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Abstract

In this paper, we develop the fixed-borrowing adaptive design, a Bayesian adaptive design which 

facilitates information borrowing from a historical trial using subject-level control data while 

assuring a reasonable upper bound on the maximum type I error rate and lower bound on the 

minimum power. First, one constructs an informative power prior from the historical data to be 

used for design and analysis of the new trial. At an interim analysis opportunity, one evaluates the 

degree of prior-data conflict. If there is too much conflict between the new trial data and the 

historical control data, the prior information is discarded and the study proceeds to the final 

analysis opportunity at which time a noninformative prior is used for analysis. Otherwise, the trial 

is stopped early and the informative power prior is used for analysis. Simulation studies are used 

to calibrate the early stopping rule. The proposed design methodology seam-lessly accommodates 

covariates in the statistical model, which the authors argue is necessary to justify borrowing 

information from historical controls. Implementation of the proposed methodology is 

straightforward for many common data models, including linear regression models, generalized 

linear regression models, and proportional hazards models. We demonstrate the methodology to 

design a cardiovascular outcomes trial for a hypothetical new therapy for treatment of type 2 

diabetes mellitus and borrow information from the SAVOR trial, one of the earliest cardiovascular 

outcomes trials designed to assess cardiovascular risk in antidiabetic therapies.
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SOFTWARE AND DATA
A GitHub repository (https://github.com/psioda/bayes-design-hist-control) contains the SAS programs and other resources needed to 
reproduce the analyses presented in this paper. The data used for the design application (ie, data from the SAVOR trial) are not 
available for public release. Therefore, the SAS programs provided are set up to run on the simulated historical trial data used in the 
discussion in Appendix B of the Supporting Information section. All files (SAS data sets, programs, logs, shell scripts, etc) used in 
that example are provided at https://figshare.com.

SUPPORTING INFORMATION
Additional supporting information may be found online in the Supporting Information section at the end of the article.
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1 | INTRODUCTION

The Prescription Drug User Fee Act VI describes activities that the US Food and Drug 

Administration (FDA) will undertake to facilitate the advancement of complex adaptive, 

Bayesian, and other novel clinical trial designs,1 the goals of which are echoed by the 21st 

Century Cures Act,2 which was signed into law in December of 2016. Such novel designs 

may provide promising approaches to investigate the efficacy and/or safety of therapeutic 

products in a variety of settings ranging from products intended to treat rare diseases to 

products intended to treat conditions that afflict a large portion of the US population. One 

possible pathway for innovation is through the development of methods that incorporate 

evidence from sources external to a randomized controlled trial (eg, expert opinion or data 

from earlier trials). Defining the scope of what constitutes potentially valid evidence and 

defining when and where such evidence can be incorporated into the design and analysis of 

future randomized controlled clinical trials (RCTs) will undoubtedly be a challenge. 

However, it would seem that one obvious source of such evidence would be information for 

control subjects from previously conducted (or ongoing) clinical trials and observational 

studies in the same disease population as in a future trial. In this paper, we develop and 

evaluate the fixed-borrowing adaptive design that incorporates subject-level control data 

from a previously completed clinical trial in the design and analysis of a new trial.

In the case of trials assessing rare outcomes, borrowing information from sources external to 

an RCT may be particularly useful due to the substantial cost of conducting well-powered 

trials in such settings. For example, for all new therapeutic agents intended for the treatment 

of type 2 diabetes mellitus (T2DM), cardiovascular outcomes trials (CVOTs) are effectively 

required to demonstrate that the investigational product does not result in an unacceptable 

increase in the risk of major adverse cardiovascular events (MACEs).3 Even in trials 

enriched for high risk T2DM patients, these events are rare. For example, in three such trials, 

the annualized event rate for MACEs was as low as 2% to 3%.4–6 It has been noted that the 

pool of completed CVOTs could be a valuable source of information to be used in the design 

and analysis of future CVOTs.7 While our methodological development was motivated by 

the FDA Guidance for evaluating cardiovascular risk of oral products intended to treat 

T2DM, the methodology we develop in this paper is more generally applicable in any 

therapeutic area where control subject data are available from a previously completed 

clinical trial. Henceforth, we refer to such subjects as historical controls and the source trial 

as a historical trial, but note that, in many applications, the data will have been collected in 

the recent past and collection may even be ongoing.

The fixed-borrowing adaptive design makes use of the simplest form of the power prior.8 In 

this case, the power prior is a fixed prior. That is, the informativeness of the prior (ie, the 

amount of information borrowed from the historical trial) is fixed a priori and not 

dynamically adjusted through the statistical model as is the case with hierarchical priors (eg, 

normalized power priors9). For our approach, the amount of information borrowed would be 

agreed to by the trial sponsor and pertinent regulatory body during the planning stages of the 

new trial. At a preplanned interim analysis opportunity, one evaluates the extent of prior-data 

conflict based on a simple statistic derived from the weighted log-likelihoods for the new 

and historical trial data. If the conflict is too great, the new trial continues to the preplanned 
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final analysis opportunity where the data are analyzed with a noninformative prior (ie, no 

borrowing). Otherwise, the trial is stopped early and the data are analyzed with an 

informative power prior. In addition to agreeing upon the amount of information to be 

borrowed, the trial sponsor and regulatory stakeholders must come to an agreement on how 

conservatively they will evaluate prior-data conflict at the interim analysis opportunity.

There is a growing body of work devoted to the use of data from historical trials in the 

design and analysis of new trials. Much of the work has focused on model-based methods 

that use the new and historical data to estimate the degree of heterogeneity between the 

different sources to dynamically adjust how much information is borrowed. These methods 

include, eg, power priors where the borrowing parameter is treated as a random variable,8–11 

commensurate priors,12 and robust meta-analytic-predictive priors.13 Each of these methods 

is challenging to implement when the control group distribution is not indexed by a single 

scalar parameter (ie, when there are covariates) and/or the data are non-normal. In contrast, a 

simple power prior with a fixed borrowing parameter seamlessly accommodates covariates 

in the statistical model and can be constructed easily for many common data models, 

including linear regression models, generalized linear regression models, and proportional 

hazards models. Moreover, we argue that in many cases (such as the application we present 

in this paper) it is necessary to use statistical models that adjust for one or more covariates to 

justify borrowing information on control subjects (ie, to ensure approximate exchangeability 

of subjects across trials) and that the assumption of exchangeability of trial parameters 

(which motivates the use of hierarchical models and/or hierarchical priors) is simply not 

tenable. We discuss these points in much greater detail in Section 2 through the lens of 

designing a CVOT for risk assessment in the T2DM therapeutic area.

Essentially all of the meta-analytic priors aforementioned contain hyperparameters, which, 

in part, control the degree of information borrowing. In most (if not all) cases, these 

hyperparameters are not elicited according to any sort of a priori belief; they are mechanical 

constructs to be manipulated to obtain a design having good properties. When evaluating the 

performance of an analysis prior that is based on historical data, most authors evaluate the 

performance of the prior with respect to type I error control. This is appropriate since 

reasonable type I error control is of great importance to regulators. However, just as 

borrowing information from historical controls can inflate the type I error rate when the 

information provided by the historical data is inconsistent with the true model for the new 

trial data, so too can it degrade power to detect a clinically meaningful effect size. It would 

seem desirable to have a procedure for borrowing the prior information that provides precise 

control of the type I error rate and statistical power. For our method, we deal with this 

problem directly by setting bounds on the maximum type I error rate and minimum power 

for a chosen effect size and letting these bounds determine the trial’s early stopping rule (ie, 

when the prior information must be discarded).

The rest of this paper is organized as follows. In Section 2, we motivate the proposed 

methodology in the context of designing a CVOT. We discuss the large degree of 

heterogeneity in a set of already completed CVOTs, how that heterogeneity guided our 

strategy for borrowing information, justification for and challenges with covariate selection 

to ensure exchangeability of subjects across trials, and our perspective for viewing the prior 
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information which motivated the idea of bounding the type I error rate and power. In Section 

3, we provide a detailed development of the fixed-borrowing adaptive design, including a 

discussion of the power prior, a procedure for accurate posterior analysis without Markov 

chain Monte Carlo (MCMC) methods, and the simulation-based procedure for determining 

the early stopping rule for the trial. In Section 4, we apply the methodology to design a 

future CVOT that borrows information from the SAVOR trial, one of the first completed 

CVOTs designed to assess risk in the T2DM therapeutic area. We close this paper with some 

discussion in Section 5.

2 | MOTIVATING DISCUSSION

2.1 | A comparison of several completed trials

For our motivational discussion here and the example application of the methodology in 

Section 4, we focus on the design of large safety CVOTs in the T2DM therapeutic area. In 

December of 2008, the FDA issued a guidance for industry effectively establishing a two-

stage framework for the assessment of cardiovascular risk in all new therapeutic agents 

intended for the treatment of T2DM.3 In the second stage, a randomized controlled trial is 

generally conducted to demonstrate that the treatment causes no more than a 30% increase 

in risk for MACE. In practice, the hazard ratio estimated from a Cox proportional hazards 

model14 is used as the basis for cardiovascular risk assessment and so stage two can 

equivalently be characterized as having to rule out a hazard ratio of 1.3. This quantity is 

commonly referred to as the stage two risk margin.

Even though the CVOTs that have been completed to date are homogeneous in that they 

each enrolled subjects diagnosed with T2DM, they are quite heterogeneous in many other 

important aspects of the recruited patient populations. There are differences in basic 

demographic characteristics (eg, age criteria), in the required level of glycemic control (ie, 

ranges for hemoglobin A1c (HbA1c)), and in definitions of qualifying cardiovascular 

disease history. To illustrate this, we briefly compared inclusion/exclusion criteria for three 

completed CVOTs, ie, the SAVOR,6,15 EXAMINE,16,17 and TECOS18,19 trials. These were 

multicenter randomized double-blind placebo-controlled trials designed to evaluate the 

effects of saxagliptin, alogliptin, and sitagliptin, respectively, compared with placebo (all 

administered on top of standard of care). The primary analysis in each trial was based on the 

incidence of MACE. The SAVOR trial serves as the source of historical control data in our 

example application in Section 4.

The target population for the SAVOR trial was enriched to include subjects that were at 

comparatively high risk for cardiovascular events. Enrolled subjects were required to be at 

least 40 years of age and to have had a recent HbA1c value of at least 6.5% but also less than 

12.0%. In addition to age and glycemic control criteria, subjects enrolled in the SAVOR trial 

were required to have a history of cardiovascular disease or to present with multiple risk 

factors that included renal failure. The set of qualifying events defining a history of 

cardiovascular disease were ischemic heart disease, peripheral arterial disease (PAD), and/or 

ischemic stroke. Acceptable risk factors for cardiovascular disease included dyslipidemia, 

hypertension, and being a smoker at enrollment. Subjects were excluded from the SAVOR 

trial if they had an acute cardiovascular event in the two-month period before enrollment, if 
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they were severely obese (BMI>50), if they had severe dyslipidemia, and/or if they had 

severe hypertension.

In the EXAMINE trial, subjects were required to be at least 18 years of age. Those subjects 

not being treated with insulin at enrollment were required to have an HbA1c value of at least 

6.5% but also less than 11.0%. Subjects being treated with insulin at enrollment were 

required to have had a recent HbA1c value of at least 7.0% but also less than 11.0%. Unlike 

the SAVOR trial, the EXAMINE trial enrolled only those subjects who presented with acute 

coronary syndrome (acute myocardial infarction or unstable angina requiring 

hospitalization) between 15 and 90 days prior to enrollment. Subjects were excluded from 

the EXAMINE trial if they had one of several hemodynamically unstable cardiovascular 

disorders (NYHA class 4 heart failure, refractory angina, uncontrolled arrhythmia, critical 

valvular heart disease, or severe hypertension). Due to the requirement that enrolled subjects 

have acute coronary syndrome, the target population in the EXAMINE trial had 

fundamentally higher cardiovascular risk than the population targeted by SAVOR (at least in 

the period immediately following enrollment).

The TECOS trial did not specifically target subjects who had acute coronary events 

(although it appears these subjects were not specifically excluded either). Like the SAVOR 

trial, the TECOS trial enrolled subjects with chronic conditions that are associated with 

increased cardiovascular risk. The TECOS subjects were required to have a history of 

cardiovascular disease defined as having coronary artery disease, ischemic cerebrovascular 

disease (eg, ischemic stroke), or PAD. These criteria would suggest the target population for 

TECOS was at least qualitatively similar to SAVOR with respect to cardiovascular disease. 

However, unlike in the SAVOR trial, TECOS subjects were required to be at least 50 years 

old and to have had a recent HbA1c value of at least 6.5% but also less than 8.0%, resulting 

in a target population that was somewhat older but had better glycemic control compared 

with the SAVOR and EXAMINE trials. Moreover, the TECOS trial excluded subjects with 

renal failure.

Currently, no two completed CVOTs are highly similar in terms of their recruited patient 

populations. As a result, the assumption of exchangeability of trials (or trial parameters) that 

is often made to justify the use of hierarchical models for information borrowing across 

multiple historical trials is not tenable. For this reason, we develop the proposed 

methodology as a means to borrow information from a single historical trial that was 

selected and used, as much as possible, as a blueprint for the design of the new one (apart 

from differences in the investigational treatment). By this we mean that, on paper, the 

historical trial and the new trial should be as similar as possible. In the context of CVOTs, 

basic inclusion and exclusion criteria related to age, level of glycemic control, 

cardiovascular disease history, and other known prognostic factors for MACE should be 

nearly identical. Moreover, the standard of care used to treat control subjects in the new trial 

should be consistent with the standard of care at the time when the historical trial was 

conducted.

Psioda et al. Page 5

Stat Med. Author manuscript; available in PMC 2019 January 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2.2 | Covariate selection

Regardless of protocol design, it is unreasonable to assume that subjects in the historical and 

new trials are all exchangeable. That is, one cannot justify performing the primary analysis 

using a very simple model (ie, no covariate adjustment) as commonly done in RCTs. It is 

necessary to adjust for a reasonable set of prognostic factors to help better ensure 

exchangeability of subjects across trials. In our experience, there will often be many 

characteristics (ie, potential covariates) that are associated with a given outcome, but only a 

few that are captured in clinical databases with the level of clarity and consistency that 

makes them well-defined across trials.

For example, consider the MACE endpoint that is commonly used for CVOTs. In such trials, 

history of percutaneous coronary intervention (PCI) is commonly collected in medical 

history, but incidence information alone provides an incomplete picture of a subject’s 

cardiovascular risk. Knowing whether the procedure was elective or performed to resolve an 

acute life-threatening event would be valuable, as would knowing the date that the procedure 

was performed. Presumably, procedures from the distant past may not be relevant. The true 

relationship between a subject’s history of PCI and their underlying cardiovascular risk is 

likely too complicated to be useful in the statistical analysis. In contrast, characteristics like 

age at enrollment, duration of diabetes, baseline HbA1c, and estimated glomerular filtration 

rate provide clear and concrete information about the overall health of the subject and about 

cardiovascular risk at the time of trial enrollment (even if these characteristics represent 

surrogates for true underlying risk factors that are not clearly captured in the available data). 

We suggest one focus on adjusting for the latter type of characteristics in the statistical 

model and rely on the similarity of the protocol designs to adequately address the former. 

This approach is admittedly imperfect, and it speaks to the need to evaluate the extent of 

prior-data conflict to determine if information borrowing from the historical trial seems 

reasonable once some data are collected in the new trial. Our proposed approach for 

evaluating prior-data conflict is described in detail in Section 3.6.

2.3 | Perspectives for viewing the prior information

Throughout this paper, we assume a common model applies to the data from both trials (eg, 

the Cox model with piecewise constant baseline hazard), but we entertain the prospect that 

the parameters may differ. There are two perspectives that are generally considered when 

evaluating the impact of borrowing prior information for a Bayesian design. The first 

perspective, which stems from the assumption that subjects are exchangeable across trials, is 

to view the historical data that forms the prior as part of the random process. The 

exchangeability of subjects across trials implies that the new and historical trial subjects can 

be viewed as two random samples from the same model.20 In light of that fact, one might 

consider the type I error rate and power averaged over the generative processes for both data 

sets. From that perspective, when exchangeability holds, it should be clear that borrowing 

any amount of information from the historical data will not inflate the type I error rate and 

that borrowing information will generally increase power or allow sample size reduction. 

When the exchangeability assumption is not met, borrowing the prior information will 

impact the design’s type I error rate and power, but neither of these operating characteristics 

can be easily evaluated from this perspective since the parameters in both models are 
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unknown. Moreover, the idea of averaging over the generative process for the historical trial 

data seems somewhat unnatural since those data are already observed at the time the new 

trial is being designed. For these reasons, we view this perspective as an interesting 

philosophical justification for why a Bayesian, convinced the exchangeability assumption is 

met, might not focus on the type I error rate as an operating characteristic of interest for trial 

design in this setting. However, for reasons described in Sections 2.1 and 2.2, there will 

always be reason to be at least somewhat skeptical of the exchangeability assumption.

As an alternative to the first perspective, one can view the historical data that forms the prior 

as nonrandom (ie, data that is conditioned upon in the analysis). In this setting, the prior 

simply reflects the current state of knowledge, which may or may not be consistent with the 

truth. Being consistent with the truth is an imprecise phrase that can be interpreted as the 

prior mean or mode being a good approximation of the true parameter value for the new trial 

model. From this perspective, even though exchangeability is a guiding principle for the 

design, whether or not the subjects in the two trials are actually exchangeable is of little 

importance when it comes to evaluating the impact of borrowing the prior information on the 

type I error rate and power. All that truly matters is whether or not the prior information is 

consistent with the truth. When it is not, borrowing the prior information may inflate the 

type I error rate and/or degrade the power. Adopting this second perspective should not be 

misconstrued as disregarding the principle of exchangeability. That principle is still 

fundamental to the design through its governance of how one selects the historical trial and 

designs and implements the protocol for the new trial. It is as important as any other aspect 

of the methodology presented in this paper.

3 | THE FIXED-BORROWING ADAPTIVE DESIGN

3.1 | Preliminaries

Let θ = (γ,ψ) be the collection of all parameters in the combined model for the new trial 

subjects and historical controls. Here, γ is the treatment effect parameter for the new trial 

and ψ is a vector of nuisance parameters common to the data models for the new trial and 

historical controls. Our method is designed for the case where the historical data inform ψ 
but not γ. In the context of a linear regression model for a continuous endpoint, ψ will 

contain a mean parameter for the control group and effects for important covariates and/or 

prognostic factors for the outcome of interest. In the context of a Cox model for a time-to-

event endpoint, ψ will contain baseline hazard parameters and effects for covariates that are 

adjusted for in the hazard ratio regression model. The aforementioned covariate effects 

should be included in the model to justify the assumption of exchangeability of subjects 

across trials.

We write Dj and ℒ(θ D j) to represent the new trial data and corresponding likelihood at the 

time of the jth preplanned analysis opportunity. When referencing the new trial data for 

general developments that are unrelated to the actual analysis timing, we will simply write 

D. For the proposed design, there are two preplanned opportunities to test the one-sided 

interval hypotheses H0 : γ ≥ γ 0 versus H1 : γ < γ 0. We refer to these opportunities as the 

interim or first analysis opportunity (j = 1) and the final or second analysis opportunity (j = 
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2). We are careful to use the term opportunity here because the actual hypothesis test will be 

performed only once, the timing of which being based on the degree of prior-data conflict 

observed at the first analysis opportunity and a prespecified threshold for the acceptable 

level of conflict. When the statistic measuring prior-data conflict is smaller than the 

prespecified threshold, the trial is stopped at the first opportunity and an informative power 

prior is used for the analysis. Otherwise, the trial continues to the second opportunity at 

which time the new trial data are analyzed without incorporating the historical control data.

3.2 | The power prior

The power prior may be written as follows:

π0(θ D0, a0) ∝ [ℒ(ψ D0)]
a0π0(θ), (1)

where 0 ≤ a0 ≤ 1 is a fixed scalar parameter, D0 are the historical control data, ℒ(ψ D0) is 

the likelihood for ψ given the historical control data, and π0(θ) is an initial (noninformative) 

prior for all parameters. In most cases one will specify π0(θ) = π0(γ) × π0(ψ) (ie, 

independent initial priors for γ and ψ). In many cases one or both of these initial priors can 

be improper and the resulting power prior will still be proper (assuming a0 > 0), but this will 

need to be verified on a case-by-case basis. For a complete review of the power prior and its 

generalizations see the work of Ibrahim et al.21

When a0 = 0, the historical data are essentially discarded and the power prior reduces to the 

initial prior. In contrast, when a0 = 1, the power prior corresponds to the posterior 

distribution from an analysis of the historical data using the initial prior. For intermediate 

values of a0, the information in the historical data is discounted to some degree leading to a 

prior that is more informative than the initial prior but less informative than using the 

historical trial posterior as the prior for the new trial. Our approach requires that 

stakeholders agree on a value of a0 a priori, which we denote by a0*. If the new trial stops at 

the first opportunity, the analysis is performed using the power prior obtained by taking 

a0 = a0*. If sufficient prior-data conflict is observed at the first analysis opportunity, the trial 

is continued to the final opportunity, and the analysis is performed using the power prior 

with a0 = 0 (ie, the initial prior).

3.3 | The hypothesis test decision rule

We consider the one-sided null and alternative hypotheses H0 : γ ≥ γ 0 versus H1 : γ < γ 0 

and reject H0 if the posterior probability of the alternative hypothesis P(γ < γ 0 |D,D0, a0) is 

at least as large as some prespecified critical value ϕ. To decrease the search space for the 

number of study characteristics that are manipulated in design simulations, we recommend 

fixing ϕ = 1 − α, where α is the targeted one-sided type I error rate for the design. This 

approach is motivated by the fact that the posterior probability P(γ < γ 0 |D,D0, a0 = 0) is 

asymptotically equivalent to a frequentist p-value when γ = γ 0 and when there is a single 

analysis based on a fixed sample size. In other words, ϕ = 1 − α is the asymptotically correct 
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choice to control the supremum type I error rate at level α when there is no borrowing from 

the historical data (as will be the case if the hypothesis is tested at the final analysis 

opportunity).

3.4 | Approximate posterior calculations without MCMC

Our method bases inference on the posterior probability P(γ < γ 0 | D,D0, a0). Computation 

of that quantity via MCMC is straightforward but prohibitively slow for large scale 

simulation studies unless the sample size is small or the model sufficiently simple. To avoid 

this general problem, we propose an asymptotic approximation for P(γ < γ 0 | D,D0, a0) that 

is easily implementable using standard software, fast to compute, and accurate for large 

sample sizes. The approximation exploits a connection between Bayesian analysis with the 

power prior and maximum likelihood analysis using case weights (also known as weighted 

maximum likelihood analysis).

Assume the data for the new and historical trials are independent samples of size n and n0, 

respectively. Let ℓ (θ | Di) and ℓ(ψ | D0,j) denote the log-likelihoods for subjects i and j from 

the new and historical trials, respectively. The logarithm of the posterior (ignoring the 

normalizing constant) is given as follows:

logπ(θ D, D0, a0) = ∑
i = 1

n
wi ⋅ 𝓁(γ, ψ Di) + ∑

j = 1

n0
w0, j ⋅ 𝓁(ψ D0, j) + logπ0(θ),

where wi is equal to 1.0 and w0,j = a0. Thus, apart from the normalizing constant (which 

does not depend on the parameters) and the logarithm of the initial prior (which is flat 

relative to the likelihood of the historical data), the log posterior distribution is equal to the 

weighted log-likelihood. The Bayesian central limit theorem22 assures us that, when the 

sample size for the combined trials is reasonably large,

π(γ D, D0, a0) ∝. Normal γ |γ , σγ
2 ,

where γ  is the weighted maximum likelihood estimator from a joint analysis of both trials 

with aforementioned weights described and σγ
2 is the relevant diagonal element of the inverse 

of the observed information matrix for the weighted log-likelihood evaluated at the weighted 

maximum likelihood estimator. Using this connection, we can approximate relevant 

posterior probabilities for Bayesian analyses using results that are readily obtainable from 

standard software for weighted maximum likelihood analysis. We have the following:

P γ < γ0 D, D0, a0 ≈ P Z ≤
γ0 − γ

σγ
D, D0, a0 = 1 − Φ

γ − γ0
σγ

, (2)

where Z is a standard normal random variable. Note that the right-hand side of the equality 

in (2) is one minus the one-sided p-value that arises from weighted maximum likelihood 
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analysis of the combined studies. We have found the approximation error of this approach is 

quite small in many cases. In practice, we recommend using the asymptotic approximation 

for any large scale simulation to identify an appropriate set of design characteristics (ie, 

sample size and value of a0) and then running a small scale confirmatory simulation using 

MCMC to ensure the operating characteristics are still acceptable in cases where exact 

Bayesian inference is desired.

3.5 | Selecting the interim analysis timing and randomization strategy

During design, one must select the sample sizes n1 and n2 at which the two preplanned 

analysis opportunities will occur. The randomization strategy (eg, balanced or unbalanced) 

must also be specified. In the case of trials having time-to-event endpoints, we note that the 

effective sample size is typically the number of observed events and not the number of 

subjects enrolled. This is the case for our example application in Section 4. For this section, 

our use of the term sample size is intended to be general.

In most cases, it is straightforward to identify a reasonable choice for n2. This is because the 

sample size n2 is only relevant to the final analysis opportunity at which a noninformative 

prior will be used to analyze the new trial data. In the case of performing a single test of a 

one-sided null hypothesis using a fixed sample size, Bayesian analysis with a 

noninformative prior and frequentist analysis align, and so in many cases standard formulae 

are available for computing the sample size required to obtain a desired level of power. For 

example, when designing a CVOT to rule out the stage two risk margin (ie, to rule out a 

hazard ratio of 1.3) and to ensure 90% power under the assumption of no treatment effect on 

CV risk, one would need approximately n2 = 612 events based on a frequentist analysis of 

the Cox proportional hazards model (assuming balanced randomization and a significance 

level of α = 0.025). A Bayesian analysis for the same n2 that uses a noninformative prior 

yields virtually identical power.

The optimal choice for n1 is less obvious. If the interim analysis opportunity occurs early, a 

relatively large fraction of the total sample size will need to come from the historical trial, 

and the constraints we impose on the type I error rate and power will make it necessary to 

discard the prior information with relatively high probability and continue the new trial to 

the final analysis opportunity, even when the new trial nuisance parameters are equal to their 

respective historical trial posterior means (ie, the prior information is perfectly consistent 

with the truth). On the other hand, if the new trial does stop early, there can be a 

considerable reduction in total sample size and/or duration of the trial. If the interim analysis 

opportunity is late, a relatively small fraction of the total sample size will come from the 

historical trial. In this case, the new trial will have a higher probability of early stoppage, but 

the efficiency gain from doing so will be less. In the application presented in Section 4, we 

explore this tradeoff by comparing designs that attempt to borrow different fractions of the 

total sample size from a historical trial.

Based on the proposed adaptive design framework, arguments can be made for using 

balanced or unbalanced randomization in the new trial. If 50% of the desired control group 

sample size is to be borrowed from the historical trial, then it would seem appealing to 

randomize two new trial subjects to receive investigational treatment for everyone 
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randomized to control (ie, 2:1 randomization). This would result in approximately balanced 

sample size in the two groups at the interim analysis opportunity. In this case, 1:1 

randomization would lead to a larger effective sample size in the control group at the interim 

analysis opportunity, which would be suboptimal for power. In contrast, balanced 

randomization in the new trial would be preferred in instances where the new trial proceeds 

to the final analysis opportunity (since there will be no borrowing in this case). In practice, 

the constraints imposed on the type I error rate and power lead to continuing the new trial to 

the final analysis opportunity a significant portion of the time, and so we advocate using 

balanced randomization as a general rule. Our simulation studies did not suggest one 

randomization strategy to be superior to the other under the aforementioned constraints on 

the type I error rate and power.

3.6 | Evaluation of prior-data conflict

For our design approach, one uses the interim analysis opportunity to assess the degree of 

prior-data conflict to determine whether or not it appears reasonable to borrow the prior 

information once some data have been collected in the new trial. To assess prior-data 

conflict, we propose using a simple likelihood ratio statistic W, which is given as follows:

W = log ℒ θ1 D1 ℒ ψ0 D0
a0 − log ℒ(θ D1)ℒ(ψ D0)

a0 , (3)

where θ = (γ , ψ) = argmax ℒ(θ D1)ℒ(ψ D0)
a0, θ1 = (γ1, ψ1) = argmax ℒ(θ D1), and 

ψ0 = argmax ℒ(ψ D0)
a0. Aside from being the maximum likelihood estimate, θ is 

approximately equal to the posterior mode from an analysis of the new trial data using the 

power prior and assuming a common set of nuisance parameters, and θ1 and ψ0 are 

approximately equal to the posterior modes when one assumes the nuisance parameters are 

different between the two trials (ie, subjects are not exchangeable). Focusing on the case 

where the nuisance parameters differ, W can be viewed as the logarithm of the ratio of the 

mode density value to the density value associated with restricting ψ1 = ψ0 = ψ (the mode 

value based on assumed exchangeability).

When W ≤ w0 for prespecified constant w0, then the study is stopped at the interim analysis 

opportunity, and the data is analyzed using the power prior based on the predetermined value 

of a0. If the inequality does not hold, the trial continues to the final analysis opportunity and 

the data are analyzed using the initial prior (ie, a0 = 0). The W statistic takes its boundary 

value of zero when the mode of the historical data likelihood is the same as the mode of the 

new trial likelihood (with respect to the nuisance parameters). This case corresponds to 

perfect agreement between the two data sets. As the modes of the two likelihoods separate, 

the corresponding values of W will become large, suggesting that the prior information is 

not consistent with the truth and that it should potentially be discarded.

Of course, there will always be some prior-data conflict simply due to random error. That is 

to say, W > 0 with probability one. The fundamental question is how large w0 should be. We 
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would argue that there is not a single correct answer to that question. Before a meaningful 

determination can be made, one must appreciate the consequences of borrowing the prior 

information when it is inconsistent with the truth. In this case, borrowing the prior 

information will lead to systematic bias in estimates of the treatment effect, potentially 

inflating the type I error rate and/or degrading the power. Thus, the question of how much 

prior-data conflict is tolerable might equivalently be phrased as a question of how much of 

an impact on the type I error rate and power one is willing to permit by borrowing prior 

information that is inconsistent with the truth. For our design methodology, we automate the 

determination of w0 by specifying tolerability bounds on the maximum type I error rate and 

minimum power and letting those bounds induce the correct choice for w0.

3.7 | Simulation-based calibration of the stopping rule

Identification of an acceptable choice for w0 requires a large scale simulation study over an 

array of possible nuisance parameter values for the new trial. This array should include the 

case where the nuisance parameter values in the new trial are equal to their respective 

historical data posterior means (ie, ψ = E [ψ | D0]) and cases where the nuisance parameters 

values in the new trial are increasingly different from their respective historical data 

posterior means. Using simulated data sets corresponding to each possible value of the 

nuisance parameters, one evaluates the maximum type I error rate and minimum power 

based on different possible choices for w0 until an acceptable value is identified.

Let θ01, …, θ0M represent the collection of null parameter values considered and let θ11, 

… ,θ1M represent the corresponding alternative parameter values. We assume θ0m = θ1m 

apart from the value of γ, which will be fixed at γ0 for null parameter values and at some 

chosen value γ1 for alternative parameter values. Let δe be the maximum tolerable elevation 

in the type I error rate and δp be the maximum tolerable reduction in power. Let B represent 

the number of simulation studies to be performed for a given parameter value. For 

hypothesis h = 0, 1, parameter value m = 1, … , M, and simulation study b = 1, … , B, one 

does the following.

1. Simulate the new trial data sets Dhm, 1
(b)  and Dhm, 2

(b)  corresponding to the interim 

and final analysis opportunities.

2. Compute the posterior probability of the alternative hypothesis at the interim 

analysis opportunity using the power prior phm, 1
(b) = P(γ < γ0 Dhm, 1

(b) , D0, a0) and at 

the final analysis opportunity using the initial prior phm, 2
(b) = P(γ < γ0 |Dhm, 2

(b) ).

3. Compute the likelihood ratio statistic whm, 1
(b)  in (3) based on observed data Dhm, 1

(b)

at the interim analysis opportunity.

4. Construct indicator variables for whether or not the null hypothesis should be 

rejected based on the data at the time of the interim and final analysis 

opportunities. Specifically, we construct rhm, j
(b) = 1{phm, j

(b) ≥ ϕ} for j = 1, 2.
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Once the set of simulation results {(rhm, 1
(b) , rhm, 2

(b) , whm, 1
(b) ):h = 0, 1; m = 1, …, M; b = 1, …, B} are 

obtained, one can then determine an appropriate value for w0 using the following procedure.

1. Initialize w0 = 0. This choice of w0 does not permit early stoppage.

2. For each h = 0, 1 and m = 1, … , M, compute the empirical null hypothesis 

rejection rate

r hm = 1
B ∑

b = 1

B
rhm, 1

(b) ⋅ 1 whm, 1
(b) ≤ w0 + rhm, 2

(b) ⋅ 1 whm, 1
(b) > w0 . (4)

3. Compute the maximum type I error rate over the array of null parameter values 

r0 = max r0m:m = 1, …M  and minimum power over the array of alternative 

parameter values r1 = min r1m:m = 1, …M .

4. Let α and 1 − β be the desired type I error rate and power, respectively. If 

r0 ≤ α + δe and r1 ≥ 1 − β − δp, then one increments w0 by some small amount 

and repeats steps 2 and 3. Otherwise, one terminates the search and selects the 

value of w0 from the previous iteration.

The aforementioned procedure will identify the largest possible value for w0 that is 

acceptable under the constraints placed on the type I error rate and power. In Appendix A of 

the Supporting Information section, we provide a recipe for the data simulation process used 

in the application in Section 4. In Appendix B of the Supporting Information section, we 

provide specific guidance on how to choose θ01, … , θ0M and θ11, … , θ1M.

4 | DESIGNING A CVOT

In this section, we provide an in-depth application of the fixed-borrowing adaptive design to 

design a CVOT for a hypothetical treatment for T2DM. We use one of the earliest CVOTs 

conducted in this therapeutic area, the SAVOR trial, as the historical trial selected for 

borrowing. As noted in Section 2, the SAVOR trial was a multicenter randomized double-

blind placebo-controlled trial designed to evaluate the effect of saxagliptin compared with 

placebo (both administered on top of standard of care) on the incidence of MACE. The 

rationale for the SAVOR trial was discussed in the work of Scirica et al,15 and the study 

results were discussed in another work of the aforementioned authors.6

We included the following characteristics in the proportional hazards model: age at 

enrollment, gender, history of myocardial infarction, history of stroke, logarithm of the 

duration of diabetes, logarithm of the baseline HBA1c, and baseline estimated glomerular 

filtration rate. Each of these characteristics had strong association with the MACE endpoint 

in the SAVOR trial, and it was felt that these characteristics could be consistently measured 

across trials. Data for many other medical history characteristics (eg, history of PCI, history 

of PAD, and history of hypertension) were available and could be evaluated for potential 

inclusion in the model. However, as discussed in Section 2, most medical history provides 

imprecise information about underlying cardiovascular risk. Our decision to include a 

Psioda et al. Page 13

Stat Med. Author manuscript; available in PMC 2019 January 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



particular characteristic in the model reflected a balance between statistical significance of 

the characteristic based on analysis of the SAVOR data and clarity of the information 

provided by the characteristic. In the chosen model, we stratified by age due to a potential 

violation of the proportional hazards assumption. The number of levels for the stratification 

factor and the number of baseline hazard components within each stratification level were 

chosen using a model selection procedure based on the Bayesian information criterion. We 

used data for n0 = 8142 control subjects that participated in the SAVOR trial and had 

complete data for each of the characteristics that were included in the model. Of those 

subjects, ν0 = 601 experienced a MACE event. Table 1 presents posterior summaries based 

on 100 000 MCMC samples from a Bayesian analysis using an independent normal prior on 

each hazard ratio regression parameter (mean zero and variance 105) and an independent 

noninformative gamma prior for each baseline hazard parameter (shape and inverse scale 

parameters equal to 10−5).

For our simulations to determine w0, we set the new trial hazard ratio regression parameters 

equal to their respective historical posterior means from Table 1. For the baseline hazard 

parameters, we considered perturbations of the posterior means ranging from a 45% 

decrease to a 45% increase with a step size of 1%, uniformly perturbing all baseline hazard 

parameters by the same amount at a given time. For each possible value of the new trial 

parameters, we simulated 100 000 hypothetical trials. To mimic a realistic covariate 

distribution, we sampled entire covariate vectors (including stratum) from the SAVOR 

controls, with replacement. Enrollment for 5000 subjects was simulated to be linearly 

increasing over a three-year period and no dropout was assumed. For reasons discussed in 

Section 3.5, balanced randomization was used.

Note that, for our design simulations to determine w0, we did not consider perturbations to 

the posterior means of all nuisances parameters (eg, we did not consider perturbations to 

baseline hazard parameter posterior means and hazard ratio regression parameter posterior 

means). Such an approach is not computationally feasible unless the number of nuisance 

parameters is quite small. More importantly, considering a broader discrete subspace of the 

overall parameter space to explore for determination of w0 is unnecessary. In general, it is 

sufficient to consider perturbations to the overall model intercept while leaving other 

nuisance parameters fixed at their respective historical posterior means. In the context of the 

proportional hazards model with piecewise constant baseline hazard, uniformly perturbing 

the baseline hazard parameters is equivalent to perturbing the overall model intercept. In 

Appendix B of the Supporting Information section, we provide a detailed discussion 

regarding why focusing on the proposed discrete subspace of the overall parameter space is 

appropriate for ensuring bounded control of the type I error rate and power over the entire 

parameter space.

In this section, to distinguish the number of enrolled subjects at each analysis opportunity 

from the number of accrued events, we represent the number of events at the interim and 

final analysis opportunities by ν1 and ν2 instead of n1 and n2. We considered designs that 

had interim analysis opportunities at ν1 = 536, ν1 = 459, ν1 = 383, and ν1 = 306 events 

corresponding to a 12.5%, 25.0%, 37.5%, and 50.0% reduction in the number of events 

required for the interim analysis opportunity compared with the number of events required 

Psioda et al. Page 14

Stat Med. Author manuscript; available in PMC 2019 January 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



for a nonadaptive trial that accrues 612 events. We also evaluated the impact of different 

choices for a0 for a given value of ν1. The total number of events for a given analysis is a 

combination of the events accrued in the new trial plus the events borrowed from the 

historical trial. One needs to borrow a sufficient number of events from the historical trial so 

that the interim analysis, if performed, is well powered. The quantity a0 determines the 

fraction of events borrowed from the historical trial. We refer to the quantity ν1 + a0 · ν0 as 

the effective number of events at the interim analysis opportunity. In general, the value of a0 

should be chosen so that the effective number of events at the interim analysis is at least as 

large as ν2 = 612. We evaluated choices for a0 that yielded an effective number of events 

equal to 612 (no additional events), 765 (153 additional events), and 918 (306 additional 

events). For example, for ν1 = 536, ν0 = 601, and ν1 + a0 · ν0 = 765, one would need a0 = 

0.381.

We considered three sets of tolerability bounds for the type I error rate and power, ie, (δe, 

δp) = (0.025, 0.05),(0.050, 0.10), and (0.075, 0.15). Table 2 presents the values for e
w0 that 

were determined using the procedure described in Section 3.7 for each combination of 

design inputs (ie, δe, δp, ν1, and a0). Note that, since the critical value w0 is a function of the 

chosen value for the borrowing parameter a0 and number of events ν1, the values of e
w0 are 

only directly comparable when holding both fixed. As shown in Table 2, more liberal bounds 

on the maximum type I error rate and minimum power permit use of the historical trial data 

in the presence of greater prior-data conflict.

Figures 1 and 2 present the estimated type I error rate and power curves, respectively, as 

functions of the baseline hazard perturbation. It is apparent that, if the true new trial baseline 

hazard parameters are uniformly lower than their historical trial posterior means, the type I 

error rate is inflated to some degree. In contrast, if the true new trial baseline hazard 

parameters are uniformly higher than their historical trial posterior means, the power is 

reduced to some degree. The worst-case scenarios occur when the new trial baseline hazard 

parameters are moderately different from their historical trial posterior means. This is 

because when the discrepancy is too great, the trial essentially never stops at the interim 

analysis opportunity due to its adaptive nature. The degree of perturbation in the baseline 

hazard that results in the worst-case type I error rate and power is clearly a function of the 

amount of information borrowed, with less borrowing corresponding to more extreme 

perturbations of the baseline hazard. Interestingly, if the true new trial nuisance parameters 

are equal to their historical trial posterior means (ie, the prior information is perfectly 

consistent with the truth), the type I error rate is less than or equal to 2.5% and the power is 

approximately equal to 90% even when the effective number of events for the interim 

analysis opportunity is 612. Lastly, one can see that when ν1 is approximately 50% of ν2 

there is essentially no power benefit to borrowing additional events from the historical trial 

beyond that which results in an effective number of events equal to 612.

Figure 3 presents the estimated probability of early stoppage as a function of the baseline 

hazard perturbation. One can see that if the new trial baseline hazard parameters are at least 

40% lower or at least 40% higher than their historical trial posterior means, the new trial has 

a very small probability of early stoppage for each combination of design inputs we 
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considered. In some cases, there is a relatively high probability of early stoppage over a 

range of baseline hazard perturbations (eg, the top right panel of Figure 3). As a general rule, 

using a more informative power prior necessitates that one be more conservative with 

respect to evaluating prior data conflict. For the case where the required number of events at 

the interim analysis opportunity is reduced by 50%, the probability of early stoppage is only 

0.52 based on the most liberal bounds on the type I error rate and power even when the prior 

information is perfectly consistent with the truth.

The probability of early stoppage alone does not characterize the overall utility of the 

design. For the design to be useful, when the new trial stops early there should be a marked 

reduction in the length of the trial compared with a trial that only stops at 612 events. The 

average length of time to reach the final analysis opportunity (ie, the length of a trial with no 

borrowing) was 3.82 years when the new trial nuisance parameters equaled their respective 

historical data posterior means. Under the same conditions, the average length of time to the 

interim analysis opportunity was 3.46 years (a 9.4% decrease) for a 12.5% event reduction, 

3.10 years (a 18.8% decrease) for a 25.0% event reduction, 2.75 years (a 28.0% decrease) 

for a 37.5% event reduction, and 2.39 years (a 37.4% decrease) for a 50.0% event reduction. 

Figure 4 presents the average percent reduction in overall trial length (unconditional on early 

stoppage) as a function of baseline hazard perturbation. The greatest reductions in trial 

length come when a sizable fraction of the total information is borrowed from the historical 

trial (eg, 50.0% of the required events). However, even when a small fraction of the total 

information comes from the historical trial (eg, 12.5% of the required events), one sees a 

meaningful reduction in trial length (eg, 10%) over a wide range of perturbations in the 

baseline hazard. Overall, in situations where the prior is consistent with the truth, the 

adaptive design will have a meaningful probability of early stoppage resulting in a trial that 

is appreciably shorter in duration than a traditional trial with no borrowing.

5 | DISCUSSION

In this paper, we have developed the fixed-borrowing adaptive design for use when 

designing a future trial with an aim to borrow information on historical control subjects from 

a previously conducted trial. Our choice to develop the design from the Bayesian perspective 

is a matter of preference. One could just as easily develop the design from a frequentist 

perspective if so inclined. This is achieved by viewing the historical data likelihood as 

nothing more than a carefully chosen penalty and a0 as a tool for controlling the strength of 

the penalty. Regardless of philosophical perspective, the core principle of the method is 

paradigm-free, ie, to provide a framework for borrowing prior information from a carefully 

selected historical data set and to mitigate the undesirable consequences of borrowing the 

prior information when it is inconsistent with the truth.

In order to gain efficiency (eg, reduction in trial length or required sample size), a tradeoff 

must be made. The tradeoff is that one must be willing to allow for the possibility of an 

inflated type I error rate or decreased power subject to the user-specified bounds. Although 

our approach focuses on bounding the maximum type I error rate, it is important to 

appreciate that the actual (unknowable) type I error rate for the design is not likely to be near 

the bound if the historical data are to be believed. Moreover, the actual type I error rate for 
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the design will only equal the bound if the true nuisance parameters in the generative model 

for the new trial are equal to the worst-case values. For example, consider the design from 

Section 4 that is based on a 50.0% event reduction, which borrows no excess events (ie, 

effective number of events equal to 612 at the interim analysis opportunity), and that uses 

the most liberal type I error rate and power bounds (ie, bottom right panel of Figure 1). The 

actual type I error rate for the design reaches its maximum value when the baseline hazard in 

the new trial is 16% less (uniformly) compared with the historical posterior mean. In this 

case, the actual type I error rate is approximately 7.5% (which is less than the user-specified 

bound only because the power bound criteria was more stringent in this case). It should be 

noted that such values for the nuisance parameters in the new trial are unlikely given the 

historical information. In fact, computing a ratio of historical posterior density values reveals 

that the posterior mean value for the nuisance parameters is more than 3000 times more 

likely than the worst-case value. For these reasons, we caution users of this method against 

interpreting the type I error and power bounds as though they represent the actual operating 

characteristics of the design. Liberal bounds for the maximum type I error rate and minimum 

power (eg, a 10% maximum type I error rate and 75% minimum power) are reasonable 

when the historical data are viewed as highly pertinent and such bounds are necessary to 

achieve marked gains in efficiency over standard designs.

During development of the fixed-borrowing adaptive design, we considered a variety of 

choices for the stopping rule before ultimately deciding on using a simple likelihood ratio 

statistic. For example, we considered using the Bayes factor and a prior-predictive p-value 

for the marginal likelihood23 of the new trial. When type I error and power constraints are 

imposed on the design, the choice of statistic to use as the basis of the stopping rule is not 

that important (aside from the requirement that it provide a reasonable metric for measuring 

prior-data conflict). The critical value to which the statistic is compared (ie, w0) must be 

calibrated through simulation to achieve the desired properties. In light of this information, 

we elected to use the simple likelihood ratio statistic due to its interpretability as a measure 

of prior-data conflict and its computational simplicity for the large scale simulation studies 

that are critical to precisely characterizing the properties of the design.

The fixed-borrowing adaptive design permits either borrowing a predetermined amount of 

information or borrowing no information. The beauty of this approach is its simplicity. A 

similar approach could be used for many data types and models (assuming one could write 

down the likelihood). We also considered the use of hierarchical priors such as the joint and 

normalized power priors. These priors model a0 as a random variable and assigns it a proper 

prior distribution. The virtue of this approach is that one can examine a posterior functional 

(eg, E [a0 D1,D0]) and determine if enough information is being borrowed to warrant 

stopping the trial at any time. This approach seems appealing owing to its apparent turnkey 

nature. However, controlling the appropriateness of information borrowing requires careful 

specification of the prior for a0. For example, one cannot simply specify a uniform prior for 

a0. In fact, the prior for a0 must be calibrated through simulation to achieve desired 

properties in the design. Such simulations are particularly burdensome when a0 is modeled 

as a random variable because doing so leads to a much more computationally demanding 

model fitting step (ie, MCMC is unavoidable). Our evaluations of competing approaches 

Psioda et al. Page 17

Stat Med. Author manuscript; available in PMC 2019 January 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



based on meta-analytic priors suggested that a dynamic borrowing approach offered no gains 

over the fixed borrowing approach, leading us to favor the simpler approach based on a fixed 

power prior.

In the proposed application, we utilized the fixed-borrowing adaptive design to borrow 

information through subject-level data from a historical trial. We acknowledge that this 

proposal is somewhat forward-thinking as it would require a level of data sharing that is 

currently uncommon. However, it is the authors’ hope that the availability of methods like 

the fixed-borrowing adaptive design will help motivate such collaboration. In the meantime, 

one can easily use the proposed adaptive design framework based on summary historical 

data extracted from publications. In such applications, since covariate adjustment to help 

ensure exchangeability of subjects across trials is essentially impossible, ensuring the design 

appropriately mitigates the undesirable consequences of borrowing the prior information 

when it is inconsistent with the truth should be of paramount concern.

Supplementary Material
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FIGURE 1. 
Estimated type I error rate as a function of baseline hazard perturbation. Columns 

correspond to different bounds on the type I error rate (T1E) and power. Rows correspond to 

different levels of reduction in the total number of events required for the interim analysis 

opportunity. Curves within a panel correspond to the number of additional events borrowed 

from the historical trial beyond that required to have an effective number of events equal to 

612. Curves are estimated using LOESS methods based on 91 point estimates. Estimates 

correspond to baseline hazard perturbations ranging from a 45% reduction to a 45% 

increase. Each point estimate was computed using 100 000 simulation studies
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FIGURE 2. 
Estimated power as a function of baseline hazard perturbation. Columns correspond to 

different bounds on the type I error rate (T1E) and power. Rows correspond to different 

levels of reduction in the total number of events required for the interim analysis 

opportunity. Curves within a panel correspond to the number of additional events borrowed 

from the historical trial beyond that required to have an effective number of events equal to 

612. Curves are estimated using LOESS methods based on 91 point estimates. Estimates 

correspond to baseline hazard perturbations ranging from a 45% reduction to a 45% 

increase. Each point estimate was computed using 100 000 simulation studies
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FIGURE 3. 
Estimated probability of early stoppage as a function of baseline hazard perturbation. 

Columns correspond to different bounds on the type I error rate (T1E) and power. Rows 

correspond to different levels of reduction in the total number of events required for the 

interim analysis opportunity. Curves within a panel correspond to the number of additional 

events borrowed from the historical trial beyond that required to have an effective number of 

events equal to 612. Curves are estimated using LOESS methods based on 91 point 

estimates. Estimates correspond to baseline hazard perturbations ranging from a 45% 

reduction to a 45% increase. Each point estimate was computed using 100 000 simulation 

studies. The maximum probability of early stoppage is annotated in the top left corner of 

each panel
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FIGURE 4. 
Estimated average percent reduction in trial length (unconditional on early stoppage) as a 

function of baseline hazard perturbation. Columns correspond to different bounds on the 

type I error rate (T1E) and power. Rows correspond to different levels of reduction in the 

total number of events required for the interim analysis opportunity. Curves within a panel 

correspond to the number of additional events borrowed from the historical trial beyond that 

required to have an effective number of events equal to 612. Curves are estimated using 

LOESS methods based on 91 point estimates. Estimates correspond to baseline hazard 

perturbations ranging from a 45% reduction to a 45% increase. Each point estimate was 

computed using 100 000 simulation studies. The maximum percent reduction is annotated in 

the top left corner of each panel
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TABLE 1

Posterior summaries for SAVOR control subjects

Parameter Characteristic Mean SD HPD

β1 Male 0.3860 0.0935 (0.2008, 0.5664)

β2 History of Stroke 0.6465 0.1040 (0.4465, 0.8530)

β3 History of MI 0.4798 0.0839 (0.3167, 0.6453)

β4 log[Duration of Diabetes (yrs)] 0.0823 0.0425 (0.0007, 0.1667)

β5 log[HbA1c (%)] 1.4804 0.2452 (1.0082, 1.9651)

β6 eGFR (mL/min/1.73m2) −0.0141 0.0020 (−0.0181,−0.0101)

λ1,1 : [0,∞) Age ≤ 65 0.0164 0.0017 (0.0131, 0.0198)

λ2,1 : [0,∞) 65 < Age ≤ 75 0.0164 0.0017 (0.0131, 0.0198)

λ3,1 : [0, 1.04) Age > 75 0.0223 0.0038 (0.0151, 0.0300)

λ3,2 : [1.04,∞) 0.0361 0.0054 (0.0259, 0.0468)

Note: The time axis partition is denoted alongside baseline hazard parameters. Abbreviations: eGFR, estimated glomerular filtration rate; HbA1c, 
hemoglobin A1c; SD, standard deviation; HPD, Highest Posterior Density Interval.
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TABLE 2

Identified values of e
w0 for each combination of design inputs

Additional Reduction in Number of Events

Events (𝛿e,𝛿p) 12.5% 25.0% 37.5% 50.0%

0 (0.025, 0.050) 2.7 3.3 3.9 4.5

(0.050, 0.100) 5.5 5.8 6.4 7.4

(0.075, 0.150) 13.5 9.5 10.0 11.0

153 (0.025, 0.050) 4.3 5.2 6.0 6.4

(0.050, 0.100) 7.4 8.6 10.5 11.0

(0.075, 0.150) 11.6 13.5 15.6 17.3

306 (0.025, 0.050) 5.5 6.4 7.4 7.8

(0.050, 0.100) 9.5 10.5 12.8 14.2

(0.075, 0.150) 14.2 16.4 20.1 23.3
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