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Abstract Methane (CH4) is a well-known and abundant

feedstock for natural gas, and is readily available from

various sources. In thermal plants, the CH4 generated from

anthropogenic sources is converted into electrical energy

via combustion. Microbial fuel cell (MFC) technology has

proven to be an efficient strategy for the biological con-

version of a many substrates, including biogas (CH4), to

electricity. MFC technology uses gaseous substrate along

with an enriched and selective microbial consortium. Pre-

dominantly, methanotrophs and electrochemically active

Geobacter were utilized in a syntrophic association on the

anode of an MFC. This review focuses on the exploitation

of CH4 as a substrate for bioelectrogenesis via MFCs.

Keywords Microbial fuel cells � Greenhouse gases �
Anaerobic methane oxidation � Reverse methanogenesis �
Methanol

Methane (CH4) and carbon dioxide (CO2)—the key com-

ponents of greenhouse gases (GHG)—have the potential to

provide a promising platform for generating renewable and

sustainable value-added products through biological and

bioelectrochemical processes. The major emissions of CH4

occur from natural and manmade anthropogenic activities.

The natural sources include oceans, termites, and wetlands,

which collectively account for approximately 36% of glo-

bal CH4 emission. The remaining portion of CH4 emission

(64%) majorly arises from human sources including the

utilization, production, and transportation of fossil fuels.

Minor quantities are also emitted from various sources,

such as agriculture, landfill, and dairy farming (https://

www.epa.gov/ghgemissions/overview-greenhouse-gases#

methane). This has led to doubling of atmospheric CH4

levels over the last 150 years [1]. Besides, a comparative

analysis of the impact of CH4 and CO2 on the environment

as GHGs reveals that CH4 is 25 times more dangerous than

CO2. This has led to the utilization of natural gas for

electricity generation. However, current decline in power

charges has led to a search of renewable and sustainable

process for upgradation and valorization of CH4. There-

fore, the generation of value-added products utilizing CH4

on-site can help in minimizing losses due to storage leaks

and transportation [2]. Methane can be converted to liquid

fuels or electricity via conventional technologies, such as

chemical conversion or gas-turbine generator set. These

technologies require a capital investment of billions of

dollars as well as a large land area for operation. Direct use

of CH4 to generate electricity in fuel cells is challenging,

owing to the requirement of high thermal operation

(650–1100 �C) and instability of catalyst [1]. Thus, bio-

logical conversion of CH4 to value-added products

[methanol, electricity, or polyhydroxyalkanoates] seems an

interesting and promising option [3, 4]. In addition, bio-

logical systems can offer adaptability/flexibility in scaling

up of operation and provide an ability to integrate with the

catalytic process that generates desired chemical products.

However, there are several reviews available on the bio-

logical conversion of CH4 to chemicals [5–7]. Therefore,
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the present study provides a perspective on the conversion

of CH4 to bioelectricity.

The biological conversion of CH4 to electricity has been

challenging due to difficulties in microbial culturing,

eventually affecting the process of anaerobic CH4 oxida-

tion. The first report on the use of CH4 as a sole substrate

was published in 1965, with pure cultures of Pseudomonas

methanica [8]. Until 2011, no publications/reports were

recorded on use of CH4 by a similar process. In 2011,

Girguis and Reimers, procured a US patent on the use of

CH4 as a feed for microbial fuel cells (MFCs) by using

methanotrophs as a biocatalyst [9]. This turned the atten-

tion of the research fraternity to the bioelectrochemical

conversion of CH4 to electricity using MFCs. A recent

study from the Pennsylvania State University, USA and

National Institute of Cardiology, Mexico reported direct

oxidation of CH4 to electricity by reverse methanogenesis

[10]. The anaerobic CH4-oxidizing bacteria (ANME) per-

formed reverse methanogenesis. ANME strains were dif-

ficult to isolate due to their association with other bacteria

that reduce metal oxides and other inorganic chemicals,

such as nitrites and sulfates. Furthermore, ANME requires

CH4 activation without oxygen-based radicals and a longer

growth time, even after adaptation for several days under

laboratory conditions. Due to all these factors, the use of

CH4 in MFC has been challenging. Based on their previous

work on a microbially engineered ANME strain (Metha-

nosarcina acetivorans), Wood and his colleagues estab-

lished a syntrophic association between M. acetivorans and

Geobacter sulfurreducens [10]. They also analyzed the

influence of undefined microbial inoculum, collected from

a wastewater treatment plant. This mechanism generated

sustainable and considerable amount of energy in the form

of electricity. M. acetivorans synthesizes an Mcr (methyl-

coenzyme M reductase) enzyme and can convert CH4 to

acetate. G. sulfurreducens and other undefined microbial

consortia can oxidize acetate to CO2 with simultaneous

electricity generation. An eightfold improvement in power

density (160 mW/m2; control—20 mW/m2) was recorded

due to the presence of electroactive G. sulfurreducens

species along with engineered M. acetivorans and sludge

on the anode of double chamber MFC. Interestingly, the

CH4-fed MFC exhibited a columbic efficiency (CE) of

90%, which suggested that most of the electrons generated

during CH4 conversion are extracted in the form of current

[10]. These values of CE were comparable with those

obtained for conventional organic substrates in MFC [11].

Additional results exhibited a variable increase in current

generation by use of external electron carriers. The use of

cytochrome C and humic acids (0.5%) as mediators had

shown 1.5- and 1.9-fold increase in power density,

respectively, compared to control [12]. Further, an 11-fold

increase in current generation was recorded by increasing

the humic acid concentration from 0.5 to 3.3%, suggesting

that internal electron carriers might be a rate-limiting factor

in this system. However, further investigations need to be

carried out to understand why G. sulfurreducens utilized

extracellular electron transfer instead of using outer

membrane or electrically conductive nanowires for pump-

ing electrons to anode.

Similarly, other researchers have tried using CH4 as an

oxidant in MFC with major interest in decoupling of den-

itrifying anaerobic CH4 oxidizing archaea (DAMO) [13].

This study demonstrated 25 mV of power generation.

Interestingly, it provided an alternative for the successful

separation of DAMO archaea to understand their physio-

logical characteristics. After 45 days of operation, the

MFC anode exhibited a 2.5-fold increase with DAMO

archaea, with a 12-fold decrease in DAMO and simulta-

neous increase in ANME. Considerable increase in the

abundance of the genera Geobacter and Ignavibacterium

were observed on the anode. Recently, Chen and Smith had

analyzed the use of CH4 as a sole substrate in a single

chamber air cathode MFC operated continuously [14].

MFC operation with a 16-h hydraulic retention time

exhibited 85% CH4 removal with a high power density of

62 mW/m2. Reverse transcription-quantitative polymerase

chain reaction analysis exhibited higher abundance of

methanotrophs and the genus Geobacter. Instead of direct

conversion of CH4 to electricity in the anode chamber of

MFC, few researchers had tried a two-stage system [15].

Initially CH4 is converted to liquid fuels (methanol), and

later, methanol is converted to electricity. The two-stage

system generated a power density of 426 mW/m2, which

was found to be 6.8 times higher than single stage process

(62 mW/m2). Methylophilus, Arcobacter, and Acetobac-

terium are the major genera found in methanol-fed MFC.

The long-term desire of anaerobic oxidation of CH4 to

produce electricity has been fulfilled. The above-discussed

electrochemical studies open new possibilities in employ-

ing MFC as a biological post-treatment strategy for energy

recovery and to mitigate GHG emission from anthro-

pogenic sources (Fig. 1). CH4 oxidation in MFC can also

open a new approach for generation of value-added prod-

ucts and chemicals in microbial electrolysis cells (MECs).

On the basis of current generation and the desired product,

energy from MFC can be used for CO2 reduction to gen-

erate alcohols and other carboxylic acids, as well as

hydrogen (H2), by using protons from the anode [16]. To

further increase CH4 conversion in MFC, the association of

ANME with other electrochemical active bacteria (EAB)

needs to be analyzed. This can include either the analysis

of intermediates or extracellular electron transfer between

ANME and EAB. The next-generation microbial

sequencing tools, such as pyrosequencing or meta-omics,

can help in better understanding of microbial communities
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and gene expression, that are related to anaerobic oxidation

of CH4 in natural systems [17]. Meanwhile, MFC reactor

configurations can be modified/developed for the use of

gaseous substrates. In addition, the economic evaluation of

MFC for electricity generation should be performed with

CH4-rich biogas (* $2.6 per 1000 ft3).

Over the past few years, several aspects of MFC are

being explored to enhance its performance. In this regard,

the use of cheap natural gas for electricity seems interest-

ing. However, the cost and energy conversion efficiency

should be evaluated. The anode materials, such as gas

diffusion electrodes, with specificity for methanotrophs

should be tested to provide a better interface with syn-

trophic microbial community. In addition, there is a need to

fabricate high conductive, scalable scaffolds, with better

surface properties to enhance CH4 oxidation by methan-

otrophs and EAB. However, there are still several bottle-

necks, such as long-term operation and limiting the

diffusion of CH4 from the anode to cathode, which need to

be evaluated to achieve a pilot scale of operation.
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