, was also measured (39).

Statistical analysis. All data are expressed as mean + 
or ± standard deviation. Statistical analysis was performed 
using one‑way analysis of variance followed by Bonferroni's 
multiple comparison test (SPSS version 22.0 software; IBM 

Corp., Armonk, NY, USA). P<0.05 was considered to indicate 
a statistically significant difference.

Results

Body weight. There were no significant differences in body 
weight among the control, ZOL, BSO and ZOL+BSO groups 
during the experimental period (data not shown).

Macroscopic evaluation. In all groups, the surgical perforation 
exhibited complete mucosal closure by the end of the study. No 
open wound or bone exposure was noted in any group.

Bone histomorphometric analysis of the distal femur. Bone 
histomorphometric analysis was used to determine BV/TV, 
Tb.Th, Tb.N, and Tb.Sp (Table I). In the inter‑group comparison, 
significant differences in Tb.N (ZOL group, 4.45±0.65 1/mm; 
BSO group, 3.07±0.42 1/mm; Table I) and Tb.Sp (ZOL group, 
197.40±37.41 µm; BSO group, 298.43±41.63 µm; Table I) were 
observed between the ZOL and BSO groups.

Measurement of serum 8‑OHdG. The 8‑OHdG level was 
significantly increased by BSO treatment (control group, 
0.171±0.037 ng/ml; BSO group, 0.213±0.033 ng/ml; Table II).

Histological evaluation. Sections of maxilla including 
the surgically perforated part were stained with H&E and 
examined histologically in all four groups. Complete epithe-
lial coverage was noted in all groups. Wound healing in the 
palate was assessed to investigate the effect of ZOL and BSO 
on bone healing (Fig. 2A). The cartilage was less completely 
formed around the surgically perforated part in the treatment 

Figure 1. Treatment schedule. ZOL (250 µg/kg/day) and saline solution at the same dosage volume were injected intraperitoneally from 7 days prior to 
the surgically created defect to 4 days following the surgical treatment. (A) BSO was administered 7 days prior to the surgical treatment as a single intra-
peritoneal injection (arrows indicate injections, x indicates euthanasia). (B) A defect of the midline palate was surgically created using a root elevator as the 
surgical treatment (arrows). (C) The total maxillae were harvested en bloc and examined macroscopically and microscopically. ZOL, zoledronic acid; BSO, 
DL‑buthionine‑(S,R)‑sulfoximine.
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groups, especially in the BSO group, than in the control group 
(Fig. 2B and C). Fibrous connective tissue was present around 
the surgical perforation in the treatment groups, especially 
in the ZOL+BSO group (Fig. 2B). Areas of necrotic bone 
with empty osteocyte lacunae were observed in the palatal 
bone around the surgical perforation in the ZOL+BSO group 
(Fig. 2D).

The ratio of the number of empty osteocytic lacunae to the 
total number of osteocyte lacunae was used to calculate the 
percentage of dead osteocytes in the alveolar bone and palatal 
bone. The number of empty osteocyte lacunae in the alveolar 
bone (non‑surgery area) and palatal bone (surgery area) was 
evaluated (Fig. 2E and F). The number of empty osteocyte 
lacunae in the alveolar bone was significantly increased by 
treatment with ZOL+BSO (proportion of empty osteocyte 
lacunae among total osteocyte lacunae: control group, 
18.0±1.1%; ZOL group, 36.1±6.3%; BSO group, 29.4±7.9%; 
ZOL+BSO group, 35.9±9.8%). The number of empty osteocyte 
lacunae in the palatal bone was significantly increased by treat-
ment with ZOL+BSO (proportion of empty osteocyte lacunae 
among total osteocyte lacunae: control group, 24.8±9.7%; ZOL 
group, 43.5±15.6%; BSO group, 39.7±11.1%; ZOL+BSO group, 
53.9±20.5%). More empty osteocyte lacunae were present in 
the palatal bone around the surgical perforation than in the 
alveolar bone in all groups.

Osteoclast activity. TRAP‑positive osteoclasts were present 
on the bone surface of the palatal bone (Fig. 3A). The number 
of TRAP‑positive osteoclasts was decreased by ZOL treatment 

and increased by BSO treatment (number of TRAP‑positive 
cells: Control group, 5.5±1.4; ZOL group, 3.0±2.1; BSO group, 
6.6±2.4; ZOL+BSO group, 6.0±1.2). There were no significant 
differences among the groups (Fig. 3B).

Osteocytic canalicular morphology. AgNOR staining was 
performed to investigate morphological changes in the palatal 
bone (Fig. 4A). The N.Ot.Ca/Ot.Lc. was significantly decreased 
by BSO treatment and ZOL+BSO treatment compared with 
the control. N.Ot.Ca/Ot.Lc. was also markedly decreased by 
ZOL treatment (Fig. 4B).

Bone dynamic parameters. Following calcein administration, 
the double calcein‑green labels were observed in the bones of 
the mice. Two clear calcein‑labeled lines were recognizable 
in the newly formed bone around the palatal bone (Fig. 5A). 
The MAR was significantly lower in the treatment groups 
than in the control group (Fig. 5B).

Discussion

In the present study, ZOL treatment tended to increase the 
BV/TV and Tb.N of the femur and decrease the Tb.Sp in mice. 
These findings may suggest that the experimental protocol 
generated the expected anticatabolic effect of ZOL treatment 
in bone. The bone remodeling rate is thought to be higher in 
the jaw than femur throughout life (40). Therefore, suppres-
sion of bone turnover by ZOL treatment may have more 
profound effects on the jaw bones than long bones. The BSO 
group exhibited significantly increased levels of 8‑OHdG as a 
marker of an individual's OS compared with the control group.

Bone tissue is continuously renewed by bone remodeling, 
which comprises a dynamic interplay among bone cells 
including osteoclasts, osteoblasts, and osteocytes (41). BPs 
induce osteoclast apoptosis, which can be recognized by 
morphological changes in osteoclasts both in vitro (42‑44) and 
in vivo (42). The number of multinuclear TRAP‑positive cells 
was evaluated as osteoclasts. The number of TRAP‑positive 
cells was lower in the ZOL group than in the control group. 
This result suggests that BP treatment may serve important 
roles in the inhibition of bone turnover by osteoclasts in the 
bone surgery area. Otherwise, only BSO treatment increased 
the number of TRAP‑positive osteoclasts. There was a differ-
ence in the number of TRAP‑positive osteoclasts between 

Table II. Changes in serum 8‑OHdG concentration.

Group	 8‑OHdG (ng/ml)

Control	 0.171±0.037
ZOL	 0.169±0.028
BSO	 0.213±0.033a

ZOL+BSO	 0.201±0.036 

Data are expressed as mean ± standard deviation. aP<0.05 vs. control. 
8‑OHdG, 8‑hydroxy‑2'‑deoxyguanosine; ZOL, zoledronic acid; 
BSO, DL‑buthionine‑(S,R)‑sulfoximine.

Table I. Bone histomorphometric analysis of the distal femur.

	 Parameter
	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
Group	 BV/TV (%)	 Tb.Th (µm)	 Tb.N (1/mm)	 Tb.Sp (µm)

Control	 11.33±2.56	 31.21±3.36	 3.61±0.53	 250.30±46.68
ZOL	 14.05±2.48	 31.52±1.85	 4.45±0.65a	 197.40±37.41a

BSO	 9.60±1.23	 31.26±1.37	 3.07±0.42	 298.43±41.63
ZOL+BSO	 12.10±2.23	 31.13±1.64	 3.88±0.56	 230.47±39.76 

Data are expressed as mean ± standard deviation. aP<0.05 vs. BSO. BV/TV, bone volume; Tb.Th, trabecular thickness; Tb.N, trabecular 
number; Tb.Sp; ZOL, zoledronic acid; BSO, DL‑buthionine‑(S,R)‑sulfoximine.
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the BSO and ZOL groups. These results suggest that BSO 
treatment is unrelated to osteoclast apoptosis. OS occurs as a 
result of ROS overproduction. ROS have opposite effects on 
osteoclast and osteoblast activity. ROS induce the apoptosis of 
osteoblasts and osteocytes and activate the differentiation of 
osteoclasts (24).

It was also observed that there were significantly more 
empty osteocyte lacunae in the alveolar bone and palatal bone 
in the ZOL+BSO group than in the control group. Empty osteo-
cyte lacunae were prone to increase by treatment with ZOL. 
This implies that ZOL may have the potential to exacerbate 
bone damage. In all groups, the number of empty osteocyte 
lacunae was higher around the surgically created defect in 
the palatal than alveolar bone. When bone becomes necrotic, 
bone repair is initiated by osteoclasts. However, necrotic bone 
persists in the region because of osteoclast suppression by 
ZOL. This is why dentoalveolar surgery is a risk factor for 

the development of BRONJ in patients receiving BPs (16). 
Empty osteocyte lacunae in the alveolar bone and palatal bone 
were increased by single treatment with ZOL or BSO, but 
not significantly. Empty osteocyte lacunae were significantly 
increased by combined treatment with ZOL and BSO. These 
results indicate that single treatment with ZOL or BSO did not 
induce ONJ in the present study. This may have been caused 
by shortages in the dosage and duration of administration of 
these drugs. Long‑term BP treatment seems to be an important 
risk factor for BRONJ (45,46). However, combined treatment 
with ZOL and BSO induced ONJ. The present results suggest 
that both of these agents contribute to the onset of BRONJ in a 
short term. Future experiments will aim to confirm the results 
of the current study by determining whether inhibition of OS 
may prevent ZOL+BSO‑induced ONJ.

Osteocytes are embedded in the bone matrix within 
a network of lacunae and canaliculi. Osteocytes use their 

Figure 2. Analysis of palatal bone including the surgical perforation and alveolar bone. (A) Photomicrographs of the surgical perforation. Hematoxylin and eosin 
stain; original magnification, x200. Scale bar, 50 µm. (B) Photomicrographs of magnified black square area in (A). Scale bar, 50 µm. (C) Photomicrographs of 
the surgical perforation. Alcian blue staining; original magnification, x200. Scale bar, 50 µm. Insets present the higher magnification of the dotted square area. 
Scale bar, 10 µm. (D) Photomicrographs of magnified red square area in (A). Scale bar, 50 µm. The ratio of the number of empty osteocytic lacunae to the total 
number of osteocyte lacunae was used to calculate the percentage of dead osteocytes in the (E) alveolar and (F) palatal bone. The numbers of total osteocyte 
lacunae and empty osteocytic lacunae were counted in four non‑overlapping defined regions of interest at a magnification of x200. *P<0.05. ZOL, zoledronic 
acid; BSO, DL‑buthionine‑(S,R)‑sulfoximine.
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dendritic processes to communicate with each other, bone 
surface cells such as osteoblasts and osteoclasts, and 

vasculature cells  (47). Osteocytes produce and secrete 
sclerostin and receptor activator of nuclear factor‑κB 

Figure 3. TRAP‑stained sections. (A) TRAP‑positive cells on the bone surface in the palatal bone. Original magnification, x200. Scale bar, 50 µm. (B) The 
number of multinuclear TRAP‑positive cells was counted in the palatal bone at a magnification of x200. TRAP, tartrate‑resistant acid phosphatase; ZOL, 
zoledronic acid; BSO, DL‑buthionine‑(S,R)‑sulfoximine.

Figure 4. Canaliculi structure analysis. (A) AgNOR staining of osteocytic canaliculi in the palatal bone. Original magnification, x400. Scale bar, 50 µm. Insert 
presents a magnified photomicrograph of osteocyte lacuna. Scale bar, 10 µm. (B) The number of canaliculi per osteocyte lacuna in 10 randomly selected cells 
in their defined regions of interest. Magnification, x400. *P<0.05 and **P<0.005. ZOL, zoledronic acid; BSO, DL‑buthionine‑(S,R)‑sulfoximine.
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ligand to communicate indirectly with bone‑associated 
cells. The osteocyte has a key role in regulating bone 
turnover. Busse et al (48) and Dunstan et al (49) previously 
revealed age‑associated reduction in osteocyte viability. 
Kobayashi  et  al  (50) recently demonstrated a similar 
reduction in both canalicular density and number in aged 
murine and oxidative‑damaged osteocytes, supporting the 
hypothesis that aging and/or redox imbalances in osteo-
cytes commonly exacerbate the impairment of osteocytic 
canalicular networks and reduce survival in mammals. The 
present study reported a 16% reduction in N.Ot.Ca/Ot.Lc. in 
the palatal bone with BSO treatment. Otherwise, the N.Ot.
Ca/Ot.Lc. was slightly decreased by ZOL treatment, but not 
significantly. The MAR was also evaluated. The MAR was 
lower in the treatment groups than in the control group and 
was lowest in the ZOL+BSO group. These results suggest 
that BP and BSO treatments serve an important role in 
the inhibition of bone turnover following dentoalveolar 
surgery.

The presence of bacterial colonies around the surgical perfo-
ration was not evaluated. Howie et al (11) recently established a 
model for osteonecrosis of the jaw with zoledronate treatment 
following repeated major trauma, and there was no detectable 
bacterial colonization at 1 week following extraction in either 
the control or zoledronate‑treated rats. The term ‘osteonecrosis’ 
in BRONJ is associated with aseptic necrosis. According to the 
2014 position paper of the American Association of Oral and 
Maxillofacial Surgeons (42), stage 1 BRONJ does not comprise 

bacterial infection. Therefore, stage 1 BRONJ can be defined as an 
osteonecrosis type of BRONJ.

In conclusion, investigation of this model has demonstrated 
that osteonecrosis induced by BSO treatment was similar to 
that induced by ZOL treatment. ZOL treatment may primarily 
target inhibition of osteoclasts, and BSO treatment affects 
osteocytes. OS in osteocytes exacerbate the impairment of 
osteocytic canalicular networks. Both BPs and OS suppressed 
bone turnover. As a result, BPs and OS may induce osteone-
crosis following invasive dentoalveolar surgery. OS has been 
demonstrated as an additional risk factor for the development 
of BRONJ.
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