
Deep Learning Reinvents the Hearing Aid:
Finally, wearers of hearing aids can pick out a voice in a crowded room

DeLiang Wang

My mother began to lose her hearing while I was away at college. I would return home to 

share what I’d learned, and she would lean in to hear. Soon it became difficult for her to hold 

a conversation if more than one person spoke at a time. Now, even with a hearing aid, she 

struggles to distinguish the sounds of each voice. When my family visits for dinner, she still 

pleads with us to speak in turn.

My mother’s hardship reflects a classic problem for hearing aid manufacturers. The human 

auditory system can naturally pick out a voice in a crowded room, but creating a hearing aid 

that mimics that ability has stumped signal processing specialists, artificial intelligence 

experts, and audiologists for decades. British cognitive scientist Colin Cherry first dubbed 

this the “cocktail party problem” (http://www.psypress.co.uk/common/supplementary/

184169360x/ch6_194.pdf) in 1953.

More than six decades later, less than 25 percent of people who need a hearing aid (http://

www.asha.org/public/hearing/Hearing-Aids-Overview/) actually use one. The greatest 

frustration among potential users is that a hearing aid cannot distinguish between, for 

example, a voice and the sound of a passing car if those sounds occur at the same time. The 

device cranks up the volume on both, creating an incoherent din.

It’s time we solve this problem. To produce a better experience for hearing aid wearers, my 

lab at Ohio State University (http://web.cse.ohio-state.edu/~dwang/pnl/), in Columbus, 

recently applied machine learning based on deep neural networks to the task of segregating 

sounds. We have tested multiple versions of a digital filter that not only amplifies sound but 

can also isolate speech from background noise and automatically adjust the volumes of each 

separately.

We believe this approach can ultimately restore a hearing-impaired person’s comprehension 

to match—or even exceed—that of someone with normal hearing. In fact, one of our early 

models (http://web.cse.ohio-state.edu/~dwang/papers/HYWW.jasa13.pdf) boosted, from 10 

to 90 percent, the ability of some subjects to understand spoken words obscured by noise. 

Because it’s not necessary for listeners to understand every word in a phrase to gather its 

meaning, this improvement frequently meant the difference between comprehending a 

sentence or not.

Without a better hearing aid, the world’s hearing will get worse. The World Health 

Organization estimates that 15 percent of adults, or roughly 766 million people, suffer from 

hearing loss (http://www.who.int/pbd/deafness/news/Millionslivewithhearingloss.pdf). That 

number is rising as the population expands and the proportion of older adults becomes 

larger. And the potential market for an advanced hearing aid isn’t limited to people with 
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hearing loss. Developers could use the technique to improve smartphone speech recognition. 

Employers could use it to help workers on noisy factory floors, and militaries could equip 

soldiers to hear one another through the noisy chaos of warfare.

It all adds up to a big potential market. The global US $6 billion hearing aid industry (http://

www.marketsandmarkets.com/PressReleases/hearing-aids.asp) is expected to grow at 6 

percent every year through 2020, according to the market research firm MarketsandMarkets, 

in Pune, India. Satisfying all those new customers, though, means finding a way to put the 

cocktail party problem behind us. At last, deep neural networks are pointing the way 

forward.

For decades, electrical and computer engineers tried and failed to achieve speech isolation 

through signal processing. The most popular approach has been to use a voice-activity 

detector to identify gaps between people’s utterances as they speak. In this approach, the 

system designates the sounds captured within those gaps as “noise.” Then, an algorithm 

subtracts the noise from the original recording—leaving, ideally, noise-free speech.

Unfortunately this technique, known as spectral subtraction (https://www.youtube.com/

watch?v=g5oSqiZIc_w), is notorious for removing too much speech or too little noise. Too 

often, what results is an unpleasant artifact (called musical noise) that makes the audio 

sound as if it were recorded underwater. The problems are so serious that even after many 

years of development, this method does little or nothing to improve people’s ability to 

recognize speech in noisy environments.

I realized we had to take a different approach. We began with a theory from Albert Bregman, 

(http://webpages.mcgill.ca/staff/Group2/abregm1/web/) a psychologist at McGill University 

in Montreal, Canada, who proposed in 1990 that the human auditory system organizes 

sounds into distinct streams. A stream essentially corresponds to sound emitted from a 

single source, such as a nearby friend. Each sound stream is unique in its pitch, volume, and 

the direction from which it comes.

Altogether, many streams—such as that friend speaking over the roar of a hockey game—

make up what Bregman calls an “auditory scene.” (http://webpages.mcgill.ca/staff/group2/

abregm1/web/pdf/2004_%20Encyclopedia-Soc-Behav-Sci.pdf) If sounds share the same 

frequency band at the same time, the loudest sound in a scene overpowers the others—a 

useful principle known as auditory masking. For example, someone may not notice a clock 

ticking in the corner of the room if rain is pattering on the roof. This principle, among 

others, is exploited in MP3 files to shrink the files to one-tenth of their original size by 

removing masked sounds (such as the ticking clock, in this case) without users noticing the 

omission.

Recalling Bregman’s work, we wondered if we could build a filter to determine whether one 

sound stream dominates others at a given moment inside a specific frequency band. 

Psychoacousticians, who study sound perception, divide the average human’s hearing range 

into about two dozen bands between 20 hertz and 20,000 Hz (https://www.youtube.com/

watch?v=qNf9nzvnd1k). We wanted a filter to tell us whether a sound stream containing 
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speech or noise was stronger at certain times within these bands, as a first step toward 

separating the two.

My lab was the first, in 2001, to design such a filter, which labels sound streams as 

dominated by either speech or noise. With this filter, we would later develop a machine-

learning program that separates speech from other sounds based on a few distinguishing 

features, such as amplitude (loudness), harmonic structure (the particular arrangement of 

tones), and onset (when a particular sound begins relative to others).

This original filter was what we called the ideal binary mask. It labels noise and speech that 

it finds within segments of sound called time-frequency units, which designate a particular 

brief interval within a specific frequency band. The filter analyzes each time-frequency unit 

in a sample of noisy speech and marks each as either 1 or 0. It records a 1 if the “target” 

sound (in this case, speech) is louder than noise, and a 0 if the target sound is softer. The 

result is a set of 1s and 0s that represent the dominance of noise or speech within a sample. 

Then, the filter tosses out all units labeled 0 and reconstructs the speech from those that 

scored 1. To reconstruct an intelligible sentence from noisy speech, a certain percentage of 

time-frequency units must be labeled 1.

We began testing the ideal binary mask in 2006 with the U.S. Air Force Research 

Laboratory, in Ohio. Around the same time, a team from Syracuse University (http://

www.ncbi.nlm.nih.gov/pubmed/16957499), in New York, independently evaluated the ideal 

binary mask. In those trials, the filter helped people with a hearing impairment and also 

listeners with normal hearing to better understand sentences mixed with noise.

We had, basically, created a speech filter that performed flawlessly in the lab. But this filter 

enjoyed an unrealistic advantage. By design, we had provided it with samples of speech and 

noise separately and then tested it using mixtures of those same samples. Because it had 

been given the answers (that’s why it’s “ideal”), the filter knew when the speech was louder 

than the background noise. A practical speech filter must, entirely on its own and on the fly, 

separate a voice from the noise in a room.

Nevertheless, the fact that the ideal binary mask dramatically improved speech 

comprehension for both hearing-impaired listeners and those with normal hearing had a 

profound implication. It demonstrated that the technique of classification, a form of 

supervised learning, could be employed to approximate the ideal binary mask as a way of 

separating speech from noise. With classification, a machine mimics human learning, in 

effect, by completing exercises, receiving feedback, and drawing and remembering lessons 

from its experiences. That’s essentially the same way people learn from a young age to treat 

apples as a class distinct from oranges.

In the following years, my lab made the first attempt to approximate the ideal binary mask 

through classification. At about the same time we were developing our original classifier, a 

group at Carnegie Mellon University (http://www.cmu.edu/), in Pittsburgh, devised their 

own method, based on machine learning, to classify time-frequency units for another 

purpose: to improve automatic speech recognition. Later, a group at the University of Texas 

at Dallas led by the late Philipos Loizou used a different (http://ecs.utdallas.edu/loizou/
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cimplants/GMM_intelligib_sept09.pdf) classification method. It became the first to show 

meaningful improvement in speech intelligibility for people with normal hearing by relying 

on only monaural features (as opposed to the binaural ones captured by two ears).

But these early machine-learning methods applied classification techniques that were not 

powerful or accurate enough to help hearing aid wearers. They could not yet handle the 

complex and unpredictable mixture of noises and voices that occur in the world. In order to 

do that, we would need something far more powerful.

Having demonstrated promising initial results with our early classification algorithms, we 

decided to take the next logical step—to improve the system so it could function in noisy 

real-world environments, and without training for specific noises and sentences. This 

challenge prompted us to try to do something that had never been done before: build a 

machine-learning program (http://web.cse.ohio-state.edu/~dwang/papers/

HYWW.jasa13.pdf) that would run on a neural network and separate speech from noise after 

undergoing a sophisticated training process. The program would use the ideal binary mask to 

guide the training of the neural network. And it worked. In a study involving 24 test 

subjects, we demonstrated that this program could boost the comprehension of hearing-

impaired people by about 50 percent.

Basically, a neural network is a software system constructed of relatively simple elements 

that can achieve complex levels of processing by working together. (The system’s structure 

is roughly modeled on how neurons and their networks work in the brain.) When presented 

with new examples, neural networks, like human brains, can “learn” by adjusting the 

weights of their connections.

Neural networks come in many shapes and sizes and with varying degrees of complexity. 

Deep neural networks are defined as having at least two “hidden” processing layers, which 

are not directly connected to a system’s input or output. Each hidden layer refines the results 

fed to it by previous layers, adding in new considerations based on prior knowledge.

For example, a program designed to verify a customer’s signature (http://

www.cedar.buffalo.edu/~srihari/papers/ICGVIP2006-sig.pdf) might begin by comparing a 

new signature to a sample included in a training database. However, that program also 

knows from its training that the new signature does not need to precisely match the original. 

Other layers can determine if the new signature shares certain qualities that tend to remain 

consistent in a person’s signature, such as the angle of slant, or the failure to dot the letter i.

To build our own deep neural network, we began by writing algorithms to extract features 

that could distinguish voices from noise based on common changes in amplitude, frequency, 

and the modulations of each. We identified dozens of attributes that could help our program 

discriminate between speech and noise to some extent, and we used all 85 of them to make 

the algorithms as powerful as possible. Among the most important attributes we identified 

were the frequencies of the sounds and their intensities (loud or soft).

Next, we trained the deep neural network to use these 85 attributes to distinguish speech 

from noise. This training occurred in two phases: First, we set the program’s parameters 
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through unsupervised learning. This means we loaded many examples of the attributes into 

the program in order to prime it for the types of signals it would later have to classify on the 

fly.

Then we used samples of noisy speech and their corresponding results on the ideal binary 

mask to complete the second phase of training, which was the supervised learning. In 

particular, the set of 1s and 0s that make up the ideal binary mask was like an answer sheet 

that we used to test and improve our program’s ability to separate speech from noise. For 

each new sample, the program would extract a set of attributes from the noisy speech. Then, 

after analyzing these attributes—frequencies, intensities, and so on—the filter performed a 

provisional classification—was it speech? was it noise?—and compared the result to what 

the ideal binary mask would determine in the same situation. If the result was different from 

the 1s and 0s within our perfect binary mask filter, we tweaked the neural network’s 

parameters accordingly, so that the network would produce results closer to the 1s and 0s of 

the ideal binary mask on its next try.

To make these adjustments, we first calculated the error of the neural network, measured as 

the discrepancy between the ideal binary mask and the result at the neural network’s final 

layer, which is known as the output layer. Once we computed this error, we would then use it 

to change the weights of the neural network’s connections so that if the same classification 

was carried out again, the discrepancy would be reduced. The training of the neural network 

consisted of performing this procedure thousands of times.

One important refinement along the way was to build a second deep neural network that 

would be fed by the first one and fine-tune its results. While that first network had focused 

on labeling attributes within each individual time-frequency unit, the second network would 

examine the attributes of several units near a particular one. To understand why this helped, 

consider the following analogy: If the first network was like looking at the rooms of a house 

for sale, the second network was like walking around in the surrounding neighborhood. In 

other words, the second network provided the first network with extra context about the 

speech and noise it processed and further improved its classification accuracy. For example, 

a syllable may span many time-frequency units, but the background noise could change 

abruptly while it was being spoken. In our case, having contextual clues could help the 

program to more accurately separate speech from noise within the syllable.

At the end of the supervised training, the deep-neural-network classifier proved to be far 

superior to earlier methods at separating speech from noise. In fact, this algorithm was the 

first, of any technique relying on monaural techniques, to achieve major improvements in 

hearing-impaired listeners’ ability to make sense of spoken phrases obscured by noise.

To test it with human subjects, we asked 12 hearing-impaired people and 12 with normal 

hearing to listen through headphones to samples of noisy sentences. The samples were in 

pairs: first the speech and noise occurring together, and then the same sample after it had 

been processed by our program running on the deep neural networks. The sentences, which 

included phrases such as “It’s getting cold in here” and “They ate the lemon pie,” were 

cluttered by two types of noise—a steady humming noise and the babble of many people 
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talking at once. The steady noise was similar to the sound of a refrigerator running, in which 

the audio waves are repetitive and the shape of the frequency spectrum does not change over 

time. We created the noisy background babble by adding utterances from four male and four 

female speakers, to mimic a cocktail party.

People in both groups showed a big improvement (http://web.cse.ohio-state.edu/~dwang/

papers/HYWW.jasa13.pdf) in their ability to comprehend sentences amid noise after the 

sentences were processed through our program. People with hearing impairment could 

decipher only 29 percent of words muddled by babble without the program, but they 

understood 84 percent after the processing. Several went from understanding only 10 

percent of words in the original sample to comprehending around 90 percent with the 

program. There were similar gains for the steady-noise scenario with hearing-impaired 

subjects—they went from 36 percent to 82 percent comprehension.

Even people with normal hearing were able to better understand noisy sentences, which 

means our program could someday help far more people than we originally anticipated. 

Listeners with normal hearing understood 37 percent of the words spoken amid steady noise 

without the program, and 80 percent with it. For the babble, they improved from 42 percent 

of words to 78 percent.

One of the most intriguing results of our experiment came when we asked, Could people 

with hearing impairment who are assisted by our program actually outperform those with 

normal hearing? Remarkably, the answer is yes. Listeners with hearing impairment who 

used our program understood nearly 20 percent more words in the babble and about 15 

percent more words in steady noise than those with normal hearing who relied solely on 

their own auditory system to separate speech from noise. With these results, our program 

built from deep neural networks has come the closest to solving the cocktail party problem 

of any effort to date.

There are, of course, limits to the program’s abilities. For example, in our samples, the type 

of noise that obscured speech was still quite similar to the type of noise the program had 

been trained to classify. To function in real life, a program will need to quickly learn to filter 

out many types of noise, including types different from the ones it has already encountered. 

For example, the hiss of a ventilation system is different from the hum of a refrigerator 

compressor. Also, the noisy samples we used did not feature reverberations from the walls 

and objects in a room, which compounds the noise problem at any cocktail party.

Since we published those early results, we’ve purchased a database of sound effects 

designed for filmmakers and used its 10,000 noises to further train the program. This year, 

we found that the retrained program (http://web.cse.ohio-state.edu/~dwang/papers/

CWYWH.jasa16.pdf) [PDF] could encounter completely new noises and achieve 

meaningful improvement in comprehension for both hearing-impaired listeners and those 

with normal hearing. Now, with funding from the National Institute on Deafness and Other 

Communication Disorders, (https://www.nidcd.nih.gov/) we are pushing the program to 

operate in more environments and test it with more listeners who have hearing loss.
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Eventually, we believe the program could be trained on powerful computers and embedded 

directly into a hearing aid, or paired with a smartphone via a wireless link, such as 

Bluetooth, to feed the processed signal in real time to an earpiece. Periodically, hearing aid 

wearers could update their devices as manufacturers release new versions after retraining the 

system on new noises. We have filed several patents for the technique and are working with 

partners to commercialize it, including Starkey Hearing Technologies (http://

www.starkey.com/), in Eden Prairie, Minn., a leading hearing aid manufacturer in the United 

States.

With this approach, the cocktail party problem does not look nearly as daunting as it did just 

a couple of years ago. We, and others, can now create software that we expect will 

ultimately overcome it through more extensive training in more noisy situations. In fact, I 

suspect this process is similar to the way children learn to separate speech from noise early 

in life—through repeated exposure to a wide range of both. With more experience, the 

approach can only get better. That’s the beauty of it. As is also true for a youngster, time is 

on our side.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Samples of Speech

Before and After Filtering

provided by DeLiang Wang, OSU

The Man Called the Police

It’s Getting Cold in Here

They Ate the Lemon Pie

It’s Time to Go to Bed
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Clean Speech: To separate speech from noise, a machine learning program breaks a noisy 

speech sample into a collection of elements called time-frequency units. Next, it analyzes 

these units to extract 85 features known to distinguish speech from other sounds. Then, the 

program feeds the features into a deep neural network trained to classify the units as speech 

or not based on past experience with similar samples. Lastly, the program applies a digital 

filter that tosses out all the nonspeech units to leave only separated speech.

Wang Page 10

IEEE Spectr. Author manuscript; available in PMC 2019 January 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A Noisy World: Thanks in part to its odd shape, the human ear captures many sound 

streams at once. A stream is all the sound waves that emanate from a single source, such as a 

dog. Together, these streams make up an auditory scene (barking + siren + talking).
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Listen Up: In this 2013 photo, a machine-learning program for speech separation built on 

deep neural networks is tested by [from left to right] Sarah Yoho, DeLiang Wang, Eric 

Healy, and Yuxuan Wang of Ohio State University.

Wang Page 12

IEEE Spectr. Author manuscript; available in PMC 2019 January 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Smart Layers: A deep neural network consists of two or more processing layers in between 

the input layer, through which information is fed into the system [left], and the output layer, 

which reveals the results [right]. To improve performance, researchers can adjust the 

system’s parameters and tweak the connections between layers.
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