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ABSTRACT Escherichia coli strain C600 is a prototypical K-12 derived laboratory
strain which has been broadly used for molecular microbiology and bacterial physi-
ology studies since its isolation in 1954. Here, we present the closed genome se-
quence of E. coli strain C600, retrieved from the American Type Culture Collection
(ATCC 23724).

Escherichia coli strain C600 (Migula) Castellani and Chalmers (ATCC 23724) is a
bacteriophage �-sensitive strain first described in 1954 (1) and derived from pro-

genitor strain K-12, which was originally isolated in 1922 (2). Since its isolation in 1954,
strain C600 has been used as a model E. coli strain in laboratories worldwide for
molecular microbiology, genetic, and physiology studies (3, 4). Its genome can incor-
porate foreign DNA by transformation and conjugation (5, 6). Strain C600 is also
susceptible to phage transduction and serves as a prime bacterial host in bacterio-
phage infectivity assays, producing stable lysogens (7, 8). Recovered Shiga-toxigenic
lysogens in the C600 genome background that were transduced by Shiga toxin
(Stx)-converting bacteriophages have shown an increased ability to produce Shiga
toxin under spontaneous noninduced conditions (8) and when cocultured with Stx-
producing E. coli (9, 10).

E. coli strain C600 was cultured overnight in Luria-Bertani broth (37°C, 180 rpm), and
total genomic DNA was extracted using the QIAamp DNA minikit (Qiagen), following
the manufacturer’s instructions. To generate a high-quality closed genome sequence,
we pursued a hybrid approach using long-read PacBio RS II and short-read Illumina
MiSeq sequencing. Briefly, for PacBio sequencing, genomic DNA was sheared into 20-kb
fragments using a g-Tube device (Covaris), and a library was prepared based on the
20-kb PacBio sample preparation protocol and sequenced using P6/C4 chemistry on a
single-molecule real-time (SMRT) cell with a 240-min collection time. The 113,777 long
reads (N50 � 7,800) were assembled de novo using the PacBio Hierarchical Genome
Assembly Process (HGAP v3.0) (11) with default parameters in SMRT Analysis v2.3.0 and
consensus polishing with Quiver (11). For Illumina sequencing, a paired-end 2 � 250-bp
library was prepared using the Nextera XT DNA library preparation kit (Illumina) and
sequenced using the 500-cycle MiSeq reagent kit v2 (Illumina), yielding a total of
697,116 paired-end reads. Illumina reads were used for sequence error correction of the
PacBio assembly, using Pilon v1.18 with default settings (12).

The assembly yielded a circular chromosome of 4,599,824 bp, with a coverage of
107� and a GC content of 50.8%. The chromosomal origin of replication, oriC, was
designated the start point (�1) of the closed molecule and determined using the
Web-based tool Ori-Finder (13). Genome annotation with the NCBI Prokaryotic Ge-
nome Annotation Pipeline (PGAP) (14) predicted a total of 4,636 protein-coding
sequences, 22 rRNAs, 86 tRNAs, and 15 noncoding RNAs (ncRNAs).
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Strain C600 belongs to sequence type 10 (ST10), as inferred from MLST (v2.0) (15)
using the Achtman scheme (16). Prophage profiling with PHASTER identified six
prophage-associated regions, including three intact prophages and three incomplete
phage remnants (17). In silico antimicrobial susceptibility testing using ResFinder (v3.0)
with default settings detected no antibiotic resistance genes (18).

Data availability. The annotated chromosome has been deposited in NCBI

GenBank under the accession number CP031214. Illumina and PacBio reads are avail-
able under the accession numbers SRX4909245 and SRX4908799, respectively, in the
Sequence Read Archive (SRA).
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