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ABSTRACT Here, we report the draft genome sequence of Streptococcus pneu-
moniae EF3030, a pediatric otitis media isolate active in biofilm assays of epithelial
colonization. The final draft assembly included 2,209,198 bp; the annotation pre-
dicted 2,120 coding DNA sequences (CDSs), 4 complete rRNA operons, 58 tRNAs, 3
noncoding RNAs (ncRNAs), and 199 pseudogenes.

Streptococcus pneumoniae (the pneumococcus), an encapsulated Gram-positive dip-
lococcus, is one of the most common colonizers and opportunistic pathogens of the

human upper respiratory tract. It is estimated that 95% of children by the age of two
are colonized on the nasopharyngeal mucosa by at least 1 of over 90 S. pneumoniae
serotypes, which persist asymptomatically in healthy individuals into adulthood (1–4).
S. pneumoniae is the primary etiologic agent of otitis media and secondary bacterial
pneumonia following viral infection and causes severe invasive disease, including acute
pneumonia, meningitis, and sepsis (2, 5). Pneumococcal biofilm formation in vivo
contributes to immune evasion, antibiotic resistance, and persistence and serves as a
reservoir for initiating local and invasive disease (recently reviewed in reference 6). S.
pneumoniae strain EF3030, a capsular serotype 19F, is a pediatric otitis media isolate
that is an efficient colonizer of murine model systems (6–11). In addition, in vitro S.
pneumoniae EF3030 biofilms on an epithelial substratum closely mimic in vivo biofilms
that form during asymptomatic colonization (6, 8). On the human upper respiratory
mucosa, polymicrobial interactions within the microbiome likely impact the mecha-
nisms of disease induction by the pneumococcus and other cocolonizing microbes.
Studies designed to delineate these complex interactions are warranted and the
whole-genome sequence of S. pneumoniae EF3030 will contribute to the identification
and characterization of bacterial factors critical for these processes.

Whole-genome sequencing was performed on an Illumina MiSeq instrument, which
generated 1,646,744 paired-end reads, with an average read length of 151 bp (219�

coverage). An initial reference assembly of the paired-end reads was first performed
against S. pneumoniae R6, from which multilocus sequence type (MLST) (12) loci (aroE,
gdh, gki, recP, spi, xpt, and ddl) were extracted. These loci were then used in an MLST
comparison to the available completed S. pneumoniae genomes, from which we
determined that S. pneumoniae CGSP14 (GenBank accession number CP001033) was
the most closely related strain. The raw S. pneumoniae EF3030 reads were then
reassembled to the S. pneumoniae CGSP14 genome, using Bowtie 2 with the very
sensitive local preset (13), SAMtools (14), BCFtools (15), and vcfutils (16). The exact code
for this assembly was “samtools mpileup -uf ./spn_cgsp14.fna sorted.bam | bcftools call
-c | vcfutils.pl vcf2fq � cns.fq.” An additional de novo assembly employed SOAP-
denovo2 (kmer size, 80) (17) and identified seven protein-coding contigs not in the
reference assembly. These were all homologous to previously identified S. pneumoniae
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genes and consequently were already contained in the S. pneumoniae pan-genome
(18). These data were submitted to the NCBI Prokaryotic Genome Annotation Pipeline
(19) for annotation. The annotation consisted of 2,193 total genes, including 2,120
coding DNA sequences (CDSs), 73 RNA-encoding genes (4 complete rRNA operons, 58
tRNAs, and 3 noncoding RNAs [ncRNAs]), and 199 pseudogenes.

Data availability. The draft genome sequence has been deposited in NCBI GenBank
under the accession number CP026549. The raw data were deposited in the Sequence
Read Archive under BioProject accession number PRJNA432428.
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