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Introduction
Flow cytometric analysis of  peripheral blood is often used to track complex changes in leukocyte pheno-
type, number, and proportion during the course of  disease or in response to therapy. In the era of  precision 
medicine, there is an increasing need to rapidly assess complex leukocyte phenotypes in order to stratify 
patients, assign individualized treatments, and monitor response to therapy. Many studies have used flow 
cytometry to discover leukocyte-based biomarkers (1–3) in different disease contexts, but validation of  these 
discoveries and their ultimate transition into routine clinical practice are limited by poor standardization of  
research-based flow cytometric methods. Consequently, biomarker and immune monitoring studies often 
rely on centralized and batched analyses of  cryopreserved PBMCs to overcome site- and time-dependent 
variation in reagents, sample processing, and instrument performance. Moreover, the highly subjective and 

The analysis and validation of flow cytometry–based biomarkers in clinical studies are limited by 
the lack of standardized protocols that are reproducible across multiple centers and suitable for 
use with either unfractionated blood or cryopreserved PBMCs. Here we report the development 
of a platform that standardizes a set of flow cytometry panels across multiple centers, with 
high reproducibility in blood or PBMCs from either healthy subjects or patients 100 days after 
hematopoietic stem cell transplantation. Inter-center comparisons of replicate samples showed 
low variation, with interindividual variation exceeding inter-center variation for most populations 
(coefficients of variability <20% and interclass correlation coefficients >0.75). Exceptions included 
low-abundance populations defined by markers with indistinct expression boundaries (e.g., 
plasmablasts, monocyte subsets) or populations defined by markers sensitive to cryopreservation, 
such as CD62L and CD45RA. Automated gating pipelines were developed and validated on an 
independent data set, revealing high Spearman’s correlations (rs >0.9) with manual analyses. This 
workflow, which includes pre-formatted antibody cocktails, standardized protocols for acquisition, 
and validated automated analysis pipelines, can be readily implemented in multicenter clinical 
trials. This approach facilitates the collection of robust immune phenotyping data and comparison 
of data from independent studies.
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labor-intensive nature of  manual data analysis introduces a further source of  variation (4, 5). Therefore, 
methodology to standardize the collection and analysis of  flow cytometry data in multicenter validation 
studies is needed to facilitate the clinical use of  flow cytometry–based precision medicine.

Previous work to standardize complex flow cytometry was driven by the need to detect and classify hema-
tological malignancies (6–9). Accordingly, several consensus-driven flow cytometry panels (with 8 or more col-
ors) were developed to classify blood cancers, some of which are now certified for in vitro diagnostic use (10). 
Several research groups have also developed standardized flow cytometry panels for comprehensive leukocyte 
phenotyping, including the Human Immunology Project Consortium (HIPC) (4, 11) and the ONE Study (12, 
13). Most recently, HIPC used lyophilized antibody mixes to analyze lyophilized control cells or cryopreserved 
PBMCs from 3 healthy subjects at 9 sites (14). Standardization using PBMCs was found to be feasible, but 
only for abundant and well-defined subsets. Populations in the T helper cell panel, as well as poorly resolved, 
low-abundance populations, could not be reliably measured in replicate aliquots (14).

Taking an alternate approach, the ONE Study used liquid antibody cocktails to phenotype unfraction-
ated blood within 4 hours of  collection (12, 13, 15). This method resulted in good standardization, but in 
the context of  multicenter studies, it may not always be financially or logistically feasible for each center to 
analyze blood within such a short time frame. Thus, there is the need for a standardized platform that can 
be used to analyze either cryopreserved PBMCs or unfractionated blood, resulting in data that are suffi-
ciently robust to enable inter-center and inter-study comparisons.

The Canadian National Transplant Research Program (CNTRP) is a national network of  clinicians 
and researchers who aim to improve the access to, and success of, transplantation (16). As part of  the 
CNTRP clinical trials initiatives, we aimed to implement a flexible, yet robust, platform for standardized 
immune monitoring that could readily be implemented across multiple centers. Here we describe an 
approach that uses commercially available, pre-formulated reagents and enables standardized collection 
of  flow cytometry data from unfractionated blood or cryopreserved PBMCs from healthy subjects or 
lymphopenic hematopoietic stem cell transplant (HSCT) recipients. Automated gating pipelines were 
also developed, eliminating the need for labor-intensive and subjective manual data analysis. This meth-
odology can be readily implemented in single or multi-center studies and sets the stage for inter-study 
comparisons and the translation of  research findings into clinical practice.

Results
Standardized multi-center immune phenotyping of  cryopreserved PBMCs from healthy adults. Immediate analysis of  
unfractionated blood is typical in clinical immunology labs, but is costly and, in the context of multi-center 
clinical trials, logistically complex. The ONE Study previously developed a set of leukocyte phenotyping pan-
els and protocols for standardized immune monitoring of unfractionated blood (12). Here, we first investigated 
the ability to implement similar methods for analysis of cryopreserved PBMCs. Whereas the ONE Study used 
liquid antibody cocktails, we took advantage of DuraClone dry reagent technology (Beckman Coulter) to man-
ufacture pre-formatted antibody cocktails. The panels, shown in Table 1, were constructed using consensus 
definitions for the most common and well-defined subsets of mononuclear leukocytes (11, 12).

Table 1. Summary of DuraClone panels used in this study: panel design with markers and fluorochromes used

Panel
Laser Fluorochrome Basic TCR T-ACT T-MEM-REG B cell DC

Blue 488 nm

FITC CD16 TCRγδ CD57 CD127 IgD BDCA3
PE CD56 TCRαβ CD28 CCR7 CD21 LIN

ECD CD19 CD45RO HLA-DR CD62L CD19 CD123
PC7 CD14 CD27 CD25 CD27 CD11c

Red 633 nm
APC CD4 CD4 CD4 CD4 CD24 BDCA2

A700 CD8 CD8 CD8 CD8
APC-A750 CD3 CD3 CD3 CD3 CD38 CD16

Violet 405 nm
PacBlue CD64 CD45RA CD45RA IgM HLA-DR

KrOrange CD45 CD45 CD45 CD45 CD45 CD45
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We first measured the degree of  center-to-center variability using blood collected at 3 different 
centers (centers 1–3), which was processed and cryopreserved in replicate aliquots using a consensus 
standard operating procedure (SOP) derived from previous publications (17, 18). Aliquots from 5 sub-
jects were distributed to 5 centers for staining and acquisition of  a total of  25 samples for each panel on 
identically calibrated flow cytometers (see Methods for details). As intra-center variation is lower than 
inter-center variation (14), replicates within a center were not included. To minimize variability intro-
duced by manual analysis (4, 19), the data were initially analyzed by a single analyst following the gat-
ing strategy shown in Supplemental Figure 1; supplemental material available online with this article;  
https://doi.org/10.1172/jci.insight.121867DS1 (12).

Center-to-center variability in the proportions of  each cell population in the Basic, TCR (T cell 
receptor–expressing cells), B cell, and DC panels for each individual was quantified as coefficients of  
variability (CVs) or intra-class correlation coefficients (ICCs) (Figure 1). For the majority of  popula-
tions, the data obtained at each center were similar, with CVs <10% in the Basic and TCR panels and 
<15% for the B cell and DC panels. As CVs are calculated by dividing SD by population size, rare 
populations (e.g., BDCA3+ DCs, CD4+ γδ T cells, both <0.05% of  PBMCs) tended to have higher CVs 
(22% and 64%, respectively). This effect was exacerbated in populations with low event counts or poorly 
defined boundaries, such as CD14++ or CD56++ cells, leading to high CVs (between 20% and 30%) for 
some low-abundant subtypes of  monocytes and NK cells.

We next quantified center-to-center variability using the ICC, a statistical method that is independent 
of  population size (20). The ICC estimates the ratio of  biological to total variability, with an ICC of  0.5 
being the threshold above which biological variation exceeds technical variability. As shown in Figure 1, 
most populations in the Basic (12 of  13), TCR (10 of  13), B cell (9 of  9), and DC (5 of  6) panels had ICC 
values >0.75, demonstrating that this method of  standardized analysis of  cryopreserved PBMCs results in 
low relative variation even for rare cell populations.

Cryopreservation and cell handling affect reproducible phenotyping of  selected cell populations. In contrast to the 
excellent center-to-center reproducibility for the 4 panels described above, there was considerable variability 

Figure 1. Inter-center comparison of populations quantified in cryopreserved PBMCs from healthy subjects with the Basic, TCR, B cell, or DC panels. 
Replicate aliquots of cryopreserved PBMCs from 5 subjects were analyzed at 5 different sites using the indicated DuraClone panels. Raw data (LMD files) 
were analyzed centrally, and the reproducibility of population proportions was determined by statistical analysis. All calculations were based on the cell 
proportion relative to the parent gate; the identity of parent gates for all variables is listed in Supplemental Table 1. Shown are CV and ICC values for each 
population. CV and ICC values indicative of poor reproducibly (i.e., CV >20% and/or ICC <0.75) are shaded in gray. CS memory, class-switched memory; DNT 
cells, double-negative T cells; mDCs, myeloid DCs; MZB, marginal zone B cells; pDCs, plasmacytoid DCs; RO, CD45RO.
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(CVs >20% and ICCs <0.75) in several T cell subsets quantified in the T cell activation (T-ACT) and mem-
ory/regulatory T cell (T-MEM-REG) panels (Figure 2). Closer examination revealed that populations with 
high CVs and low ICCs were primarily limited to those defined by CD45RA, with particularly high CVs 
and low ICCs for subsets defined by both CD45RA and CD62L.

To further explore the source of  variation in these T cell populations, we compared data obtained 
from cryopreserved PBMCs with those obtained from analysis of  unfractionated blood obtained from the 
same blood draw. We first compared the results between blood and PBMCs for populations with good 
reproducibility within replicate PBMC samples (CV <20%) and found that they were highly comparable, 
with no significant differences, except in the case of  CD4+CD25++CD127lo Tregs (Figure 3A), which were 
significantly reduced in all PBMC samples (P = 0.003). However, as this reduction was highly consistent, it 
did not lead to decreased reproducibility in the inter-center comparison.

We then compared populations with poor reproducibility (i.e., CV >20%), focusing on those that were 
scarce (CD4+γδ T cells, BDCA3+ mDCs, CD4+CD28– T cells), defined by poorly resolved gates (mono-
cyte and NK cell subtypes) or by cryopreservation-sensitive markers (CD45RA, CD62L) (14, 21–23) (Fig-
ure 3B). Of  all of  the populations with CVs >20%, only those defined by the cryopreservation-sensitive 

Figure 2. Inter-center comparison of 
populations quantified in cryopreserved 
PBMCs from healthy subjects with the 
T-ACT and T-MEM-REG panels. Replicate 
aliquots of cryopreserved PBMCs from 5 
subjects were analyzed at 5 different sites 
using the indicated DuraClone panels. 
Raw data were analyzed centrally, and the 
reproducibility of population proportions 
was determined by statistical analysis. 
All calculations are based on the cell 
proportion relative to the parent gate; the 
identity of parent gates for all variables is 
listed in Supplemental Table 1. Shown are 
CV and ICC values for each population. CV 
and ICC values indicative of poor repro-
ducibly (i.e., CV >20% and/or ICC <0.75) 
are shaded in gray. 45RA, CD45RA.
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Figure 3. Effects of cryopreservation on 
standardization. Peripheral blood from healthy 
subjects was either analyzed immediately or 
processed into PBMCs and cryopreserved for 
later analysis with the same DuraClone panels. 
Raw data were analyzed manually at one 
center. Data are from 3 subjects analyzed at 
3 different sites (n = 9); unfractionated blood 
was only analyzed at the collection site. The 
identity of the parent gates is shown in Sup-
plemental Table 1. Representative populations 
as measured in blood versus PBMCs with (A) 
CV <20% or (B) CV >20% as shown in Figures 
1 and 2. *P < 0.05, **P < 0.01, multiple t test 
with FDR adjustment according to Benjamini, 
Hochberg, and Yekutiel. (C) Representative data 
from 1 individual for naive/memory CD4+ T cell 
proportions detected in blood or in replicate 
samples of cryopreserved PBMCs analyzed at 3 
different centers (sites 1–3). (D) The proportion 
of CD45RA+ Tregs (of total Tregs) in 3 different 
individuals was measured in unfractionated 
blood or PBMCs. **P < 0.01, 2-way repeat-
ed-measures ANOVA with Šidák’s multiple 
comparison test. (E) Representative data from 
Tregs quantified in blood or replicate samples 
of cryopreserved PBMCs analyzed at 3 different 
centers. CS mem B, class-switched memory B 
cells; mono, monocytes.
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markers CD45RA and/or CD62L were significantly different when data were obtained from blood versus 
PBMCs. Cryopreservation did not significantly impact the levels of  monocytes, NK cells, CD4+ γδ T cells, 
or BDCA3+ mDCs.

To further explore the poor reproducibility of  populations expressing CD45RA and/or CD62L, we 
carried out a more detailed examination of  cryopreserved PBMC data from the T-MEM-REG panel. Fig-
ure 3C shows a comparison of  data obtained from blood versus PBMCs for a single individual’s CD4+ 
T cells defined by expression of  CD45RA and CD62L, or CCR7 and CD62L. While PBMCs analyzed 
at centers 1 and 3 retained the expected level of  CD45RA expression, this signal was completely lost at 
center 2. A similar result was found for CD62L. The effect is quantified in Figure 3D using the example of  
CD45RA+ Tregs.

The poor reproducibility in detection of  CD45RA- and/or CD62L-expressing cells could be due to 
variable loss of  protein expression and/or loss of  the cell type after cryopreservation. As the loss of  the 
total Treg proportions (defined as CD25hiCD127lo cells per CD4+ T cells) was not center-dependent (Figure 
3E), variation in detection of  cryopreservation-sensitive markers may be driven by center-specific cell han-
dling that results in variable loss of  these markers.

Optimized timing for analysis of  unfractionated blood. With the observation that certain populations (e.g., 
Tregs) and markers (e.g., CD45RA and CD62L) are strongly affected by cryopreservation, we next carried 
out experiments to test the range of  time over which blood can be reproducibly analyzed. Previous studies 
determined that analysis within 4–6 hours of  blood collection was optimal (12, 24), but this may not always 
be feasible for multi-center studies electing to ship samples to a central site. We compared data obtained 
from blood that was stained and acquired within 4 hours with data obtained from blood that was imme-
diately stained but then acquired after 24 hours, or blood that was left unmanipulated for 24 hours and 
then stained and acquired. The results showed that, for most panels (Basic, TCR, T-ACT, T-MEM-REG), 
leaving the blood unmanipulated for 24 hours and then staining and acquiring was preferable to immediate 
staining followed by acquisition 24 hours later, as this protocol resulted in data that were most similar to 
those from samples stained and acquired within 4 hours. (Supplemental Figure 2A). For the B cell and DC 
panels, there was no advantage to holding blood for 24 hours before staining versus immediate staining 
and later analysis. In fact, plasmablasts were undetectable in samples incubated 24 hours before staining, 
whereas samples that were stained prior to 24-hour incubation and acquisition retained levels similar to 
those found in their freshly analyzed counterparts (Supplemental Figure 2, B and C).

Application of  standardized flow cytometry to post-HSCT patient samples. Studies of  standardized flow cytom-
etry often use samples from healthy individuals (12, 14, 19, 24), yet the utility of  this method is with clinical 
samples, often coming from patients with abnormal leukocyte counts and/or proportions. To test the appli-
cability of  our standardized protocols on clinical samples, we carried out inter-center comparisons using 
cryopreserved PBMCs from patients 100 days after HSCT. Figure 4 shows CV and ICC values derived from 
replicate analysis of  PBMCs from 5 patients at 3 different sites. While the CVs tended to be higher (average 
increase, 4.2%), the overall data were largely comparable to those from healthy control samples (Figures 1 
and 2), with the same problematic populations (e.g., monocyte subtypes, rare cells, and/or those defined 
by cryosensitive markers) having CVs >20%. A notable exception was the B cell panel, which showed poor 
reproducibility for all subpopulations due to the expected low B cell reconstitution at this time after trans-
plant (25) and thus the low absolute numbers of  B cells. Specifically, populations with CVs >20% were those 
with less than 0.4% of  total PBMCs for the healthy subjects and less than 2.5% of  total PBMCs for the 
post-HSCT subjects (Figure 5). A notable exception to this rule was observed with some monocyte subsets 
in healthy samples: although they were ~1% of  PBMCs, their CVs were >20%. The same monocyte subsets 
had CVs >50% in post-HSCT samples.

We next compared cell population frequencies in healthy versus post-HSCT subjects. Focusing on blood 
(Figure 6A), significant differences in population proportions were found in the Basic, B cell, and DC panels. 
Specifically, in comparison to healthy controls, HSCT subjects had lower proportions of  lymphocytes, B cells, 
and BDCA3+ mDCs, but higher proportions of  monocytes and CD56++ NK cells. B cell numbers were often 
too low to accurately define B cell subpopulations; only 5 of  11 samples met the criterion of  >1,000 events in 
the CD19+ gate. Despite the small sample size, we found that HSCT subjects had significantly increased pro-
portions of  transitional B cells and plasmablasts, but decreased IgM memory and marginal zone B cells, con-
sistent with the well-documented immature B cell phenotype in this patient population (26). Although T cell 
populations in blood from healthy controls and 3-months-post-HSCT patients are known to differ in terms of  
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absolute cell counts (25), none of  the T cell population proportions examined showed significant differences.
When findings in blood were compared with data obtained from cryopreserved PBMCs, we found that 

the changes in lymphocytes, CD56++ NK cells, and most B cell populations remained consistent (Figure 
6B). Exceptions included plasmablasts, which, as described above, did not survive a 24-hour delay in isola-
tion of  PBMCs, and a low-abundance BDCA3+ DC population. On the other hand, monocyte subsets such 
as CD14+CD16+ cells showed significant differences in the PBMCs that were not present in whole blood.

Development of  automated pipelines to analyze standardized data. Previous attempts to develop standardized 
flow cytometry methods found that the most significant source of  variation is introduced during manual 
analysis (14, 19). To minimize this effect, data are often analyzed by a single operator, but this is time-con-
suming and difficult to implement across multiple independent studies, and results remain subjective. 

Figure 4. Inter-center comparison of cryopreserved PBMC data from post-HSCT subjects. Replicate aliquots of cryopreserved PBMCs from 5 subjects were 
analyzed at 3 different sites. Raw data were analyzed centrally, and the reproducibility of population proportions was determined by statistical analysis. All 
calculations were based on the cell proportion relative to the input gate; the identity of parent gates for all variables is listed in Supplemental Table 1. Shown are 
CV and ICC values for each population. CV and ICC values indicative of poor reproducibility (i.e., CV >20% and/or ICC <0.75) are shaded in gray. 45RA, CD45RA.

https://doi.org/10.1172/jci.insight.121867
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To streamline the workflow, we developed an automated analysis workflow based on flowCore (27) and 
flowDensity (5). flowDensity was previously shown to outperform unsupervised algorithms in a FlowCAP 
(Flow Cytometry: Critical Assessment of  Population Identification Methods) consortium study, with its 
performance matched by only one other supervised approach (28). We developed flowDensity automat-
ed pipelines customized for the 2 panels currently available as off-the-shelf  products (Basic and B cell). 
Automated analysis aimed to replicate manual gate placement, with pipelines developed using data from 
the unfractionated blood samples of  healthy adults and then further refined on unfractionated blood from 
the post-HSCT subjects. The proportions of  key cell populations were determined as before (Supplemental 
Figure 3 and Supplemental Table 1).

The performance of  automated pipelines was assessed by their ability to match on a per-event basis 
values obtained by an expert manual analyzer (i.e., the reference manual), currently considered the “gold 
standard” approach. In addition, we compared the reference manual values with those obtained by 2 addi-
tional manual analyzers who followed an identical gating strategy. Data were compared using Spearman’s 
correlation as well as the F1 score to measure the performance of  automated analysis. F1 is the harmonic 
mean of  precision and recall, with a score of  1 indicating that all individual events were placed in the same 
series of  gates by both analysis methods. The Basic panel was highly amenable to automated gating, as 
most cell populations were defined by clear boundaries. Accordingly, manual and automated analyses pro-
duced results that were highly correlated with those obtained in the reference manual analysis (Spearman’s 
rank correlation coefficient [ρ, rs] >0.8) (Figure 7A). Most median F1 scores were >0.9 (Figure 7B), with an 
overall F1 average of  0.93.

As an example, comparison of  automated with corresponding manual reference values for total mono-
cytes revealed a high correlation (rs >0.99) (Figure 7C). For a manual versus manual comparison, an alter-
native manual (Manual 1) plotted against the reference manual (rs >0.99) is shown in the same graph. 
The precision and recall of  automated versus manual placement of  events within the same gates was also 
excellent for this population, as shown by the F1 score of  0.99.

We next examined correlations between automated and manual gating for populations with lower F1 
scores. Compared with the other population, nonclassical (CD14+CD16+) monocytes (29, 30) had partic-
ularly low rs values and F1 scores: both 0.83, driven by indistinct boundaries between CD14+ and CD14++ 
(particularly in the CD16+ population), as well as between CD16– and CD16+ (Figure 7D). These unclear 
boundaries led to variability in manual gating (Manual 1 and Manual 2 vs. reference manual, both rs = 0.83), 
as well in automated versus reference manual (rs = 0.83). For simplicity, only Manual 1 versus reference man-
ual is shown. The effect of  unclear boundaries was most apparent for low-abundance monocyte subtypes; the 
larger CD14++CD16– population had higher correlation values and F1 scores, of  0.90 and 0.97, respectively.

In contrast to monocytes, CD56++ NK cells, which are also rare and defined by a poorly resolved 
marker (CD56++), were reproducibly detected by both automated and manual gating (rs = 0.98, F1 = 0.88) 

Figure 5. The effect of population size on CVs. 
CVs were plotted against the log of median 
population sizes from all inter-site compar-
isons. All population sizes are expressed as 
percent of CD45+ PBMCs. Solid and dotted lines 
indicate CVs of 10% and 20%, respectively. 
Gray box indicates populations that are less 
than 2.5% of PBMCs. Red symbols indicate 
monocyte subtypes. Populations shown to 
be affected by cryopreservation (defined by 
CD45RA or CD62L) were excluded.
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(Figure 7E). In this case a second marker (coincidentally also CD16) helped to clearly define the (largely 
CD16–) CD56++ population.

We also developed an automated pipeline for the B cell panel, which quantifies several low-abundance 
populations defined by markers with indistinct boundaries such as CD24, CD27, and CD38 (see the gating 
strategy in Supplemental Figure 1E). Although the correlation values were typically lower than for the Basic 
panel, all but one (IgD–CD27–) had an rs value >0.8 (Figure 8A), and most mean F1 scores were >0.8 (Figure 
8B), with an overall average of  0.79. Plasmablasts, which are typically <1% of total B cells and are defined by 
high expression of  multiple markers (CD27, CD24, and CD38), showed one of  the lowest correlation values 
(rs = 0.81) and an exceedingly low F1 score (0.37). Although automated analysis accurately identified the 
single sample with abnormally high plasmablast proportions (Figure 8C, red box), subtler differences may be 
lost. Moreover, there was good correlation between automated and manual gating for class-switched mem-
ory cells (rs >0.85), which are defined by the same markers and gates as are the plasmablasts but represent a 
greater proportion of  the population. Similarly, despite the low rs value for IgD–CD27– cells (rs = 0.65), the one 
sample with high proportions was identified by both manual and automated analysis (Figure 8D, red boxes). 
The typically more abundant naive B cells (IgD+CD27–), defined by the same gates, had rs >0.9. Interestingly, 
the F1 score for the IgD–CD27– population was fairly high (0.81), despite the low correlation score. As Spear-
man’s correlation assesses similarity by rank rather than absolute value, samples that have many similar values 
(such as the IgD–CD27- proportions) may have lower rs. Nevertheless, the high F1 score shows that the major-
ity of  the cells were being ordered into the same gates in manual and automated analyses.

Evaluation of  data from healthy versus HSCT subjects using automated pipelines. Flow cytometry is often 
used to find biomarkers that discriminate between disease and control groups. We thus next compared the 
ability of  automated versus manual analyses to identify significant differences between healthy and HSCT 
subjects (Table 2). Automated and manual analyses identified the same populations as being significantly 
different between the 2 groups with one exception: the marginal zone–enriched B cell population (P = 
0.06). Half  of  the P values were less significant after automated than after manual gating — especially in 
the case of  B cells, for which the sample numbers were very low (n = 5). Conversely, automated but not 
manual analysis found that CD14++CD16+ and CD64++CD16+ monocytes were significantly increased 
in HSCT patients. However, for CD14++CD16+ monocytes, both data sets showed significant differences 
when tested alone (Supplemental Figure 4; manual P = 0.0042, automated P = 0.0012).

Figure 6. Detecting differences between 2 cohorts using unmanipulated blood versus cryopreserved PBMCs. Populations from all panels that significantly 
differed between healthy controls and patients 100 ± 20 days after HSCT in either (A) whole blood or (B) cryopreserved PBMCs. Note: Post-HSCT, but not 
healthy control, PBMCs were incubated 24 hours before cryopreservation. Proportions of parent gates for each population are shown as box-and-whisker 
plots; midline is the median, box is the interquartile range, and whiskers show minimum and maximum values. Means are indicated by a thick black band. See 
Supplemental Table 1 for a list of parent gates. Only samples that were evaluable in both unmanipulated blood and PBMCs were compared; n = 9 healthy and 
n = 8 post-HSCT subjects (except n = 4 for B cell–derived populations). *P < 0.05, **P < 0.01, ***P < 0.001; unpaired t test with Holm-Šidák corrections.
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Figure 7. Generation of automated data analysis pipelines for the DuraClone IM Basic panel. The proportions of cell populations indicated in 
Supplemental Table 1 for the Basic panel were determined in unfractionated blood from healthy (n = 9) and HSCT (n = 11) subjects using automated 
gating, 2 different manual analyzers (Manual 1, Manual 2), or a reference manual analyzer. Data from Manual 1 or 2, or automated gating were com-
pared with those from the reference manual to determine (A) Spearman’s correlation coefficients (rs) or (B) F1 scores (harmonization of precision 
and recall, maximum value 1.0) ordered by population size (highest on the left). Box-and-whisker plot: midline is the median, box is the IQR, and 
the whiskers extend to 1.5 times the IQR. (C) Representative automated or manually gated data from 1 healthy subject and correlation graphs for 
(C) CD14+ total monocytes, (D) CD14+CD16+ monocytes, and (E) CD56++ NK cells. White circles indicate Manual 1, and gray squares automated, both 
plotted against the reference manual data.
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Validation of  automated pipelines using an independent data set. Standardized flow cytometry should facil-
itate direct comparisons of  data collected at different centers and/or from different cohorts. To assess 
whether this was the case for our approach, we obtained an independent data set from the ONE Study, 
which used the same antibody panel and fluorescence intensity settings (12), and reanalyzed these data 
manually and with our automated pipelines. Remarkably, we found that the correlations between manual 
and automated results were similar to those from the data sets used for development of  the automated 
pipelines. When all populations analyzed were combined for the ONE Study or CNTRP data, correlation 
values between automated and manual gating were all >0.9 (Figure 9; Supplemental Table 2 shows the 

Figure 8. Generation of automated data analysis pipelines for the DuraClone B cell panel. The proportions of cell populations indicated in Supple-
mental Table 1 for the B cell panel were determined in unfractionated blood from healthy (n = 9) and HSCT (n = 5) subjects using automated gating, 
2 different manual analyzers (Manual 1, Manual 2), or a reference manual analyzer. Data with event counts under threshold values for key gates 
were not included (see Methods, Flow cytometry data analyses). Data from Manual 1 or 2, or automated gating were compared with those from the 
reference manual to determine (A) Spearman’s correlation coefficients (RS) or (B) F1 scores. Box-and-whisker plot: midline is the median, box is 
the IQR, and the whiskers extend to 1.5 times the IQR. (C and D) Correlation graphs and representative manual and automated plots and gates for 
(C) plasmablasts and class-switched (CS) memory B cells, both derived from the CD27 versus CD38 plot, pre-gated on IgM–IgD– B cells; or (D) naive 
and IgD–CD27– B cells. Red boxes indicate data points and manual or automated gates from which they were derived for the samples with outlying 
proportions of plasmablasts or IgD–CD27– cells.
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individual rs values). Thus, automated gating pipelines developed with one set of  data can readily be used 
to accurately analyze independent data if  they are collected using the same standardized methodology.

Analysis of  data acquired on different flow cytometers. Ideally, standardized pipelines for data acquisition and 
analyses should be broadly useful and not restricted to a specific flow cytometry platform. To test the appli-
cability of  our SOPs and analysis pipelines to alternate instrument platforms, we analyzed parallel samples 
acquired on a Navios (Beckman Coulter, 3 lasers) or a Fortessa X20 (BD Biosciences, 4 lasers). Due to the 
differences in laser configuration and output fluorescence intensity scales, the 2 cytometers were calibrated 
on the basis of  stain indices rather than by standardized fluorescent beads (see Methods for details).

Blood from 5 healthy volunteers was stained using off-the-shelf  DuraClone Basic and B cell panels, run 
on both cytometers and analyzed manually and by automated pipelines. As shown in Figure 10A, manual 
analysis revealed that the two cytometers detected similar population proportions. An exception was lym-
phocytes, which tended to be a slightly smaller percentage of  mononuclear cells on the Navios cytometer 
due to a difference in how the 2 platforms acquire forward scatter–low events. After an additional cor-
rection for platform-specific singlet gating, the automated pipelines were equally effective at quantifying 
population proportions acquired on the Fortessa or the Navios (Figure 10, B and C).

Discussion
Flow cytometric analysis of  peripheral blood has the potential to diagnose, stratify, and monitor 
patients. Very few flow cytometric biomarkers (with notable exceptions related to HIV and hematolog-
ical malignancies) have been validated for clinical implementation due to the logistical complexity of  
flow cytometry and the variation inherent in cryopreserved PBMCs. Here we report a unified workflow 
for standardized flow cytometry for analysis of  cryopreserved PBMCs or whole blood coupled to auto-
mated analysis pipelines. Testing of  the automated pipelines on an independent data set revealed the 
power of  standardization and enabled direct comparison of  data from different studies and/or centers, 
collected over different time intervals.

Our approach builds upon several previous efforts to develop standardized flow cytometry methods 
for blood leukocyte characterization. In an approach similar to that used by the HIPC and others (14, 31, 
32), we utilized pre-formatted, dried-down antibody cocktails to eliminate variation due to pipetting of  
antibody cocktails and batch-to-batch reagent variation. Similar to Streitz et al. (12), we used a clinical 
instrument platform to minimize variation inherent in research-grade instruments. We extended both of  
these approaches by including a direct comparison of  data generated from cryopreserved PBMCs versus 
whole blood, and showed the feasibility of  using the standardized platform to analyze blood from a patient 
population with abnormal proportions of  several leukocyte populations.

Table 2. Cell population differences in healthy versus HSCT subjects as determined by manual or automated gating

Manual Automated
Healthy HSCT Adj. P value Healthy HSCT Adj. P value

Basic panel
Lymphocytes 80.6 60.6 0.040 82.4 64.0 0.028

B cells 10.2 2.0 0.000 10.0 1.8 0.000
CD56++ NK cells 5.1 18.2 0.000 5.6 19.3 0.003

CD14+ monocytes 16.6 34.8 0.030 16.9 33.8 0.026
CD64++CD16+ 6.6 13.9 0.174 6.6 13.1 0.018
CD14++CD16+ 6.0 10.9 0.663 6.6 13.1 0.018
B cell panel
Naive B cells 57.9 80.6 0.010 61.9 85.9 0.016

Transitional B cells 3.3 28.7 0.010 3.2 29.3 0.029
MZB (enriched) 20.6 5.7 0.002 16.3 6.3 0.064

IgM memory 22.2 4.9 0.001 20.3 4.5 0.013

The mean proportions of the indicated cell populations were determined using automated or manual gating. Statistically significant differences between 
healthy (n = 9) and HSCT subjects (n = 11 for Basic, n = 5 for B cells) were determined by multiple t tests and adjusted for multiplicity by the Holm-Šidák 
method. Nonsignificant differences are in italics. Class-switched memory and plasmablast results are not shown due to low numbers in the post-HSCT 
samples; see Methods, Flow cytometry data analyses, for details. 
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Clinical utilization of  flow cytometry–based biomarkers is likely to necessitate their rapid quantifica-
tion in whole blood. Although previous studies have shown that use of  whole blood facilitates flow cytome-
try standardization (12, 33), the logistical complexity and expense of  real-time analysis is prohibitive for the 
large sample sizes required for biomarker discovery and validation. Moreover, use of  cryopreserved PBMCs 
enables batching and retrospective analyses of  samples after clinical endpoints have been identified and as 
new markers of  interest emerge. For the majority of  common leukocyte populations, analyses in whole 
blood or cryopreserved PBMCs gave equivalent results. Examples of  populations that were less reliably 
measured in PBMCs include T cell populations defined by CD45RA and/or CD62L. Direct comparison 
of  data obtained from matched samples of  blood versus cryopreserved PBMCs showed loss of  these mark-
ers in a center-specific manner. This finding is in accordance with previous reports showing that CD62L 

Figure 9. Validation of automated gating pipelines in an independent dataset. Blood from healthy subjects enrolled in the ONE (n = 9) or CNTRP (n 
= 20 for Basic, n = 10–14 for B cells) study was analyzed with the Basic or B cell panels, and data were analyzed manually or using automated pipelines 
developed using the CNTRP data. All population proportions listed in Supplemental Table 1 for the Basic and B cell panels were measured, and results from 
automated versus manual analyses were compared. Shown are correlation graphs merging all data from either the CNTRP (training set) or ONE (validation 
set) study quantified by automated versus manual gating in relation to input gate. Each population proportion is a different color, and each data point 
represents an individual. Spearman’s correlation coefficient is shown at the upper left. See Supplemental Table 2 for individual rs values.
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Figure 10. Application of approach to alternate flow cytometer platform. Blood from 5 healthy subjects was stained using off-the-shelf Basic and 
B cell DuraClone tubes and acquired on a Navios (3 lasers) or an LSR-Fortessa (4 lasers) cytometer. LMD or FSC3.0 files were analyzed manually 
or with automated pipelines. (A) Comparison of data from cytometers. Each variable from 5 donors is shown as an individual data point, with the 
LSR-Fortessa data linked to the same data point obtained on the Navios. (B and C) Comparison of results from manual or automated analysis on the 
indicated cytometer. Each population proportion is a different color, and each data point is an individual. Spearman’s correlation coefficient is shown 
at the upper left.
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is unstable in cryopreserved cells (22, 23), and that T cell populations defined by CCR7+ and CD45RA+ 
are subject to center-specific variability in analyses of  cryopreserved PBMCs (14). Some variation may be 
mitigated by intense on-site training (4, 34) or by selection of  alternative antibody clones (e.g., use of  an 
alternate anti-CD45RA clone [L48] to define naive T cells resulted in CVs <10%) (14). Technical factors 
related to cell processing and cryopreservation might not be the only factors leading to poor reproducibility 
of  these populations, as some CD45RA-expressing populations in unfractionated blood also showed high 
CVs (>30%). These results are in line with previous studies, particularly in combination with CCR7 (11, 
12, 14). Overall, as part of  the development of  PBMC-based studies, it is important to compare results with 
blood to avoid studying populations with poor reproducibility in cryopreserved samples.

Other populations that had high CVs (between 20% and 30%) were either low in abundance (<0.5% of  
freshly frozen PBMCs) and/or defined by heterogeneously expressed markers such as CD14, CD16, and 
CD56. Low-abundance populations were more subject to variability, as small shifts in gating boundaries led 
to large differences in gated proportions and higher operator-dependent variability during analysis. This lim-
itation was most evident in monocyte subpopulations, which have previously been shown to be subject to high 
technical variability in both whole blood (12) and cryopreserved PBMCs (14). These populations exhibited 
higher CVs than other populations of  similarly low abundance, especially in the post-HSCT samples. Solu-
tions to these issues should be sought, since monocyte subpopulations may, for example, predict response to 
cancer immunotherapy (35). In some cases, standardization may be improved by including additional mark-
ers or by refining gating strategies; for instance, the exclusion of  HLA-DRneg cells allows improved identifica-
tion of  monocyte subtypes based on CD14 and CD16 expression (36). In addition, the selection of  optimal 
clones and fluorochromes for each marker can also improve population resolution (4, 24). Human error can 
be further reduced by the use of  robotics for cell handling (24) and automated gating (14).

An important question is how good is “good enough” for standardized assessment of  a given flow cyto-
metric parameter? In clinical cytometry labs, CV targets tend to be <10% (37), but since these are skewed 
by the population proportion, CVs of  up to 25% may be acceptable for flow cytometric determination of  
low-abundance populations (37–39). Clinically meaningful CVs will depend on the underlying biological 
variability (40), and the ICC may be a better indicator of  the degree to which biological variation is masked 
by technical variation. It is also important to note that lower reproducibility can be tolerated in biomarker 
development and validation phases than in the final clinical assay. For comparisons between groups, ICCs 
of  0.6–0.8 are adequate (41), but when making patient-specific decisions, ICCs should be >0.9 (42). Over-
all, for clinical application, some flow cytometry–based biomarkers may need to undergo further protocol 
optimization to limit technical variation.

Well-defined populations were effectively gated by automated pipelines, with correlation values >0.9, even 
when the data were collected in an independent study or on a different flow cytometer. Moreover, the average 
of F1 scores for the Basic panel (in which the majority of populations were defined by non-diffuse gates) was 
0.93, substantially higher than those obtained by a recent review of state-of-the art automated unsupervised 
gating (43). Importantly, automated pipelines could be applied to samples acquired with a different set of fluo-
rochrome target intensities, and across different patient populations and centers. They could also be applied to 
data acquired on a cytometer with a different laser configuration without adjusting the thresholds that define 
population proportions. The use of beads spectrally matched to the panel fluorophores will help to further har-
monize platforms in the future (44). It should be noted that pipeline performance may vary on some datasets, 
especially if  they are derived from patient samples whose leukocyte populations are different from normal. 
Furthermore, our pipelines were developed using unfractionated blood and would need to be adapted for use 
on PBMC-based datasets.

In addition to equal or higher reproducibility, automated gating enables automation of  the entire flow 
cytometry data analysis process, from analysis to quality control and statistical analysis to report generation 
(45). When comparing manual and automated gating, the current paradigm is to use an expert manual 
analyzer as a “gold standard” reference; however, it should be noted that there is no evidence that man-
ual gating is actually more accurate than automated. In general, we found that automated gating agreed 
slightly less with the reference manual then did other manual gating, especially for low-abundance, poorly 
defined populations (e.g., plasmablasts), as defined in our study. Balanced against this are the advantages 
of  rapid analyses (~1 minute of  computer time per set of  25 samples from raw data to final spreadsheet 
versus 10–20 expert hours for the equivalent manual analyses) and the minimization of  errors that can be 
introduced during manual manipulation of  large data quantities.
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Data obtained by manual and automated analyses identified almost identical populations as significant-
ly different between healthy controls and post-transplant patients. In the case of  monocyte subtypes, auto-
mated but not manual analyses showed a significant increase in some CD16+ monocyte subtypes (CD14++ 
and CD64++), a finding supported by at least one recent publication (46). However, results obtained for 
these difficult-to-gate populations should be interpreted with caution and better identification strategies 
sought for future studies. These populations also show increased variability in the manual inter-site com-
parisons, illustrating that effective standardization depends on non-ambiguous gating strategies regardless 
of  whether automated or manual analyses are used.

Effective standardization enables data from different sites and studies to be merged, facilitating the 
study of  heterogeneous patient populations. The 3 key aspects of  our standardized platform are the use 
of  commercially available, pre-formatted antibody cocktails; identically calibrated and clinically certified 
flow cytometers; and automated analysis pipelines customized for commercially available reagents. All 3 of  
these features are easy and rapid to implement, and, for the majority of  common immune cell populations, 
they eliminate the need for extensive SOP training and proficiency testing. Moreover, our approach allowed 
for direct comparison of  data from different sites, regardless of  whether it was generated from analysis of  
blood or PBMCs. Widespread implementation of  these or similarly standardized acquisition and analysis 
protocols is required for the discovery and validation of  flow cytometry–based biomarkers and to further 
the establishment of  precision medicine for immune-related diseases.

Methods
Blood samples. Blood from 3 healthy adults was collected at each of  3 centers (BC Children’s Hospital 
Research Institute, Alberta Transplant Institute, and Hôpital Maisonneuve-Rosemont) (n = 9). Blood from 
11 HSCT patients approximately 100 days (±20 days) after transplant was collected at Vancouver General 
Hospital (n = 11). Samples were collected with the approval of  the research ethics board at each site, and 
written informed consent was received from each donor (see Study approval below for details). Blood was 
either collected in sodium-heparin Vacutainer tubes (BD) for PBMC isolation or sodium-EDTA Vacutainer 
tubes for immediate staining of  unfractionated blood.

Design of  inter-center experiments. For cross-center comparisons using blood from healthy subjects, blood 
was collected, processed into PBMCs, and cryopreserved in aliquots of  106 cells at the 3 research centers 
listed above (3 blood draws per site, 9 samples in total). Unfractionated blood from the same collection was 
stained and acquired within 4 hours to enable direct blood versus cryopreserved PBMC comparisons. Two 
additional centers stained PBMCs only (Toronto General Research Institute and CancerCare Manitoba). 
Frozen aliquots of  PBMCs were shipped on dry ice between all participating centers, so that each had at 
least 1 aliquot from the same 5 blood draws.

For the cross-center comparisons using blood from post-HSCT patients, 1 ml unfractionated blood was 
stained at one site (Vancouver) within 4 hours of  collection. The remainder (~45 ml) was incubated for 24 
hours at room temperature (RT) to emulate real-world conditions in which samples are shipped to a central 
site for processing. PBMCs were isolated 1 day after collection, and aliquots of  107 per vial were frozen as 
described above. Replicate aliquots from 5 different patients were shipped on dry ice from Vancouver to 
Edmonton and Montreal to enable a 3-center comparison of  post-HSCT PBMCs.

Staining of  unfractionated blood using DuraClone dry antibody cocktail tubes. All flow cytometry reagents 
were obtained from Beckman Coulter unless otherwise stated. Six ONE Study DuraClone panels were 
used; see Table 1 for a list of  markers in each panel and Supplemental Table 3 for a list of  clones. 100 μl 
anticoagulated blood was added into each of  the following tubes: Basic, TCR, T-ACT, T-MEM-REG, and 
DC tubes. For the B cell tube, 300 μl blood was first washed twice with PBS to remove plasma (and the 
soluble IgM therein); after resuspending the washed cells in a total volume of  300 μl PBS, 100 μl was added 
to the B cell DuraClone tube. Liquid antibodies were added to the DC tubes as drop-ins: BDCA3-FITC and 
BDCA2-APC (Miltenyi; catalog 130-090-513 and 130-090-905, respectively). Tubes were vortexed for 10 
seconds to resuspend dried antibodies with the cell sample and incubated for 15 minutes at RT in the dark. 
Two milliliters VersaLyse with 2.5% IOTest 3 Fixative was added to each tube, immediately vortexed for 
10 seconds, and incubated for a further 15 minutes in the dark at RT. Cells were washed in cold IFN buffer 
(IsoFlow + 2% heat-inactivated FBS [NorthBio Inc.] + 0.1% NaN3) and centrifuged for 5 minutes at 300 g 
and 4°C. This wash step was repeated, and cells were resuspended in 300 μl cold IFN buffer, transferred to 
1.2 ml FACs tube inserts (VWR International), and stored at 4°C until acquired (within 12 hours).

https://doi.org/10.1172/jci.insight.121867
https://insight.jci.org/articles/view/121867#sd


1 7insight.jci.org      https://doi.org/10.1172/jci.insight.121867

T E C H N I C A L  A D V A N C E

Isolation, cryopreservation, and thawing of  PBMCs. See the supplemental material for detailed SOPs. Brief-
ly, all reagents and centrifuges were used at RT until the final cryopreservation step. Blood was diluted with 
1 volume of  PBS and mixed by inversion, and 25 ml was layered over 15 ml Lymphoprep in a SepMate 
tube (STEMCELL Technologies) following the manufacturer’s instructions. PBMCs were counted by try-
pan blue staining or with an automated counter, Cellometer Auto 2000 (Nexcelom Bioscience), after stain-
ing with acridine orange/propidium iodide (AO/PI) (catalog CS2-0106) according to the manufacturer’s 
instructions using the setting “Immune Cells, low RBCs.”

After counting, cell pellets were resuspended in freezing medium (10% DMSO in FBS) at final con-
centration of  10 × 106 cells/ml at RT. Frozen aliquots of  PBMCs were shipped to other centers on dry ice. 
Cryopreserved PBMCs were thawed at 37°C for 1 minute and transferred to 10 ml thawing solution (1.5 
ml FBS, 250 μl 1 M HEPES, 50 μl 7.5 % sodium bicarbonate in 10 ml RPMI; all reagents were from Life 
Technologies) and centrifuged for 10 minutes at RT at 453 g. After resuspension in thawing solution, cells 
were counted and resuspended in PBS + 2% FBS to a final concentration of  107 cells/ml. The average 
viability of  thawed PBMCs from healthy and post-HSCT subjects was 94% (range 85%–100%) and 80% 
(range 52%–94%), respectively.

Staining of  PBMCs using DuraClone dry antibody cocktail tubes. See supplemental material for detailed 
SOPs. Briefly, 106 PBMCs in 100μl of  PBS + 2%FBS were added to each DuraClone tube; the drop-in 
antibodies for BDCA-2 and -3 were added as described above for unfractionated blood staining. Tubes were 
vortexed for 10 seconds and incubated for 15 minutes in the dark. To remove unbound antibodies prior to 
fixing, 3 ml FP (2% FBS in PBS) buffer was added to each tube, cells were spun down at 453 g for 5 minutes, 
and the supernatant was discarded. Pellets were resuspended in 1 ml of  1× IOTest 3 Fixative solution for 
15 minutes in the dark. Cells were then washed with 3 ml cold IFN buffer and centrifuged, and pellets were 
resuspended in 300 μl cold IFN buffer until acquisition.

Instrument standardization (Navios). All flow cytometry data for the multi-site studies were acquired on 
10-color/3-laser Navios flow cytometers (Beckman Coulter). Flow-Check Pro beads were run for daily 
quality control, and the manufacturer’s criteria were followed to assess whether the instrument was in good 
working order. To produce consistent fluorescence outputs between the CNTRP Navios instruments and 
those used in the ONE Study, Flow-Set Pro beads were used to establish the voltages required for each 
detector on each Navios. For daily quality control, Flow-Set Pro beads were run daily at these voltages, and 
the instrument was considered to yield stable fluorescence outputs if  the MFIs of  the beads were ±10% of  
the initially established MFIs. Voltage recalibration to lot-specific FSP standard intensities was either done 
using the Navios-instrinsic Autosetup algorithm or manually (for phase I, healthy control samples, Auto-
setup was used; for phase II, post-HSCT patient samples, the manual method was used). Both procedures 
are described in detail in the supplemental material (SOP sections 9 and 11). Autosetup was also used to 
calculate a 9-color compensation matrix using VersaComp antibody capture beads stained with single CD4 
antibodies conjugated to each of  the 9 fluorochromes. The same initial compensation matrix was used for 
each of  the 6 panels due to the standardized nature of  the fluorochromes and instrument settings. Techni-
cal staff  at each center were trained to perform daily hardware quality control, sample preparation of  cells 
with DuraClone tubes, and data acquisition, based on a written SOP and onsite training (see supplemental 
material). Effectiveness of  training was evaluated by acquisition of  a normal blood sample and comparison 
of  data with the central site.

Comparative analyses on the Navios and the LSR-Fortessa. Some second-generation DuraClone panels 
incorporated a 10th parameter (FL4/PECy5.5), so this study optimized fluorescence intensities for 10 col-
ors. Due to differences in dynamic range and emission filters, the 2 cytometers could not be calibrated by 
absolute fluorescence intensities, so stain index–based calibration was used. Briefly, PBMCs stained with 
single anti-CD4 mAbs conjugated to one of  10 fluorochromes were acquired on the Navios, and stain indi-
ces were determined (47, 48). The same samples were then run at 30-V increments on the Fortessa from 230 
to 800 V. Stain indices for each fluorochrome at each voltage were determined, and the voltage resulting in 
the stain index most similar to that on Navios was selected. Blood from 5 healthy volunteers was stained 
using the DuraClone Basic and B cell tubes (Beckman Coulter, catalog B53309 and B53318, respectively), 
divided into 2 and run on the same day on the Fortessa and Navios.

Flow cytometry data analyses. For inter-center comparisons, raw data (LMD files) were sent to a central 
site for analysis. Compensation for each panel was created from the center-specific acquisition matrix 
and adjusted for individual panels at the time of  central analysis. Samples were gated as previously 
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described (12); an example of  gating for each panel is shown in Supplemental Figure 1. All values are 
provided as a proportion of  parent gate, and a list of  parent gates for each variable is shown in Supple-
mental Table 1. Flow cytometry data were manually analyzed using with FlowJo software v. 10.2. or 
Kaluza Analysis Software v.1.5a (Beckman Coulter).

Threshold event numbers for flow cytometry analysis: For B cells, samples with >1000 events in the 
CD19+ gate were evaluated for subpopulation proportions; samples with >100 events in the IgD–IgM– gate 
were further subdivided into class-switched memory B cells and plasmablasts. Only one sample, just over 
the cutoff  for total B cells by manual gating but under the cutoff  for automated gating, was removed to have 
an equal number of  samples for comparison. In accordance with MIFlowCyt (49), all LMD and FCS3.0 
files were uploaded to FlowRepository, experiment ID FR-FCM-ZYQT.

Development and evaluation of  automated gating pipelines. The flowDensity algorithm uses a supervised, 
sequential bivariate clustering approach to generate a set of  predefined cell populations using customized 
cut-offs defined by density distributions for each marker. FlowDensity is freely available from Bioconductor 
(https://www.bioconductor.org). The customized code used in this study can be downloaded from GitHub 
(https://github.com/mehrnoushmalek/DuraClone-gating; commit a8f440) for academic use; see license 
file for full details). Parameters for flowDensity were set globally, customized at every step of  the gating 
hierarchy to replicate the manual approach. Three manual operators independently analyzed all data using 
the gating strategies outlined in Supplemental Figure 1; one operator was designated as the “gold standard” 
reference manual and used for the comparison to automated gating. Data similarity was assessed by cor-
relation or F1 scores (see Statistics).

For the analysis of  ONE Study data with the automated pipelines, raw data from 10 healthy sub-
jects and manual analyses thereof  were provided by the ONE Study group. Two CNTRP operators reana-
lyzed the raw data. Automated versus manual as well as manual versus manual correlations were done as 
described above. One sample (HC43) was excluded due to a high level of  unexplained background staining.

For analyses of  data acquired on the LSR-Fortessa, the pre-processing component of  the pipeline was 
adjusted due to differences in the amount of  forward scatter–low event collection, and the singlet gating 
was changed from FS-A versus FS-W (Navios method) to FS-A versus FS-H (Fortessa method). For the 
Basic panel, which expresses some populations as a percentage of  total PBMCs, exported FCS files con-
taining only the CD45+ subpopulations were used for the automated analysis.

Statistics. For inter-center variation, CV estimates were obtained by taking the median of  the sub-
ject-specific CVs. ICCs were obtained by first fitting a variance components model with random effects 
for site, donor, and residual error. The ICC was calculated by the ratio of  biological variability (individ-
ual effect) to the sum of  the 2 technical variability components (center, residual error). Paired blood and 
PBMC data were compared using a multiple t test with FDR adjustment by the method of  Benjamini, 
Hochberg, and Yekutiel. Comparisons of  staining methods were based on the absolute magnitude of  
differences (log scale) between the 24-hour delay methods and the optimal method (immediate staining 
and acquisition) by applying the Wilcoxon’s rank-sum test to cell population values for each panel as 
the unit of  analysis.

Data from healthy or 100-days-post-HSCT subjects were used to compare the results obtained with 
unfractionated blood versus cryopreserved PBMCs using multiple t tests with Holm-Šidák correction for 
multiplicity. A P value less than 0.05 was considered significant. To compare data generated by manual or 
automated analyses, Spearman’s ρ (degree of  linear correlation with the reference manual) and F1 scores were 
calculated. The F1 score (harmonic mean of  precision and recall or sensitivity) provides a value in the range 
of  0 to 1 for each population, with 1 indicating a perfect reproduction of  a manually gated population by 
automated gating. Analyses were performed using GraphPad Prism for MacOSX version 7.0 b and R version 
3.3.3 (50). For all tests, *P < 0.05, **P < 0.01, and ***P < 0.001.

Study approval. The studies presented in this article involved the collection of  human tissue and 
were reviewed and approved by the appropriate institutional review boards: Montreal, Hôpital Mai-
sonneuve-Rosemont — Centre intégré universitaire de santé et de services sociaux de l’Est-de-l’Île-
de-Montréal (CIUSSS-EMTL), Comité d’éthique de la recherche. Vancouver: University of  British 
Columbia/Children’s and Women’s Health Centre of  British Columbia (UBC/C&W) Research Ethics 
Board. Edmonton: Research Ethics Office. All subjects provided written informed consent prior to 
their participation in the study.
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