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SUMMARY

The cochlear sensory epithelium contains a functionally important triangular fluid-filled space

between adjacent pillar cells referred to as the tunnel of Corti. However, the molecular mechanisms

leading to local cell-cell separation during development remain elusive. Here we show that EphA4

associates with ADAM10 to promote the destruction of E-cadherin-based adhesions between adja-

cent pillar cells. These cells fail to separate from each other, and E-cadherin abnormally persists at

the pillar cell junction in EphA4 forward-signaling-deficient mice, as well as in the presence of

ADAM10 inhibitor. Using immunolabeling and an in situ proximity ligation assay, we found that

EphA4 forms a complex with E-cadherin and its sheddase ADAM10, which could be activated by eph-

rin-B2 across the pillar cell junction to trigger the cleavage of E-cadherin. Altogether, our findings pro-

vide a new molecular insight into the regulation of adherens junctions, which might be extended to a

variety of physiological or pathological processes.

INTRODUCTION

In mammals, sounds are perceived through mechanosensory hair cells located in the sensory epithelium of

the cochlea (the organ of Corti). Within the organ of Corti, hair cells and several types of specialized sup-

porting cells are arranged in a regular mosaic pattern that extends along the basal-to-apical axis of the

cochlear duct. The organ of Corti contains one row of inner hair cells and three rows of outer hair cells sepa-

rated by two parallel rows of non-sensory pillar cells (PCs). At birth, all cells of the organ of Corti are closely

connected and the inner PCs (IPCs) abut on the adjacent outer PCs (OPCs) through E-cadherin-based ho-

mophilic adhesion interactions (Johnen et al., 2012; Whitlon, 1993) (red curve in Figure 1A). When mature,

i.e., from 2 weeks of age (postnatal day 14, P14) in mice, these rows of PCs form the boundaries of a func-

tionally important triangular fluid-filled space referred to as the tunnel of Corti (Raphael and Altschuler,

2003) (Figure 1B). Previous studies have suggested that proper development of the tunnel of Corti is

required for hearing (Chen and Segil, 1999; Colvin et al., 1996; Inoshita et al., 2008). Indeed, the somatic

motility of outer hair cells produces oscillatory fluid flow in the tunnel of Corti, which is critical for cochlear

amplification (Karavitaki and Mountain, 2007). The molecules underlying PC fate acquisition are now well

characterized and include fibroblast growth factors and their receptors (Colvin et al., 1996; Doetzlhofer

et al., 2009; Jacques et al., 2007; Mueller et al., 2002). In contrast, the mechanisms leading to local IPC/

OPC separation remain elusive. However, a critical step should be the progressive loss of the adhesion pro-

tein E-cadherin from the lateral membranes of the PCs (Johnen et al., 2012; Whitlon, 1993) (Figure 1).

An attractive candidate for this process is Eph/ephrin signaling, which has been shown to control several

aspects of cochlear development (Defourny et al., 2013, 2015). The large Eph receptor family has been clas-

sified into two subclasses, EphA and EphB receptors, according to their affinity for either glycosylphospha-

tidylinositol-anchored ephrin-A or transmembrane ephrin-B ligands (Gale et al., 1996). However, some

cross-class interactions are possible, as EphA4 can also bind to ephrin-B ligands (Bowden et al., 2009;

Qin et al., 2010). Upon binding, receptor clustering initiates a ‘‘forward signaling’’ but receptor-ligand

interaction can also stimulate a ‘‘reverse signaling’’ downstream of the ephrin ligand (Kullander and Klein,

2002). The special case of antiparallel signaling occurs when ephrin and Eph are co-expressed on two

apposed cells and result in Eph receptor forward signaling in both directions (Kania and Klein, 2016; Rohani

et al., 2011). During organogenesis, ephrin and Eph receptor genes control a wide range of critical pro-

cesses such as cell sorting and positioning, and the formation of segmented structures (Kania and Klein,

2016). Among a broad variety of pathways, EphB/ephrin-B signaling has been shown to dictate the destruc-

tion of E-cadherin-based adhesions in the intestinal epithelium (Solanas et al., 2011). Beside EphB
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Figure 1. Schematic Representation of E-Cadherin Localization between Immature and Mature Adjacent IPC and

OPC

(A) At the immature stage, all the cells of the organ of Corti are closely connected and the IPCs abut on the OPCs through

E-cadherin-based homophilic adhesions (in red).

(B) When mature, the IPCs and OPCs form the boundaries of a triangular fluid-filled space and only the apical extremities

of the PCs are still connected through E-cadherin adhesions (in red).

IHC, inner hair cell; IPC, inner pillar cell; OHC, outer hair cell; OPC, outer pillar cell; TC, tunnel of Corti.
receptors, EphA4 also affects the expression of E-cadherin in cancer cells (de Marcondes et al., 2016; Liu

et al., 2014), suggesting this protein as a good candidate for patterning the tunnel of Corti through local

downregulation of adherens junctions.

Here we show that EphA4 and its ligand ephrin-B2 are each expressed on both sides of the IPC/OPC junc-

tion. These adjacent PCs fail to separate from each other, and E-cadherin abnormally persists at the PC

junction in EphA4 forward-signaling-deficient mice, as well as in the presence of ADAM10 inhibitor. By

combining immunolabeling and an in situ proximity ligation assay, we found that EphA4 forms a complex

with E-cadherin and its sheddase ADAM10, which could be activated by ephrin-B2 across the PC junction to

trigger the cleavage of E-cadherin. Altogether, our results highlight a key role for EphA4-ADAM10 interplay

in patterning the cochlear sensory epithelium.

RESULTS

EphA4 and Ephrin-B2 Are Co-expressed on Both Sides of the IPC/OPC Junction

At immature stages, all cells of the organ of Corti are closely connected and the IPCs abut on the OPCs

(Figure 1A). As development progresses, the apical ends of the PCs remain connected, forming the retic-

ular lamina, whereas the lateral membranes become no longer apposed, being separated with fluid spaces

(Figure 1B). This process suggests a subcellular mechanism occurring at about half-height of the PC junc-

tion to promote a local IPC/OPC detachment. Among the Eph and ephrin families, EphA4 and its ligand

ephrin-B2 are frequently involved in cell repulsion and tissue segmentation processes (Mellitzer et al.,

1999; Xu et al., 1999), including in the developing cochlea (Defourny et al., 2015). Therefore, we examined

their expression patterns during the postnatal development of the tunnel of Corti. By using an EphA4+/EGFP

reporter mouse model (Grunwald et al., 2004) combined with ephrin-B2 immunolabeling, we found that

EphA4EGFP and ephrin-B2 are co-expressed on both sides of the IPC/OPC junction from postnatal day 4

(P4) (Figures 2B and 2C), i.e., when the early opening of the tunnel of Corti is initiated (Ito et al., 1995).

Importantly, these expression patterns are spatially restricted to the half-height region of the PCs. At post-

natal stages, neither EphA4EGFP nor ephrin-B2 is expressed at the apical extremities of the PCs, which

remain connected in the mature configuration of the tunnel of Corti (Figures 2C and S1). The presence

of EphA4 and ephrin-B2 in the PCs from P4 was further confirmed using in situ hybridization (Figure 2D).

The corresponding negative controls were obtained using sense probes (Figure S2). These overlapping

expression patterns across the IPC/OPC boundary are consistent with findings suggesting that two Eph/

ephrin antiparallel forward signals are sufficient to regulate cell-cell detachment. In this case, each pathway

involves ephrin ligands on one side and Eph receptors on the other side (Rohani et al., 2011).

IPCs and OPCs Fail to Separate from Each Other in EphA4EGFP/EGFP Mice

Eph forward signaling rather than ephrin reverse signaling has been shown to dictate the destruction of

E-cadherin-based adhesions (Solanas et al., 2011) and to promote cell-cell separation (Rohani et al.,

2011). To test whether EphA4 forward signaling promotes IPC/OPC detachment, we compared the propor-

tion of IPCs that are fully detached from the adjacent OPCs in whole-mount cochleae from P14 wild-type
iScience 11, 246–257, January 25, 2019 247



Figure 2. EphA4 and Ephrin-B2 Are Co-expressed on Both Sides of the IPC/OPC Junction

(A) Schematic representation of a P4 mouse organ of Corti showing the position at which level single confocal images

were acquired (here at half-height of PCs, blue segments).

(B) F-actin staining and ephrin-B2 immunolabeling of P4 EphA4+/EGFP whole-mount cochlea showing that EphA4EGFP and

ephrin-B2 are co-expressed on both sides of the IPC/OPC junction (yellow arrowheads).

(C) Orthogonal projection of P4 EphA4+/EGFP whole-mount PCs showing that EphA4EGFP and ephrin-B2 are reciprocally

co-expressed at about half-height of the PC junction (yellow arrowheads). In contrast, neither EphA4EGFP nor ephrin-B2 is

expressed at the apical extremity of the PCs, i.e., where the PCs remain closely connected (red arrowhead).

(D) In situ hybridization on transversal section of P4 cochlea showing that EphA4 and ephrin-B2 are both expressed in the

PCs.

See also Figures S1 and S2. Scale bars, 2 mm in (B) and (C) and 5 mm in (D). IHC, inner hair cell; IPC, inner pillar cell; OHC,

outer hair cell; OPC, outer pillar cell; PC, pillar cell.
(WT) and knockin mice encoding an EphA4 forward-signaling-deficient isoform (Grunwald et al., 2004). We

found that the percentage of IPCs entirely detached from the adjacent OPCs at half-height of the organ of

Corti is significantly decreased in the absence of the EphA4 cytoplasmic domain (Figure 3B). As a conse-

quence, the classic triangular shape of the tunnel of Corti observed in WT mice failed to correctly develop
248 iScience 11, 246–257, January 25, 2019



Figure 3. IPCs and OPCs Fail to Separate from Each Other in the Absence of EphA4 Signaling

(A) Schematic representation of a mature (P14) organ of Corti showing the position at which level single confocal images

were acquired (here at half-height of PCs, blue segments).

(B) F-actin and DAPI nuclear staining of P14 WT and EphA4EGFP/EGFP whole-mount cochleae. Upper panels: orthogonal

reconstruction of confocal images showing the presence (double-headed arrow) or the absence (asterisk) of a triangular

space between the IPC and OPC in WT or EphA4EGFP/EGFP cochlea, respectively. Lower panels: confocal images showing

that, in WT mice, all the IPCs are detached from the OPCs, allowing the formation of the tunnel of Corti (double-headed

arrow). In EphA4EGFP/EGFP mice, a few IPCs are fully detached from the adjacent OPCs (inset, orange arrowheads) and a

majority of PCs remain attached to each other (inset, yellow arrowheads). Right panel: the percentage of IPCs detached

from OPCs is significantly decreased in EphA4EGFP/EGFP when compared with WT mice. n = 200 IPCs from four animals of

both genotypes.

(C) F-actin staining and E-cadherin immunolabeling of P14 EphA4EGFP/EGFP whole-mount cochlea showing that

E-cadherin abnormally persists at the IPC/OPC junction (yellow arrowheads), whereas it is absent from separated

membranes (orange arrowheads).

(D) F-actin staining and E-cadherin immunolabeling of organotypic culture treated with KYL peptide showing that

E-cadherin persists at the IPC/OPC junction (yellow arrowheads).

Data are presented as mean G SEM. ***p < 0.001. See also Figure S3. Scale bars, 5 mm in (B) and 2 mm in (C) and (D). IHC,

inner hair cell; IPC, inner pillar cell; OHC, outer hair cell; OPC, outer pillar cell; TC, tunnel of Corti.
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Figure 4. EphA4 Co-localizes with E-Cadherin and ADAM10 at the IPC/OPC Junction

(A) Schematic representation of a P6 mouse organ of Corti showing the position at which level single confocal images were acquired (here at half-height of

PCs, blue segments).

(B) F-actin staining and E-cadherin immunolabeling of P6 EphA4+/EGFP whole-mount cochlea showing that EphA4EGFP and E-cadherin co-localize on both

sides of the IPC/OPC junction (yellow arrowheads).

(C) F-actin staining and ADAM10 immunolabeling of P6 EphA4+/EGFP whole-mount cochlea showing that EphA4EGFP and ADAM10 co-localize on both sides

of the IPC/OPC junction (yellow arrowheads) and disappear as soon as the membranes are detached from each other (orange arrowheads).

(D) F-actin staining, E-cadherin, and ADAM10 immunolabeling of P6 WT whole-mount cochlea showing that E-cadherin and ADAM10 co-localize on both

sides of the IPC/OPC junction (yellow arrowheads) and disappear as soon as the membranes are detached from each other (orange arrowheads).

(E) Orthogonal projection of P6 WT whole-mount PCs showing that E-cadherin and ADAM10 are reciprocally co-expressed at about half-height of the PC

junction (yellow arrowheads). In contrast, E-cadherin but not ADAM10 is present at the apical extremity of the PC junction, i.e., where the PCs remain closely

connected (red arrowhead).

See also Figure S4. Scale bars, 2 mm in (B–D) and (E). IHC, inner hair cell; IPC, inner pillar cell; OHC, outer hair cell; OPC, outer pillar cell.
in EphA4EGFP/EGFP animals (Figure 3B). Such defects were found in 75% of the knockin mice (n = 9 out of 12)

and in none of the WT mice (n = 8). This level of penetrance in EphA4EGFP/EGFP mice is similar to previously

published data (Egea et al., 2005; Peuckert et al., 2016). In addition, we found that E-cadherin abnormally

persists at the IPC/OPC junctions in P14 EphA4EGFP/EGFP mice (Figure 3C), suggesting that EphA4 forward

signaling downregulates E-cadherin to promote PC detachment. Of note, no earlier defects regarding the

PCs were observed in P2 EphA4EGFP/EGFP mice (Figure S3). The role of EphA4 in the local disruption of ad-

herens junctions was further confirmed in organotypic culture using KYL peptide, a specific inhibitor of

EphA4 (Lamberto et al., 2012) (Figure 3D).

EphA4 Forms a Complex with E-Cadherin and ADAM10 at the IPC/OPC Junction

To decipher the molecular mechanisms through which EphA4 downregulates the adherens junctions in the

cochlea, we examined whether EphA4EGFP associates with E-cadherin and ADAM10. This disintegrin and

metalloproteinase promotes the shedding of E-cadherin (Maretzky et al., 2005) and constitutively associ-

ates with Eph receptors via specific regions in their extracellular domains (Janes et al., 2005). From P6,

some fluid-filled spaces begin to intersperse the two rows of adjacent PCs (Ito et al., 1995). At this stage,

we found that, at half-height of the PCs, E-cadherin (yellow arrowheads in Figure 4B) and ADAM10 (yellow

arrowheads in Figure 4C) co-localized with EphA4EGFP at the IPC/OPC junction in EphA4+/EGFP mice, and

with ADAM10 in WT mice (yellow arrowheads in Figures 4D and 4E). Concomitantly, we observed that

EphA4EGFP (orange arrowheads in Figure 4C), E-cadherin (orange arrowheads in Figure 4D), and

ADAM10 (orange arrowheads in Figures 4C and 4D) disappeared as soon as themembranes were detached

from each other, suggesting that these three proteins are closely involved in cell-cell separation. In contrast,

the expression of E-cadherin was maintained at apical extremities of the PCs, as expected (Johnen et al.,

2012; Whitlon, 1993) (red arrowhead in Figures 4E and S4). Similarly to EphA4EGFP, ADAM10 was not found

at the apical ends of PCs, i.e., where the IPCs and OPCs remain attached to each other (red arrowhead in

Figures 4E and S4). To test whether EphA4 interacts in vivo with E-cadherin and ADAM10 at the IPC/OPC

junction, we performed two types of in situ proximity ligation assays (Söderberg et al., 2006). In EphA4+/EGFP

animals, positive signals (detected as fluorescence red spots) revealed that EphA4EGFP closely associated

with E-cadherin and ADAM10, and that E-cadherin associated with ADAM10 at half-height of the PCs (Fig-

ure 5B). Of note, the loss of cytoplasmic domain in EphA4EGFP did not abolish the interaction with ADAM10,

which occurs constitutively through mutual extracellular domains (Janes et al., 2005). As expected, no pos-

itive signals were observed at apical extremities of the IPC/OPC junction, i.e., where PCs remain closely

connected (Figure S5). Negative controls obtained by omitting one of the primary antibodies further

confirmed that our proximity ligation assay signals were indicative of protein interactions (Figure 5C). In

WT mice, positive signals revealed that EphA4 interacts with E-cadherin and ADAM10, and negative con-

trols were obtained by pre-incubating the anti-EphA4 antibody with a blocking peptide (Figure S6). These

results suggest that EphA4, E-cadherin, and ADAM10 form a complex that could be recognized and acti-

vated by ephrin-B2 across the PC junction to promote the cleavage of E-cadherin.

ADAM10 Inhibition Prevents the Separation of PCs

To test whether ADAM10 cooperates with EphA4 to promote PC separation, we performed an organotypic

in vitro assay aimed at blocking the endogenous activity of ADAM10 using GI254023X. We found that the

percentage of IPCs entirely detached from the adjacent OPCs at half-height of the organ of Corti is signif-

icantly decreased in the presence of ADAM10 inhibitor (Figure 6B). In addition, we found that E-cadherin

persists at the IPC/OPC junctions in treated organotypic culture (Figure 6C), suggesting that ADAM10
iScience 11, 246–257, January 25, 2019 251



Figure 5. EphA4 Forms a Complex with E-Cadherin and ADAM10 at the IPC/OPC Junction

(A) Schematic representation of a P6 mouse organ of Corti showing the position at which level single confocal images

were acquired (here at half-height of PCs, blue segments).

(B) In situ proximity ligation assay showing that EphA4EGFP interacts with E-cadherin and ADAM10, as well as E-cadherin

with ADAM10 at half-height of the IPC/OPC junction. Protein-protein interactions are detected as fluorescent red spots.

(C) Proximity ligation assay negative controls were performed using a single primary antibody (ab): anti-GFP, mouse, or

rabbit anti-E-cadherin and anti-ADAM10.

See also Figures S5 and S6. Scale bars, 2 mm in (B) and (C). IHC, inner hair cell; IPC, inner pillar cell; OHC, outer hair cell;

OPC, outer pillar cell; PLA, proximity ligation assay.
downregulates E-cadherin to promote PC detachment. Moreover, the EphA4/ephrin-B2 complex persists

at the IPC/OPC junction in the presence of ADAM10 inhibitor, meaning that ADAM10 protease activity is

also required for the cleavage of the Eph/ephrin complex and further cell-cell detachment, as previously

described (Janes et al., 2005, 2009) (Figure 6D).

Disruption of Adherens Junctions Rescues the EphA4 Loss of Function

Finally, we examined whether PC separation could be restored despite the loss of EphA4 activity. To this

end, we performed a ‘‘two-step’’ organotypic in vitro assay. First, organs of Corti were pre-treated with KYL

peptide to block the process of PC separation. Cultures were then incubated with an E-cadherin-neutral-

izing antibody, DECMA-1 mAb, aimed to promote the disruption of adherens junctions (Vestweber and

Kemler, 1985). We found that E-cadherin downregulation efficiently rescues the EphA4 loss of function

and restores the PC separation (Figure 7).

DISCUSSION

Here we show that two antiparallel EphA4 forward signals promote the destruction of E-cadherin-based

adhesions between adjacent cochlear PCs. Our results support that EphA4, E-cadherin, and its sheddase

ADAM10 form a complex that could be activated by ephrin-B2 across the PC junction to promote the cleav-

age of E-cadherin by ADAM10. Among EphA4-binding partners, ephrin-B2 and ephrin-B3 are especially
252 iScience 11, 246–257, January 25, 2019



Figure 6. IPCs and OPCs Fail to Separate from Each Other in the Presence of ADAM10 Inhibitor

(A) Schematic representation of a P8 organ of Corti showing the position at which level single confocal images were

acquired (here at half-height of PCs, blue segments).

(B) F-actin staining of organotypic culture treated with DMSO or with ADAM10 inhibitor (GI254023X). Organs of Corti

from P2 mice were cultured for 6 days in vitro. Left panels: confocal images showing that, in control condition (DMSO),

about half of the IPCs are separated from the OPCs (red asterisks). In the presence of GI254023X, few IPCs are fully

detached from adjacent OPCs (red asterisks) and a large majority of PCs remain attached to each other. Right panel: the

percentage of IPCs detached from OPCs is significantly decreased in the presence of GI254023X when compared with

the control condition. This effect is concentration dependent. n = 300 IPCs from three independent experiments.

(C) Upper panels: F-actin staining and E-cadherin immunolabeling showing that E-cadherin abnormally persists at the

IPC/OPC junction (yellow arrowheads) in culture treated with GI254023X. Lower panels: F-actin staining and EphA4 and

ephrin-B2 immunolabeling showing that the EphA4/ephrin-B2 complex persists at the IPC/OPC junction (yellow

arrowheads) in culture treated with GI254023X.

Data are presented as meanG SEM. **p < 0.01, ***p < 0.001. Scale bars, 5 mm in (B) and (C). IHC, inner hair cell; IPC, inner

pillar cell; OHC, outer hair cell; OPC, outer pillar cell.
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Figure 7. Disruption of Adherens Junctions Rescues the EphA4 Loss of Function

(A) Schematic representation of a P8 organ of Corti showing the position at which level single confocal images were

acquired (here at half-height of PCs, blue segments).

(B) F-actin staining of organotypic culture treated with DMSO, with KYL peptide, or with KYL peptide and DECMA-1 mAb.

Organs of Corti from P2 mice were cultured for 6 days in vitro. In control condition (DMSO), about half of the IPCs are

separated from the OPCs (red asterisks). In the presence of KYL peptide, a few IPCs are fully separated from the adjacent

OPCs (red asterisks) and a large majority of PCs remain attached to each other. The addition of DECMA-1 mAb to KYL

peptide significantly rescues the percentage of IPCs detached from the OPCs. n = 300 IPCs from three independent

experiments.

Data are presented as meanG SEM. **p < 0.01. Scale bar, 5 mm in (B). IHC, inner hair cell; IPC, inner pillar cell; OHC, outer

hair cell; OPC, outer pillar cell.
involved in cell-cell separation (Rohani et al., 2014). As ephrin-B3 is apparently not expressed in cochlear

PCs (Zhou et al., 2011), ephrin-B2 is the most likely partner of EphA4 to promote PC detachment. Previous

data have shown that, upon binding, EphA3 clustering and auto-phosphorylation result in release of the

intracellular tyrosine kinase domain away from the cell membrane into a conformation that facilitates the

productive alignment with ADAM10 and the correct orientation of its protease domain (Janes et al.,

2009). In agreement, our data suggest a model in which, upon binding in both directions across the PC
254 iScience 11, 246–257, January 25, 2019



A B

Figure 8. AModel for HowAntiparallel EphA4 Forward Signaling Promotes the Disruption of Adherens Junctions

(A) In WTmice, the trans-activation of EphA4 on both sides of the IPC/OPC junction results in a productive alignment with

ADAM10 through cytoplasmic domains. This association mediates the correct orientation of the protease domain for

cleavage of E-cadherin and further cell-cell detachment.

(B) In mice in which the EphA4 cytoplasmic domain has been replaced by EGFP, ADAM10 cannot be cis-activated by

EphA4 and correctly orientate its protease domain for cleavage of E-cadherin. As a consequence, IPCs and OPCs fail to

separate from each other. IPC, inner pillar cell; OPC, outer pillar cell.
junction, the trans-activation of EphA4 results in a productive association with ADAM10 through cyto-

plasmic domains. The cis-activation of ADAM10 by EphA4 leads to cleavage of E-cadherin and cell-cell

detachment (Figure 8A). In contrast, in mice lacking the cytoplasmic domain of EphA4, ADAM10 cannot

be cis-activated by EphA4 and fails to orientate its protease domain for the cleavage of E-cadherin. As a

consequence, E-cadherin persists at the cell junction and the adjacent PCs fail to separate from each other

(Figure 8B). Together, our results suggest a key role for antiparallel Eph receptor activation. Whereas a sin-

gle Eph receptor forward signaling induces cell sorting through cleavage of E-cadherin (Solanas et al.,

2011), two antiparallel Eph receptor forward signals promote cell-cell separation.

This mechanism of adherens junction downregulation by EphA4 might be extended to a broad range of

physiological or pathological processes. In cancer with poor prognosis, EphA4 and E-cadherin appear

to be regulated in opposite ways. On the one hand, the loss of E-cadherin expression is associated with

tumor development, metastatic dissemination, and poor patient prognosis (Oka et al., 1993; Schipper

et al., 1991; Umbas et al., 1994). On the other hand, EphA4 is overexpressed in a wide range of cancers

(including glioblastoma, pancreatic, colorectal, gastric, prostate, and breast cancers) and is often associ-

ated with poor patient prognosis and shorter survival (Ashida et al., 2004; Brantley-Sieders et al., 2011; Fu-

kai et al., 2008; Hachim et al., 2017; Iiizumi et al., 2006; Lin et al., 2017; Miyazaki et al., 2013; Oki et al., 2008;

Oshima et al., 2008). Moreover, it has been shown that high EphA4 expression negatively correlates with

metastasis-free survival (Brantley-Sieders et al., 2011; Lin et al., 2017; Miyazaki et al., 2013; Oshima et al.,

2008). In this context, EphA4 promotes the motility and invasion of pancreatic cancer cells in part through

the downregulation of E-cadherin (Liu et al., 2014). Loss of E-cadherin is a primary event in the initiation of

epithelial-mesenchymal transition (EMT) (Onder et al., 2008; Thiery et al., 2009). Recent studies suggest

that EMT particularly contributes to recurrent metastasis formation after chemotherapy (Fischer et al.,

2015; Zheng et al., 2015). Interestingly, overexpression of EphA4 predicts a lesser degree of tumor regres-

sion after neoadjuvant chemoradiotherapy in rectal cancer (Lin et al., 2017). In addition, EphA4 signaling

regulates the aggressive phenotype of irradiated colorectal cancer cells. Irradiation increases the activa-

tion of EphA4 in survivor colorectal cancer cells and promotes the internalization of an EphA4/E-cadherin

complex, inducing cell-cell adhesion disruption (de Marcondes et al., 2016). Furthermore, EphA4 knock-

down in the progeny of irradiated cells reduces the migratory and invasive potentials (de Marcondes

et al., 2016). These findings have triggered numerous efforts that currently seek to develop pharmacolog-

ical inhibitors of EphA4 for clinical use (Lamberto et al., 2012, 2014; Noberini et al., 2008; Schoonaert et al.,

2017; Takano et al., 2015). At least as a regulator of adherens junctions, EphA4 now emerges as an attractive

therapeutic target to prevent cancer cell dissemination and metastasis, including strategies aimed at over-

coming chemo- and/or radioresistance.

Limitations of the Study

Our results suggest that EphA4 forms a complex with E-cadherin and its sheddase ADAM10, which could

be activated by ephrin-B2 across the PC junction to trigger the cleavage of E-cadherin. The first limitation
iScience 11, 246–257, January 25, 2019 255



concerns the real function of ephrin-B2 in this process, which was not addressed in this work. The second

limitation concerns the presumed cleavage of E-cadherin by ADAM10, which was not directly proven in this

study.

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.
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Figure S1. Neither EphA4 nor ephrin-B2 is expressed at the apical extremity of the 

IPC/OPC junction. Related to Figure 2. (A) Schematic representation of a P4 mouse organ 

of Corti showing the position at which level (here at the apical extremity of the PCs, blue 

segments) single confocal images were acquired. (B) F-actin staining and ephrin-B2 

immunolabelling of a P4 EphA4+/EGFP whole-mount cochlea showing that neither EphA4EGFP 

nor ephrin-B2 is present at the apical extremity of the IPC/OPC junction (red arrowhead). 

Scale bar represents 2 µm. IHC = inner hair cell, IPC = inner pillar cell, OHC = outer hair 

cell, OPC = outer pillar cell.  

	
  

 

 

 

 

 

 

 

 



 
Figure S2. In situ hybridization negative controls. Related to Figure 2. ISH negative 

controls were obtained using EphA4 and ephrin-B2 sense probes on transversal sections of P4 

organ of Corti. Scale bar represents 5 µm. IHC = inner hair cell, OHCs = outer hair cells, PCs 

= pillar cells.  

 

 

 

 

 

 

 

 

 

 

 

 



 
 

Figure S3. EphA4EGFP/EGFP PCs do not display any defects in early postnatal stages. 

Related to Figure 3. F-actin staining of P2 whole-mount WT and EphA4EGFP/EGFP cochleae 

showing that EphA4EGFP/EGFP PCs do not display any defects as compared to WT PCs. Scale 

bar represents 5 µm. IPCs = inner pillar cells, OPCs = outer pillar cells. 

 

 

 

 

 

 

 

 

 



 
Figure S4. E-cadherin but not ADAM10 is present at the apical extremity of the 

IPC/OPC junction. Related to Figure 4. (A) Schematic representation of a P6 mouse organ 

of Corti showing the position at which level (here at the apical extremity of the PCs, blue 

segments) single confocal images were acquired. (B) F-actin staining, E-cadherin and 

ADAM10 immunolabelling of a P6 WT whole-mount cochlea showing that E-cadherin but 

not ADAM10 is present at the apical extremity of the IPC/OPC junction (red arrowhead). 

Scale bar represents 2 µm. IHC = inner hair cell, IPC = inner pillar cell, OHC = outer hair 

cell, OPC = outer pillar cell. 

 

 

 



 
Figure S5. No EphA4EGFP - E-cadherin, EphA4EGFP - ADAM10 or ADAM10 - E- 

cadherin PLA signals are observed at the apical extremity of the PC junction. Related to 

Figure 5. (A) Schematic representation of a P6 mouse organ of Corti showing the position at 

which level (here at the apical extremity of the PCs, blue segments) single confocal images 

were acquired. (B) In situ proximity ligation assay showing that EphA4EGFP does not interact 

with E-cadherin or ADAM10, and E-cadherin does not interact with ADAM10 at the apical 

extremity of the IPC/OPC junction. Scale bar represents 2 µm. IHC = inner hair cell, IPC = 

inner pillar cell, OHC = outer hair cell, OPC = outer pillar cell, PLA = proximity ligation 

assay. 

 



 
Figure S6. EphA4 interacts with E-cadherin and ADAM10 at the IPC/OPC junction in 

WT mice. Related to Figures 4 and 5. (A) Schematic representation of a P6 mouse organ of 

Corti showing the position at which level single confocal images were acquired (here at half-

height of PCs, blue segments). (B) In situ proximity ligation assay showing that EphA4 

interacts with E-cadherin and ADAM10. (C) Proximity ligation assay negative controls were 

obtained by pre-incubating the anti-EphA4 antibody with a blocking peptide. Scale bars 

represent 2 µm. IPCs = inner pillar cells, OPCs = outer pillar cells, PLA = proximity ligation 

assay.  
 

 

 

 

 

 

 

 



Transparent Methods 

 

Animals  

WT, EphA4+/EGFP and EphA4EGFP/EGFP littermates were obtained from heterozygous crosses 

and genotype was determined by PCR as previously described (Grunwald et al., 2004). Mice 

were group-housed in the animal facility of the University of Liège under standard conditions 

with food and water ad libitum and were maintained on a 12-hour light/dark cycle. All 

animals were taken care of in accordance with the declaration of Helsinki and following the 

guidelines of the Belgian ministry of agriculture in agreement with EC laboratory animal care 

and use regulation (2010/63/UE, 22 September 2010). 

 

Tissue processing and immunolabelling 

Postnatal cochleae were fixed for 24 hours in 4% PFA at 4° C. Samples were then washed 

and decalcified for 2 or 3 days (0.1 M EDTA in PBS). Permeabilization and blockage of 

unspecific binding sites were performed by 30 minutes of incubation at room temperature 

(RT) in blocking solution (0.25% gelatin and 0.3% Triton X-100 in PBS). Whole-mount 

cochleae were incubated overnight at 4° C with primary antibodies directed against GFP (rat 

monoclonal IgG2a, 1:250, Gentaur Genprice, London, UK), EphA4 (mouse monoclonal 

IgG2b; 1:50; Santa Cruz Biotechnology, Dallas, TX, USA, AB_10843811), ephrin-B2 (goat 

polyclonal IgG, 1:250, R&D Systems, Minneapolis, MN, USA, AB_2095679; rabbit 

monoclonal IgG, 1:250, Abcam, Cambridge, UK), E-cadherin (rabbit monoclonal IgG, 1:250, 

Abcam, Cambridge, UK, AB_562059; mouse monoclonal IgG1, 1:100, Abnova, Taipei City, 

Taiwan, AB_1671631) and ADAM10 (rabbit polyclonal IgG, 1:100, Abcam, Cambridge, UK, 

AB_302747). After washings in PBS, tissues were incubated for 1h at RT in blocking solution 

containing Cy5-conjugated goat anti-rabbit or anti-goat IgGs secondary antibodies (Jackson 

Immunoresearch Laboratories, Suffolk, UK) and tetramethyl rhodamine isothiocyanate 

(TRITC)-phalloidin (1:1000, Sigma Aldrich, St Louis, MO, USA) as F-actin marker. Finally, 

tissues were washed in PBS, mounted and coverslipped using VectaShield Hard Set mounting 

medium containing DAPI (Vector Laboratories, Burlingame, CA, USA). Slides were stored in 

the dark at 4°C. 

 

Confocal microscopy, image analysis and quantification 

Fluorescence pictures were acquired using the Olympus Fluoview FV1000 confocal system 

equipped with the Olympus IX81 inverted microscope (Olympus Europa GmbH, Germany).  



Single confocal plane were acquired at half-height and at apical extremity of the cochlear 

PCs. To reconstruct the whole organ of Corti in orthogonal projection, fields were acquired 

using Z-scan with a step of 0.5µm between each confocal plane. For comparison between 

genotypes and culture conditions, all preparations were analyzed at the same time, using the 

same acquisition parameters.  

On whole-mount two-week-old cochleae (P14), we considered IPCs as fully detached from 

OPCs when no F-actin-positive material was visible between each other. Corresponding 

regions were quantified at apical, middle and basal turns of cochleae from WT and 

EphA4EGFP/EGFP mice. The same criteria were used to compare organotypic culture conditions. 

Values were summed and expressed as a percentage of IPCs that are completely detached 

from OPCs. Data were statistically analysed using Student’s t-test, or using one-way ANOVA 

followed by Dunnett’s post-test. P values less than 0.05 were considered significant 

(**p<0.01; ***p<0.001). 

 

In situ proximity ligation assay  

In order to characterize endogenous protein interactions, we used the Duolink in situ 

proximity ligation assay reagent (Olink Biosciences, Uppsala, Sweden). Whole-mount 

cochleae were treated and handled as for immunolabelling (see above). Three combinations of 

primary antibodies were used for incubation of EphA4+/EGFP tissues overnight at 4°C: anti-

GFP and anti-E-cadherin (rabbit antibody), anti-GFP and anti-ADAM10, anti-E-cadherin 

(mouse antibody) and anti-ADAM10. For the assays using rat anti-GFP, whole-mount 

cochleae were incubated for 1h at room temperature with mouse anti-rat antibody. Negative 

controls were obtained by omitting one of the two primary antibodies. Two combinations of 

primary antibodies were used for incubation of WT tissues: anti-EphA4 and anti-E-cadherin 

(rabbit antibody), anti-EphA4 and anti-ADAM10. Negative controls were obtained by pre-

incubating the anti-EphA4 antibody (1:50) with a blocking peptide (1:5). Oligo-labelled anti-

mouse plus and anti-rabbit minus probes were then used as recommended by the 

manufacturer. Cochleae were labelled using FluoProbes 647H – Phalloidin (1:100, Cheshire 

Sciences, Chester, UK) then mounted using VectaShield Hard Set mounting medium. 

Proximity ligation assay images (fluorescent spots) combined to F-actin staining were 

acquired as for immunolabelling above. 

 

 

 



In vitro organotypic assay 

Organs of Corti were isolated from P2 mice and cultured for 6 days onto Millicell Culture 

Insert (Millipore) as previously described (Defourny et al., 2013). Organotypic cultures were 

incubated for 24 h with dimethyl sulfoxide (DMSO, vehicle) or ADAM10 inhibitor 

GI254023X (1, 5 and 25 µM ; Sigma-Aldrich). GI254023X is a potent and selective 

ADAM10 metalloproteinase inhibitor with 100-fold selectivity for the α-secretase ADAM10 

over ADAM17 (TACE). Otherwise, organotypic cultures were pre-incubated for 6 h with 

KYL peptide (50 µM ; Tocris Bioscience, Bristol, UK) and incubated for another 12 h with 

DECMA-1 mAb (rat monoclonal IgG1 ; 20 µg/mL ; Abcam ; AB_298118). 

 

RNA in situ hybridization 

In situ hybridization was performed using digoxigenin-labelled EphA4 and ephrin-B2 

riboprobes (Nieto et al., 1992 ; Smith et al., 1997) as previously described (Defourny et al., 

2013). Sections were air-dried, washed in PBS and post-fixed in paraformaldehyde. After 

treatment with 100 mM triethanolamine, pH 8, acetylated (by adding dropwise acetic 

anhydride 0.25%) while rocking 15 min at room temperature (RT), slides were washed three 

times in PBS-0.1% Tween-20 and pre-hybridized in pre-warmed hybridization cocktail 50% 

formamide (Amresco) at least 60 min at 70 °C. Afterwards, sections were hybridized with 

800 ng ml
-1 RNA probes overnight at 70 °C. Sections were then washed twice in pre-warmed 

washing buffer (50% formamide, 2 x	
    sodium salt citrate, 0.1% Tween-20) for 60 min at 70 

°C. Slides were pre-incubated for 1 h in blocking solution (Tris-Saline buffer (100 mM Tris 

pH 7.5; 150 mM NaCl) containing 10% Normal Goat Serum (Dako)) at RT and subsequently 

incubated overnight at 4 °C with anti-digoxigenin antibody coupled to alkaline phosphatase 

(1:2,000, Roche Applied Science) diluted in blocking solution. After three washes with Tris-

Saline buffer, sections were finally overlaid with 200 ml filtered NBT/BCIP (Nitro Blue 

Tetrazolium/5-Bromo-4-Chloro-3-Indolyl Phosphate) - 0.1% Tween-20 solution (Sigma-

Aldrich) between coverslips in dark and at RT until the signal appears. Slides were then 

washed, post-fixed and mounted in aquamount medium (BDH laboratories).  
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