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Abstract

Macrophages play a key role in the pathophysiology of rheumatoid arthritis (RA). Notably, positive correlations have been
reported between synovial macrophage infiltration and disease activity as well as therapy outcome in RA patients. Hence,
macrophages can serve as an important target for both imaging disease activity and drug delivery in RA. Folate receptor 3
(FRp) is a glycosylphosphatidyl (GPI)-anchored plasma membrane protein being expressed on myeloid cells and activated
macrophages. FR{3 harbors a nanomolar binding affinity for folic acid allowing this receptor to be exploited for RA disease
imaging (e.g., folate-conjugated PET tracers) and therapeutic targeting (e.g., folate antagonists and folate-conjugated drugs). This
review provides an overview of these emerging applications in RA by summarizing and discussing properties of FR 3, expression
of FRf3 in relation to macrophage polarization, FR 3-targeted in vivo imaging modalities, and FR3-directed drug targeting.
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Rheumatoid arthritis

Rheumatoid arthritis (RA) is an autoimmune disease, which
affects approximately 0.5-1.0% of the world population [1].
Although the exact etiology of RA is unknown, the currently
accepted hypothesis consists of two stages [2]. In genetically
susceptible individuals, the first stage of development of RA
consists of accelerated citrullination of proteins in extra-
articular sites, e.g., due to smoking or infection, including
formation of rheumatoid factor (RF), anti-citrullinated protein
antibodies (ACPA), and anti-carbamylated proteins (a-CarP)
[3—6]. Only 40% of ACPA-positive arthralgia individuals will
eventually develop RA [7]. A second trigger seems to be
needed for development of clinical disease. Up to 15 years
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later, the second trigger could be an unrelated episode of oth-
erwise self-limiting synovial inflammation and associated lo-
cally induced citrullination. In the presence of pre-existing
anti-citrullinated protein/peptide antibodies, this event may
induce chronic synovitis evolving into clinical RA through
binding of the antibodies to autoantigens in the joints [8§—10]
(Fig. 1).

To detect development of (subclinical) synovitis, advanced
imaging techniques may have diagnostic value on top of de-
tection of ACPA. Application of ultrasonography and MRI
techniques in preclinical RA have been discussed in recent
reports [11, 12], while application of positron emission to-
mography (PET) will be discussed in detail below. RA’s main
characteristics include (chronic) inflamed synovium and joint
destruction, which, when left untreated, can lead to permanent
joint deformities and comorbidities, such as cardiovascular
disease and osteoporosis [10]. Early identification and treat-
ment of RA is currently recommended to prevent further joint
damage and disability [13]. To this end, the European League
Against Rheumatism (EULAR) guidelines indicate treatment
with classical disease-modifying anti-rheumatic drugs
(DMARDSs) (e.g., methotrexate (MTX)), biological
DMARDs (e.g., infliximab, rituximab, tocilizumab, and
secukinumab), and targeted synthetic DMARD:s (e.g., Janus
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Fig. 1 Onset of rheumatoid arthritis and positioning of macrophage
imaging for early disease monitoring. Early in a time frame spanning
10-15 years, combined genetic and environmental factors can trigger in
a healthy person the formation of autoantibodies which can lead to joint

kinase inhibitors), either as monotherapy or in combination
therapy [14]. Despite this wide spectrum of potential thera-
peutic agents that are currently available, response to treat-
ment usually varies between 50 and 70%. This is probably
related to factors such as the heterogeneous character of RA,
the stage of the disease, and the presence of anti-drug antibod-
ies. To increase treatment efficacy and to reduce costs, moni-
toring tools, e.g., imaging, are needed in order to select re-
sponders and non-responders in an early phase of treatment.

Immune cells and RA

In RA, the inflamed synovium harbors several immune cell
types, especially B and T lymphocytes, dendritic cells, neutro-
phils, and macrophages [8—10] (Fig. 2a). As dominant pro-
ducers of tumor necrosis factor alpha (TNFo), macrophages
are known to play a central role in RA disease progression
[15-19], macrophage production of IL1f3, IL-6, and TNFx
mediates proliferation and activation of fibroblast-like
synoviocytes [20]. These promote formation and activation
of osteoclasts and chondrocytes, which drive bone and carti-
lage destruction [8—10, 18, 20], being hallmarks of RA disease
(Fig. 2a). Cytokine networks involving a.o. IL15, IL17, IL18,
IL21, IL23, and IFNy mediate interactions among macro-
phages and B cells, T cells, and dendritic cells to induce pro-
inflammatory effects (reviewed in [8, 9, 21, 22]). For example,
IL17 release by T cells triggers activation of synovial fibro-
blasts and osteoclasts [8, 21], whereas B cells/plasma cells
primarily release autoantibodies such as rheumatoid factor
and ACPAs to promote T cell activation [23, 24].
Macrophages in inflamed synovium are thought to be mainly
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complaints without swelling (arthralgia). Following an unknown second
hit, 40% of arthralgia patients ultimately develop RA. The subclinical
stage of arthritis provides a window of opportunity early diagnosis with
imaging modalities

derived from influx of circulating monocytes [16, 17] (Fig.
2b). Following differentiation of monocytes into macrophages,
various cytokines and immune complexes can skew them in
subcategories designed M 1-type (pro-inflammatory) and M2-
type (anti-inflammatory) macrophages, featuring characteristic
cluster of differentiation (CD) membrane marker expression
and release of cytokines, chemokines, and degrading enzymes
[18, 19] (Fig. 2b). M1-type and M2-type macrophages do not
represent static states as in an RA synovial microenvironment;
M2-type macrophages can acquire M 1-type properties of pro-
ducing pro-inflammatory cytokines like TNF«, IL1[3, and IL-
6 [15-27]. Folate receptor 3 (FR{3) has been identified as an
emerging macrophage marker. FR3 properties and clinical
exploitation will be discussed in more detail in the following
sections. Together, given the prominent role of macrophages in
RA pathophysiology, their non-invasive visualization can hold
promise for early RA disease monitoring.

Macrophage PET imaging in RA

In RA, synovial macrophage infiltration is a hallmark of the
disease, reflecting disease activity in early and established
stages, being a sensitive biomarker for assessment of response
to therapy [28-30]. Therefore, macrophage imaging could
serve as an important clinical and diagnostic tool as well as
a tool for guiding therapy in RA. Positron emission tomogra-
phy (PET) is a non-invasive, in vivo imaging modality, with
high sensitivity to detect active arthritis both at early or ad-
vanced stages of RA [31, 32]. It also has the ability to quantify
tracer uptake, which is essential for intervention studies, i.e.,
for monitoring disease activity and therapy response in the
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Fig. 2 Pathogenesis of RA and the role of macrophages. a Schematic
representation of a healthy (left) and its changes in RA (right). The
healthy joint shows the synovium and synovial space between two bone
ends covered with a cartilage layer. The synovial membrane separating
the capsule and the synovial space consists of a thin cell layer of
fibroblast-like synoviocytes (FLS) and macrophage-like synoviocytes
(MLS). The RA joint features a hyperplastic synovial lining, neovascu-
larization, and infiltration of various types of immune cells (macrophages,
T cells, B cells, antibody-producing plasma cells, dendritic cells, neutro-
phils). The release of pro-inflammatory cytokines (a.0. TNF«, IL-1f3, IL-
6, and 1L-17) triggers a cascade of events, proliferation and activation of

whole body [33—36]. While ultrasound and MRI cover mostly
detection of anatomical changes in synovial tissue [37], PET
imaging allows for quantitative detection and monitoring of
molecular targets. Various PET tracers have been developed to
image RA. Initial macrophage-directed PET studies used
["®FJFDG (measuring glucose metabolism in inflammatory
sites) to visualize inflamed RA joints with results correspond-
ing to clinical findings, thus providing evidence for the use-
fulness of PET in detecting synovitis [38—40]. This tracer
showed high sensitivity, but low specificity for arthritis imag-
ing [38]. Subsequently, PET studies were extended by using
more macrophage-specific tracers (Table 1).

The first class of potential macrophage tracers was targeted
towards the 18-kDa translocator protein (TSPO, formerly
known as peripheral benzodiazepine receptor), an outer
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FLS, activation of osteoclasts and chondrocytes, and induction of bone
and cartilage destruction (via matrix metalloproteases (MMPs)), being
hallmarks of RA disease. b Magnification inset: Synovial macrophages
are derived from influx of monocytes which, depending on stimuli by
various cytokines and immune complexes, can differentiate into macro-
phage subtypes called M1-type and M2-type macrophages, representing
the extremes of a spectrum of pro-inflammatory and anti-inflammatory
macrophages, respectively. M 1- and M2-type macrophages can be distin-
guished by membrane marker expression and cytokine release profiles.
Components of the RA synovial microenvironment can alter macrophage
polarization

mitochondrial membrane protein that is upregulated in activat-
ed macrophages [51, 52]. (R)-[''C]JPK 11195 is the prototypical
TSPO tracer that was employed in preclinical RA models [41,
42, 53-56] after successful application for imaging of activated
microglia in neuroinflammatory diseases (reviewed in [57,
58]. In a clinical setting, significantly higher
(R)-[''C]PK 11195 uptake was observed in severely inflamed
joints of RA patients than in moderately or mildly inflamed
joints, which correlated with the extent of macrophage infiltra-
tion in excised synovial tissue [43]. In addition, subclinical
disease activity could be shown when contralateral uninflamed
knee joints of RA were compared with non-inflamed joints of
healthy controls [43]. However, (R)-[''C]PK11195 showed
limitations in detecting subclinical synovitis in RA. In partic-
ular, considerable background uptake was seen in periarticular
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Table 1 PET tracers for
macrophage imaging in Name PET Half-life Binding target Use Reference
rheumatoid arthritis isotope (min)
FDG 18F 110 Glucose Glucose metabolism [39, 40]
transporter
(R)-PK11195 11C 20 TSPO Neuro-inflammation/RA  [41-44]
DPA713 11C 20 TSPO Neuro-inflammation/RA  [42, 45]
DPA714 18F 110 TSPO Neuro-inflammation/RA  [42, 46,
47]
PEG-Folate 18F 110 Folate receptor RA, arthrosclerosis [48-50]
receptor

tissue both in a rat model of arthritis [48] and in RA patients
[35]. To overcome these limitations, a second generation of
TSPO tracers was developed, with [''C]DPA713 and
["®F]IDPA714 [50, 51] having been evaluated in preclinical
RA models [42, 59]. Herein, both [''C]DPA713 and
['®F]DPA714 were superior to (R)-[''C]JPK 11195, but this still
needs to be confirmed in a clinical setting.

In search for novel macrophage PET tracers in RA, mac-
rophage markers identified on activated microglia can be help-
ful, e.g., CB2R and A2AR (G protein-coupled receptors),
P2X7R (purinergic ion channel receptor), or matrix metallo-
proteinases [60].

The focus of the present review is on another emerging
(activated) macrophage marker, i.c., the folate receptor 3
(FRf3), which potentially could also be exploited for imaging
and therapeutic targeting purposes in RA [61, 62].

Folate receptors (general properties)

Folate receptors (FR) belong to a family of two other proteins,
i.e., reduced folate carrier (RFC) and proton-coupled folate
transporter (PCFT). RFC and PCFT have an established func-
tion in membrane transport/internalization of folates required
for a variety of biosynthetic reactions and DNA synthesis
[63-66] (Table 2).

FR, RFC, and PCFT differ in membrane orientation, folate
substrate affinity, pH optimum, and tissue distribution [63,
66-68] (Table 2). While RFC and PCFT are transmembrane
carrier proteins, FR is anchored to the plasma membrane via a
glycosylphosphatidylinositol (GPI) anchor [69]. At least 3
isoforms of FR exist, FRx, FR3, and FRy, of which the latter
is a soluble secreted form because it lacks a GPI-anchoring
signal [70]. FRa and FRf3 display high binding affinity for
folic acid (Kd 0.1-1.0 nM), but low binding affinity for the
folate antagonist methotrexate (MTX) [63, 68, 71, 72]. FRs
internalize their substrates via a process of receptor-mediated
endocytosis [73, 74] or potocytosis [75]. FR« has a relatively
broad tissue distribution profile in normal cells (e.g., kidney)
and cancer cells (e.g., ovarian carcinoma cells) [76], whereas

FRf3 expression is restricted to hematopoietic cells of the my-
eloid lineage [77, 78]. In fact, FR3 is expressed on monocytes
[79], activated macrophages of RA patients [80, 81], tumor-
associated macrophages [82], and acute myeloid leukemia
(AML) cells [83]. A number of substances have been reported
to upregulate FR[3 expression, e.g., retinoic acid [84] and
curcumin [85], whereas a pluripotent growth factor like
activin A downregulates FR[3 expression [86].

Given the fact that RFC is constitutively expressed on im-
mune cells [87, 88], including macrophages [86, 89], and ex-
hibits a much greater folate transport capacity than FR[3 [68,
81], it is still an unresolved issue whether the primary function
of FR} in macrophages is folate transport rather than other ho-
meostatic or immune-regulatory functions. In rapidly proliferat-
ing cancer cells, folate transporters (Table 2) facilitate folate up-
take to promote DNA synthesis [66—68]. However, in inflamed
RA synovium, increased numbers of macrophages are mainly
derived from influx of circulating monocytes (Fig. 2b) following
enhanced myelopoiesis [16]. Moreover, RA synovium macro-
phages display only modest cell proliferation [90, 91], thus sug-
gesting a role for FR{3 in folate uptake for macrophage prolifer-
ation may not be of primary importance. In this regard, alterna-
tive functions for FR[3 have been suggested, although they still
lack experimental evidence: (a) delivery of folates for biopterin
metabolism, which facilitates reactive oxygen species (ROS)
production in macrophages [92]; (b) FR3-mediated scavenging
of folates from sites of inflammation to deprive pathogens from
nutrients [80]; or (c) involvement in signaling processes consis-
tent with the notion that FR, as GPI-anchored protein, is localized
in specialized cholesterol-rich membrane invaginations called
caveolae, which harbor multiple proteins involved in signaling
processes [63, 66]. With respect to the latter, a recent study re-
ported that FR3 on macrophages had a functional interaction
with CD11/CD18 to regulate cellular adhesion to collagen [93].

Beyond RA synovium, FRf3 expression has been identified
on macrophages in inflamed atherosclerotic lesions [94-97],
accounting for cardiovascular comorbidities in RA, and
tumor-associated macrophages [82, 98—100], thus
underscoring that FR3 plays a role on macrophages regulating
inflammatory processes. Lastly, in mice, FR[3 expression has
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Table 2

Overview and expression profiling and transport kinetic features of folate transporters

Cellular (anti) folate uptake systems

PCFT (proton-coupled folate transporter)

Membrane orientation Transmembrane
Localization Enterocytes

pH optimum 5.0-5.5
Affinity folic acid Km 1-5 uM
Affinity 5-methyl-THF Km 2-10 uM
Affinity MTX Km 2-10 uM

RFC (reduced folate carrier) FR (folate receptor o, 3,y isoform)

Transmembrane GPI - anchored
Immune cells Kidney (FRx)
Tumor cells Tumor cells (FRx)

Myeloid cells/activated

Macrophages (FR[3)

Hematopoietic cells (FRy, soluble,
secreted form)

7.2-8.0 74-8.0

Km 200-400 1M Kd 0.1-1 nM
Km 1-5 uM Kd 5-10 nM
Km 2-10 pM Kd 50-100 nM

been noted on LyC6 myeloid-derived suppressor cells
(MDSC), a myeloid subset capable of suppressing T cell ac-
tivity [101]. So far, expression of FR3 on human MDSC
counterparts has not been examined.

Role of folate receptor 3 in rheumatoid
arthritis

Consistent with FR3 being expressed in hematopoietic cells of
the myeloid lineage [77, 78], peripheral blood monocytes
(PBMs) from healthy donors and RA patients express FRf3.
Based on their CD14/CD16 expression, 3 subclasses of PBMs
were identified, classical (CD14"/CD16 ), non-classical
(CD147/CD16"), and intermediate (CD14*/CD16%) monocytes,
of which the pro-inflammatory classical monocytes expressed
FRf3 and were capable of binding folate-linked molecules [79].
This finding provides a rationale for targeting pro-inflammatory
FR* monocytes to suppress their infiltration into sites of inflam-
mation, e.g., RA synovium [79].

FR3-positive macrophages were originally identified in
RA synovial fluid and assigned a functional role in methotrex-
ate transport [102]. A study by van der Heijden et al. [81]
showed that FR3 mRNA expression in synovial fluid macro-
phages and synovial tissue from RA patients was two orders
of magnitude higher than that of T cells from the same patient.
Immunohistochemical evaluation of synovial biopsies from
RA patients confirmed strong FRf3 staining of CD68-
positive macrophages both in synovial lining and sublining
[81]. Importantly, a study by Xia et al. [80] revealed that
especially activated macrophages rather than quiescent mac-
rophages, in RA synovial fluid, had high FR3 expression and
concomitant folate conjugate binding activity.

Macrophage FR[3 expression is not only restricted to RA, but
has also been reported in other arthritis-related diseases. In tem-
poral artery biopsies of giant cell arteritis patients, severe inflam-
mation coincided with FR[3-positive macrophages in the
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adventitia [103]. In two murine models of systemic lupus
erythematosis, the number of FR 3-positive macrophages corre-
lated with disease activity [104]. Also, in two experimental
models of autoimmune uveitis and autoimmune encephalomy-
elitis in rats, FR3-positive macrophages were detected at local
and systemic sites (e.g., peritoneal cavity) of inflammation [105].
Lastly, several studies reported the presence of FR[3 on macro-
phages in knee sections of osteoarthritis patients [106, 107].

Folate receptor B and macrophage
polarization

Macrophage heterogeneity is a common feature in RA-inflamed
synovial tissue [16—19]. Microenvironmental factors may affect
both activation status and skewing of macrophages into various
subsets with distinct immunophenotypes and specialized
immune-regulatory and homeostatic functions. Polarization of
macrophages covers the broad spectrum from pro-
inflammatory to anti-inflammatory macrophages, which have
been designated “M1-type” (classical activation, pro-
inflammatory) macrophages and “M2-type” (alternatively
activated, anti-inflammatory) macrophages, respectively [108].
Whereas M1- and M2-type macrophages represent the extremes
of polarization, macrophages harbor plasticity of skewing in ei-
ther direction. There are many markers that may help to differ-
entiate M1/M2 macrophages. M1 macrophages are involved in
tumor inhibition and are resistant to pathogens, whereas M2
macrophages promote tumor growth and have immunoregulato-
ry properties [109]. Classical activation stimuli for M1-type mac-
rophages include IFNvy, LPS, and GM-CSF; those for M2-type
macrophages include M-CSF, IL-4, IL-10, IL13, glucocorticoids,
and immune complexes [110, 111]. Immunophenotypically, M1-
stimulated macrophages display increased cell surface expression
of CD80 (provides a costimulatory signal necessary for T cell
activation and survival) and CD64 (Fc-gamma receptor 1,
FcyRI), while M2-stimulated macrophages have increased
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expression of CD163 (hemoglobin scavenger receptor), CD206
(mannose receptor), CD200R (orexin receptor 2), and CD32
(FcyRlla) [112]. CD68 is acknowledged as one of the most
common markers for identifying human macrophages [112], al-
though its expression can also be detected on fibroblasts [113].
CD169 (Siglec-1) is a macrophage marker that is implicated in
immune tolerance and antigen presentation [114]. Although
CD169 has been found on activated macrophages in inflamma-
tory diseases [115, 116], its function in RA is still unknown.

During the past decade, several studies have explored FR3
expression in the context of macrophage polarization. Initially,
studies from Puig-Kroger et al. [117] showed that FR[3 was
preferentially expressed on M2-type macrophages following
in vitro skewing of monocytes with M-CSF compared with
MI-type macrophages with GM-CSF. Moreover, RA synovial
fluid macrophages showed an activin A-dependent skewing to
pro-inflammatory M1 macrophages and reduced expression of
FRf3 [118]. In synovial tissue of osteoarthritis patients, however,
FRf3 expression was not exclusively observed on either M1- or
M2-type macrophages [119]. Some recent studies add complex-
ity to this issue by reporting that M-CSF-polarized FRf3-
expressing M2 macrophages demonstrated a high pro-
inflammatory response to TLR ligands and complex IgG and/
or autoantibodies to citrullinated protein immune complexes
(ACPA-IC) as commonly present in RA [25, 26]. Together, these
data suggest that FR(3 is differentially expressed on in vitro M-
CSF skewed M2-type monocyte-derived macrophages, which is
in line with FR3 expression on tumor-associated macrophages
[82, 99, 100]. However, in RA (and OA) synovium, inflamma-
tory conditions alter macrophage phenotypes along with FRf3
expression (Fig. 2b).

Imaging folate receptor 3 in rheumatoid
arthritis

The high binding affinity of folate receptors for folic acid has
been exploited for the design of multiple imaging agents [120] to
either detect FRx expression in tumors [121, 122] and FR{3-
expressing macrophages in RA [62, 123]. Subsequently, macro-
phage FR (3 imaging has also been applied in macrophage impli-
cated inflammation-related diseases, e.g., asthma [124—126] and
cardiovascular diseases [94, 97]. The first folate macrophage
imaging study in rats with adjuvant-induced arthritis was per-
formed using [**™Tc]folic acid to generate the single-photon
emitting tracer [*”™Tc]EC20, which enabled visualization of ar-
thritic joints in a rat model [127]. Isolated macrophages from the
arthritic rats also showed high FR binding capacity for folate-
FITC [127]. Subsequently, [**™Tc]EC20 was successfully used
to assess disease activity in RA patients with established disease
[128, 129] as well as OA patients [107]. In RA patients, the
[*™Tc]EC20 distribution corresponded with clinical predictors
of disease activity [128]. Notably, in a subset of RA patients,

[™Tc]EC20 scans detected actively involved joints more accu-
rately than clinical assessments of arthritis [128].

Further development of folate imaging agents also focused on
PET tracers, which could be used for detection of (sub)clinical
arthritis as well as for more accurate therapy monitoring. To this
end, a folate PET tracer, [18F]-ﬂu0r0-PEG-f01ate, was synthe-
sized in a two-step procedure and evaluated in an antigen-
induced arthritis model in rats [48]. Uptake of ['*F]-fluoro-
PEG-folate was significantly higher in arthritic than in non-
inflamed control knees, and also arthritic knee to bone and ar-
thritic knee to blood ratios were higher for ['*F]-fluoro-PEG-
folate than (R)-[''CJPK11195 [48]. In addition, using ['*F]-
fluoro-PEG-folate PET, it was possible to monitor therapeutic
effects of MTX in arthritic rats [49] and to monitor systemic
inflammatory effects in an arthritic rat model [50]. Based on these
encouraging preclinical results, ['*F]-fluoro-PEG-folate was tak-
en to a clinical setting in which this tracer could readily visualize
arthritic joints in RA patients [130]. Recently, a novel folate-
based PET tracer was synthesized in a faster (< 1 h) one-step
procedure, i.c., ['*F]-folate-PEG-NOTA-AI [131], which war-
rants further (pre)clinical evaluation.

Next to folate PET imaging agents, recent progress has
been made in the development of folate conjugates of (near
infrared) fluorescent probes that can be used for fluorescent
and optical imaging purposes [58, 132, 133]. Thus far, these
approaches have mostly been applied in a cancer research
setting for fluorescence-guided surgery of FRx-positive tu-
mors [134] or macrophage FRf3 expression in tumors [135].
Recently, OTL-38, a novel near-infrared fluorescent folate-
conjugated imaging agent, showed feasibility of imaging
FRa-positive tumors [136]. OTL-38 was also examined in
animal models of various inflammatory diseases including
RA [137]. Interestingly, the uptake of OLT-38 in inflamed
joints of the animals was shown to precede changes in clinical
symptoms [137]. However, it should be noted that optical
techniques have their limitations. Firstly, the penetrating pow-
er of near-infrared light is limited, so that only relatively su-
perficial processes can be imaged. In other words, although
imaging in small laboratory animals is possible, translation to
the human is difficult and restricted to intraoperative imaging
and possibly small hand/foot joints in RA. Secondly, as the
amount of light collected by a probe depends on the depth of
the source (e.g., tumor) within the body, quantification is very
difficult and awaits further developments. Therefore, at this
stage, optical imaging is less suited for monitoring quantita-
tive follow-up of therapeutic interventions in vivo in humans.

Therapeutic targeting of folate receptor
in rheumatoid arthritis

FRs have not only been exploited for imaging, but also for
therapeutic targeting in cancer and inflammation [65, 66].
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Targeting of FRa-expressing tumors has included folate-
conjugated (a) radionuclides (x-emitters) for cancer treatment;
(b) anti-cancer drugs; (c) nanoparticles containing either anti-
cancer drugs, siRNAs, miRNAs, or genes; or (d) folate antag-
onists for which FR« has a high affinity [65, 68, 138].

For FR 3, similar targeting approaches are applicable [139].
Table 3 provides a selection of approaches that have been
reported for targeting FR[3-expressing macrophages in RA
and RA-related diseases as well as for FR[3-expressing tu-
mor-associated macrophages and FR 3-expressing acute mye-
loid leukemia cells. Conceivably, applications in the cancer
setting may be translatable to the RA setting. Table 3 describes
several modalities for FRf3 targeting, including folate

antagonists, folate-conjugated immunotoxins, folate-
conjugated drugs, folate-conjugated nanoparticles containing
drugs or genetic material, and via chimeric antigen receptor
(CAR) T cells. With respect to antifolates, several drugs
inhibiting key enzymes in folate metabolisms, e.g.,
dihydrofolate reductase (DHFR), thymidylate synthase (TS),
and glycinamide ribonucleotide formyltransferase
(GARTFase) [87], were evaluated for FR-targeting and anti-
arthritic activity in vitro or in arthritic animals. In general, FR
has a low affinity for DHFR inhibitors, including MTX, as
compared with TS and GARTFase inhibitors [68, 81].
Antifolates with selectivity for FRoc and FR 3 rather than other
folate transporters (RFC or PCFT) include BGC-945 and

Table 3  FR therapeutic targeting in theumatoid arthritis

Category Remarks Reference
Antifolates

MTX DHEFR inhibitor, low FR affinity, high RFC/PCFT affinity [102]
CH-1504 DHEFR inhibitor, low FR affinity, high RFC affinity [140]
EC0746 Aminopterin-folate conjugate DHFR inhibitor, activity in RA mouse model [141]
EC0746 Aminopterin-folate conjugate DHFR inhibitor, activity in animal uveitis and [105]

encephalomyelitis model

BGC945 TS inhibitor, FRa/f3 specific [81, 142]
ALIMTA/pemetrexed TS inhibitor, moderate FR affinity, high RFC/PCFT affinity [143]
LY309887 GARTFase inhibitor, high FR and RFC affinity, activity in mouse RA model [144]

LY 329201 and LY 309886 GARTFase inhibitors, in vitro activity, and activity in rat RA model [145]
Divers compounds GARTFase inhibitors, FRf3 selective, in vitro activity [146]
Immunotoxins

Anti-FR(3-PE38 Recombinant immunotoxin dsFv anti-FR3-Pseudomonas endotoxin A [147-149]

(PE38). Reduction RA synovial macrophages and fibroblasts

Anti-FR3-PE38 Targeting FR3-positive tumor-associated macrophages in mouse glioma [150]
Anti-FR(3-PE38 Targeting FR 3-positive macrophages mouse atherosclerotic lesions [151]
Folate-conjugated nanoparticles

G5 dendrimer MTX Targeting mouse primary FR[3 macrophages [152]
Liposomes + MTX Activity to FR3-positive macrophages in mouse collagen-induced arthritis [153]
Dextran-MTX Activity to FR3-positive macrophages in mouse collagen-induced arthritis [154]
Liposomes + anti-inflammatory drugs Targeting activated macrophages in inflammatory diseases [155]
NFkB decoy Delivery to murine macrophages [156]

G5 dendrimers MTX Targeting FR 3-positive tumor-associated macrophages [157]
Liposomes + zoledronate Targeting FR 3-positive tumor-associated macrophages [158]
HSA-nanodrug Targeting FR3-positive AML cells [159]
Liposomes + Dox Targeting FR3-positive AML cells [160]
Folate drug conjugates

FA-Everolimus (EC0565) Targeting FR 3-positive rat macrophages [161]
FDG-FA Targeting FRx-positive tumors and FR 3-positive macrophages [162]
Gene delivery (miRNA, siRNA)

FA-liposomes +MCL1-siRNA Delivery to activated macrophages [163]
FA-micelles/hydrogels Gene delivery to activated macrophages [164]
FolamiRs FA-conjugated microRNAs for delivery to FR-positive cells [165]
CART cells

High affinity FR3-specific CAR T cells For eradication FR3-positive AML cells [166, 167]
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selected GARTFase inhibitors. As illustrated in Table 3, folic
acid conjugation to a variety of (anti-inflammatory) drugs,
drug-containing liposomes, proteins, siRNAs, and miRNAs
provided a bona fide vehicle for targeted delivery to FR-
positive tumor cells and activated macrophages in different
autoimmune inflammatory animal models. CAR T cell thera-
pies with T cells transduced with a high affinity FR3-specific
single chain antibody represent a novel approach for selective
targeting and lysis of FR-positive AML cells [166, 167].
Experimental therapeutics with anti-FR3 CAR T cells has as
yet not been explored in relation to FR[3-positive macro-
phages targeting in auto-immune inflammatory diseases.

Although studies described in Table 3 underscore the suitabil-
ity of macrophage FR[3 targeting and imaging in RA models,
several points may be considered to guide future research direc-
tions. One consideration relates to the choice of the RA animal
model. For most anti-rheumatic drugs, it takes time to evaluate
their action on arthritis activity when using synovial macrophage
infiltration as a biomarker. Therefore, especially in the case of
(sub)clinical arthritis, most existing animal models of RA may
not be optimal from this perspective as they are either short-term
acute models or models with severe bone destruction and/or
poly-articular distribution [168, 169]. Instead, for (sub)clinical
arthritis studies, antigen-induced arthritis models may be more
suitable as they are more chronic and resemble human RA in
terms of synovial macrophage infiltration and moderate systemic
inflammation [44]. Also regarding animal studies, it is well doc-
umented that plasma levels of naturally circulating folates in
rodents are 10-fold higher than in humans (=100 nM vs
10 nM, respectively) [44, 170], which may increase competitive
binding with an experimental folate-conjugated drug for FR{3.
Lastly, FR3 expression and folate binding capacity is very much
dependent on the activation status of macrophages [80], which
may vary between animal models and stages of disease
progression.

Optimal FRf3 targeting will also benefit from information
about receptor density, occupancy and kinetics (recycling
rates), and levels of co-expression of any other folate trans-
porters on target cells. In target cells with dual expression of
RFC and FR, the first transporter is often dominant in inter-
nalizing natural folates and small molecule antifolates. FR can
fully compensate for this when RFC expression/activity is low
[171]. Since RFC, in contrast to FR, has a poor affinity for
folic acid drug conjugates, FR is their sole route of cell entry
and thus receptor density and recycling rates determine intra-
cellular drug delivery to concentrations eliciting a therapeutic
effect [74, 172].

Conclusion

There is growing evidence that FR[3 expression on activated
macrophages represent an important biomarker in various

autoimmune inflammatory diseases, including RA. FRf3 ex-
pression in relation to macrophage polarization warrants fur-
ther investigations under conditions mimicking inflamed RA
synovium. FRf3 holds promise as a target for imaging with
various modalities including PET and optical imaging with
rationally designed tracers. This will allow disease monitoring
studies and, ideally, early identification of arthritis and PET-
guided therapy response monitoring. With respect to therapy,
FRf serves as an excellent target for delivery of therapeutics
to macrophages; these may include folate antagonist and
folate-conjugated drugs.

In conclusion, FR3 expression on activated macrophages
may be exploited to guide future diagnostics, targeted thera-
pies, and therapy response monitoring in RA.
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