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ABSTRACT Thermal effluents from nuclear power plants greatly change the envi-
ronmental and ecological conditions of the receiving marine water body, but knowl-
edge about their impact on microbial ecology is limited. Here we used high-
throughput sequencing of the 16S rRNA gene to examine marine bacterioplankton
metacommunity assembly across thermal gradients in two representative seasons
(i.e., winter and summer) in a subtropical bay located on the northern coast of the
South China Sea. We found high heterogeneity in bacterioplankton community com-
positions (BCCs) across thermal gradients and between seasons. The spatially struc-
tured temperature gradient created by thermal effluents was the key determinant of
BCCs, but its influence differed by season. Using a metacommunity approach, we
found that in the thermal discharge area, i.e., where water is frequently exchanged
with surrounding seawater and thermal effluent water, the BCC spatial patterns were
shaped by species sorting rather than by mass effects from surrounding seawater or
by dilution of thermal effluent water by surrounding seawater. However, this effect
of species sorting was weaker in summer than in winter seawater. In both seasons,
the bacterioplankton community structure was predominately determined by niche
sharing; however, the relative importance of niche segregation was enhanced in
summer seawater. Our findings suggest that for the seasonal differences in meta-
community processes, the BCCs of subtropical summer seawater were more sensitive
to temperature and were more difficult to predict than those of winter seawater in
the face of different intensities of thermal impacts.

IMPORTANCE Understanding the mechanisms of bacterial community assembly
across environmental gradients is one of the major goals of marine microbial ecol-
ogy. Thermal effluents from two nuclear power plants have been present in the sub-
tropical Daya Bay for more than 20 years and have generated a comparatively stable
and long thermal gradient (a temperature increase from 0 to 10°C). The environmen-
tal patches across thermal gradients are heterogeneous and very strongly intercon-
nected on a microbial scale; thus, this is a useful model for the study of the meta-
community processes (i.e., patch dynamics, species sorting, mass effects, and neutral
processes) that underlie marine bacterioplankton assembly. The significance of our
research is to reveal how environmental conditions and dispersal-related processes
interact to influence bacterioplankton metacommunity processes and their seasonal
differences across thermal gradients. Our results may advance the understanding of
marine microbial ecology under future conditions of global warming.
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The increasing number of marine nuclear power plants has given rise to concerns
about the undesirable thermal effects of power plant cooling systems on marine

environments and ecology (1–3). Bacterioplankton play important roles in the ecolog-
ical processes of marine ecosystems (4, 5). Despite their ecological importance, the
response of bacterioplankton communities to thermal effects is not as well understood
as those of phytoplankton (1, 6–9), protozoa (10), zooplankton (11), and fish (12).
Current studies about thermal effects on marine bacterioplankton communities have
focused mainly on production (13), respiration (14), and the growth rate (15). Studies
suggest that thermal effluents have profound impacts on bacterioplankton metabolism
abilities and that the effects are dependent on the season (13–15). Bacterioplankton
community compositions (BCCs) subject to thermal effects, however, have rarely been
examined by use of high-throughput sequencing, except for a recent study showing
that thermal effluents from a coal power plant (water temperature, 15.0 to 18.6°C) had
significant effects on marine spring BCCs (16). The habitats with more thermal effluents
had lower relative abundances of Alphaproteobacteria and Gammaproteobacteria but
higher relative abundances of Cyanobacteria (16). Our knowledge about the thermal
impact of nuclear power plants on BCCs is thus inadequate. We know little about the
seasonal differences in BCC responses to thermal effluents and the underlying ecolog-
ical mechanisms.

Exploring the mechanisms of bacterioplankton assembly is one of the major goals
of marine microbial ecology (17–19). Generally, aquatic bacterioplankton community
structure is shaped by environmental or dispersal-related processes (see, e.g., refer-
ences 20 to 22). Metacommunity theory incorporates the interplay between environ-
mental conditions and dispersal-related processes into four main categories: patch
dynamics, species sorting, mass effects, and neutral processes (23). Dispersal-related
processes include mass effects and dispersal limitation (20, 23). Very high dispersal rates
can result in mass effects, with taxa existing in less suitable habitats due to continuous
supply (23, 24), whereas very low dispersal rates can result in dispersal limitation,
leading to purely spatial biogeography patterns (20). Neutral processes imply a lack of
differences in bacterial fitness and niche, so that community structure depends on
demographic stochasticity (23, 24). Species sorting in metacommunity concepts is
similar to niche separation and sharing (25, 26), emphasizing niche roles above and
beyond spatial dynamics (18, 23).

Thermal effluents from nuclear power plants generate thermal gradients in the
discharge area (2, 8, 27). The environmental patches across thermal gradients are
heterogeneous and very strongly interconnected on a microbial scale (2, 8); thus, this
is a useful model with which to study the environmental and dispersal-related pro-
cesses that underlie marine bacterioplankton assembly (18). Bacterioplankton are easily
dispersed through both flowing thermal effluent water and water flows and tides from
the surrounding seawater. High dispersal rates in the thermal effluent area may induce
mass effects with strong source-sink relations among heterogeneous habitats (23).
Across thermal gradients, mass effects probably swamp the species-sorting roles of
thermal effects and result in greater difficulty in predicting bacterioplankton commu-
nities on the basis of local environmental characteristics (23). The BCC patterns across
thermal gradients may be determined by mass effects from surrounding seawater or
spatial factors due to the continuous dilution effect of surrounding seawater on thermal
effluent water. In addition, due to seasonal differences in hydrologic and environmental
conditions, bacterioplankton metacommunity processes across thermal gradients may
differ by season. However, thus far, research on the potential ecological mechanisms of
bacterioplankton assembly subject to thermal effects is scarce, and we know little
about the way in which the environmental conditions and dispersal-related processes
interact to influence bacterioplankton community structure and their seasonal differ-
ences in response to thermal effects.

To determine the spatial distribution of bacterioplankton communities across ther-
mal gradients, their seasonal differences, and the underlying ecological mechanisms,
we used high-throughput sequencing of the 16S rRNA gene to study marine BCCs
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across thermal gradients in two representative seasons (i.e., winter and summer) in a
subtropical bay (Daya Bay) located on the northern coast of the South China Sea (Fig.
1). In the area studied, thermal effluents from the cooling systems of two nuclear power
stations have been present for more than 20 years and have generated a comparatively
stable and long thermal gradient (a temperature increase from 0 to 10°C [2, 8]). There
are strong seasonal differences in both hydrologic and environmental conditions in the
area studied. For instance, compared to summer, winter is usually characterized by
hydrologic conditions of a higher tide level and higher current velocity but lower wind
speed (6, 28, 29) and has the environmental traits of lower temperatures but higher
concentrations of dissolved oxygen (DO) (2, 3). We used a metacommunity approach
(17, 18, 22) as a logical framework for studying the impact of the environmental
conditions and dispersal-related processes underlying bacterioplankton assembly (30,
31). The potential species-sorting processes (e.g., niche separation and sharing) were
further examined by a co-occurrence network analysis of bacterioplankton communi-
ties (32, 33). We hypothesized that (i) in the thermal discharge area, i.e., where water is
frequently exchanged with surrounding seawater and thermal effluent water, the
thermal effluents may have nonsignificant species-sorting effects on marine bacterio-
plankton assembly; (ii) the BCC pattern across the thermal gradient may depend on
spatial factors because of the continuous dilution effect of surrounding seawater on
thermal effluent water; and (iii) due to seasonal differences in hydrologic and environ-
mental conditions, bacterioplankton metacommunity structure and processes under
thermal impacts may differ by season.

RESULTS
Environmental characteristics. In each season studied, the thermal effluents from

the two nuclear power plants had profound influences on the water temperature (see
Fig. S1 and S2 in the supplemental material). In the winter, the water temperature
increased from 21°C to 31°C, and in the summer, the temperature increased from 31°C
to 39°C. In both seasons, the water temperature decreased significantly along our
sampling sites (from site 1 to site 5) (P, �0.05 by one-way analysis of variance [ANOVA]
in both cases) (Fig. S1 and S2), whereas the DO content of the water increased
significantly (P, �0.05 by one-way ANOVA in both cases) (Fig. S1 and S2). In both
seasons studied, the total organic carbon (TOC), NH4

�-N, PO4
3–-P, and SiO3

2– contents

FIG 1 Sampling sites across the thermal gradients in subtropical Daya Bay on the northern coast of the South China Sea. Five sites were set for sampling in
each season. Four sites were located along the thermal effluent (WS1, WS2, WS3, and WS4 for the winter and SS1, SS2, SS3, and SS4 for the summer), and the
remaining site (WS5 for the winter and SS5 for the summer) was set as a control and was located in the inflow area of the cooling system upstream of the
thermal effluents. The maps were generated based on an open-access Google satellite map using the ggmap package (https://github.com/dkahle/ggmap) in
the R statistical computing environment (https://www.R-project.org).
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had no obvious differences across the thermal gradient (P, �0.05 by one-way ANOVA
in all cases) (Fig. S1 and S2). Between the two seasons studied, the environmental
characteristics temperature, pH, and PO4

3–-P and NO3
–-N concentrations were signifi-

cantly higher in summer than in winter seawater (P, �0.05 by the t test in all cases) (Fig.
S1 and S2), whereas DO and SiO3

2– concentrations were significantly lower in summer
than in winter seawater (P, �0.05 by the t test in both cases) (Fig. S1 and S2).

Shifts in community structure. The main bacterioplankton in seawater in both
summer and winter were Actinobacteria, Bacteroidetes, Cyanobacteria, Alphaproteobac-
teria, Gammaproteobacteria, Planctomycetes, and Verrucomicrobia. The relative abun-
dances of these bacterioplankton groups were significantly different for the two
seasons (P, �0.05 by the t test in all cases) (Fig. 2), and for each season, the relative
abundances were significantly different across the thermal gradient (P, �0.05 by
one-way ANOVA in all cases) (Fig. 2). In the winter, the thermal impact increased the
relative abundances of Actinobacteria, Cyanobacteria, Gammaproteobacteria, Plancto-
mycetes, and other rare phyla (relative abundance of total sequences, �1%) and
decreased the relative abundances of Bacteroidetes and Alphaproteobacteria (Fig. 2a).
However, in the summer, the sites with more effluents had higher relative abundances
of Alphaproteobacteria and Gammaproteobacteria and lower relative abundances of
Actinobacteria, Bacteroidetes, Planctomycetes, and Verrucomicrobia (Fig. 2b). The relative
abundance of Cyanobacteria (primarily Synechococcus) was significantly higher in sea-

FIG 2 Differences in the spatial distributions of the relative abundances of bacterioplankton clades across
the thermal gradients in winter (a) and summer (b) seawater. The phyla and subphyla are shown in blue
boldface. Following the abundant phyla and subphyla (Actinobacteria, Bacteroidetes, Cyanobacteria, Alpha-
proteobacteria, and Gammaproteobacteria), their abundant families are listed.
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water in the summer than in the winter (Fig. 2a and b), and the relative abundance
increased as the thermal effluents intensified but decreased when the water temper-
ature was approximately 39°C (Fig. 2a and b).

At the level of operational taxonomic units (OTUs), our results showed that winter
and summer had significantly different BCCs across the thermal gradients, as revealed
by detrended correspondence analysis (DCA) and permutational multivariate analysis
of variance using distance matrices (PERMANOVA) (F � 39.687; P � 0.01) (Fig. 3a; see
also Table S1 in the supplemental material). In each season, significant differences in
community structure were detected among the five sampling sites by PERMANOVA
(F � 5.919, P � 0.01 for winter; F � 9.284, P � 0.01 for summer) (Table S1), and the sites
with more thermal effluents had BCCs that differed more dramatically from those of the
control site (Fig. 3b and c). Pairwise comparisons by PERMANOVA showed that in the
winter, the BCCs were significantly different between any two thermal effluent sites
(P, �0.05 in all cases), except for the comparisons of WS2 and WS3 and the comparisons
of WS3 and WS4 (Table S1). However, in the summer, the BCC differences in all pairwise
comparisons of the thermal effluent sites (from site 1 to site 4) were significant
(P, �0.05 in all cases) (Table S1).

Relating community structure to environmental factors and geographic dis-
tances. Variance partitioning analysis (VPA) for each season revealed that the subset of
pure environmental variables explained a larger portion of the BCC variation in winter
(32.7%) than in summer (13.9%) seawater (Table 1). The geographic distances between
sampling sites also had an effect on bacterioplankton community structure and, by
themselves, explained 7.8% of winter community structure and 2.3% of summer
community structure (Table 1). The VPA results were further tested by redundancy
analysis (RDA)-based partial permutation tests, and the results showed that in both
seasons, bacterioplankton community structures across the thermal gradient were

FIG 3 (a) Detrended correspondence analysis (DCA) of bacterioplankton community structures in winter and
summer seawater. (b and c) BCC dissimilarities between sites along the thermal effluent (winter: WS1, WS2, WS3,
and WS4; summer: SS1, SS2, SS3, and SS4) and control sites (winter, WS5; summer, SS5) located in the inflow area
in winter (b) and summer (c) seawater.

TABLE 1 Variance partitioning analysis for BCCsa

Factor(s)

% of variation in BCCb

Winter Summer

Pure E 32.7 13.9
Pure G 7.8 2.3
Mixed effect 25.5 22.2
Residuals 34.0 61.6
aE, environmental variables; G, geographic distance between sampling sites; mixed effect, mixed effects of
geographic distance and environmental variables; residuals, unexplained components. The PCNM (principal
coordinates of neighborhood matrix) method was performed to transform geographic distances between
any pair of sites within S1, S2, S3, and S4 into 7 principal coordinates (from pcnm1 to pcnm7) in each
season.

bThe best subset of environmental parameters (winter: temperature; summer: temperature and dissolved
oxygen) and geographic distance (winter: pcnm1 and pcnm4; summer: pcnm1 and pcnm7) in the VPA was
chosen by the BIOENV procedure.
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significantly explained by purely environmental factors (F � 7.192, P � 0.001 for winter;
F � 9.495, P � 0.001 for summer) rather than by geographic distances only (F � 1.024,
P � 0.05 for winter; F � 1.152, P � 0.05 for summer) (Table 1). A larger portion of
community structure could not be explained by the selected environmental factors and
geographic distances in summer (61.6%) than in winter (34.0%) seawater (Table 1). In
addition, strong mixed effects of the selected environmental factors and geographic
distances (25.5% for winter; 22.2% for summer) were detected (Table 1).

We found that in each season, the seawater temperature was a key environmental
factor in determining bacterioplankton community structure across the thermal
gradient (Fig. 4a and b) and that in any pairwise comparison of sampling sites, the
Bray-Curtis dissimilarities in BCC correlated positively with temperature differences
(R2 � 0.506, P � 0.001 for winter; R2 � 0.355, P � 0.001 for summer [Fig. 4c and d]).
However, the regression coefficient for the correlation between the BCC dissimilarities
and the temperature differences was significantly higher for seawater in summer than
in winter (P � 0.01) (Fig. 4c and d).

Shifts in bacterioplankton network structure. OTU co-occurrence patterns and
their relationships with environmental factors were investigated by co-occurrence
network analysis (Fig. 5). A network of 332 nodes and 2,183 links was obtained for
winter BCCs (Fig. 5a), and the network was fragmented into 8 components (Table 2).
The summer BCCs resulted in a network of 314 nodes and 2,226 links that was
fragmented into 4 components (Fig. 5b; Table 2). The observed networks of both the
winter and summer bacterioplankton communities were significantly different from the
corresponding random networks in the topological properties of average shortest path
length, clustering coefficient, and topological coefficient (P, �0.05 in all cases). The
observed-versus-random network clustering coefficient ratio (log response ratios, 0.99
for the winter network and 0.94 for the summer network) showed that the connectivity
of the two networks fitted the power law model well and that the two networks were
scale free. In addition, the observed clustering coefficients and characteristic path
lengths were both greater than those of the corresponding random networks with the

FIG 4 (a and b) Redundancy analysis (RDA) of bacterioplankton community compositions (BCCs) and the envi-
ronmental factors examined in winter (a) and summer (b) seawater. The environmental factors that correlated
significantly with BCCs are shown in red. (c and d) Correlations between Bray-Curtis dissimilarities in BCC and
temperature differences, determined by pairwise comparisons of sampling sites, in winter (c) and summer (d)
seawater.
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same network nodes and edges (Table 2), indicating that the networks of both the
winter and summer BCCs showed small-world characteristics. In both seasons, the
bacterioplankton communities tended to be copresent more than would be expected
by chance; however, fewer copresence links and more exclusion links were observed in
the co-occurrence network for the summer than in that for the winter (Table 2). The
keystone species OTUs (depicted as nodes with a high degree in the network) differed
greatly between the winter and the summer networks (see Fig. S3 in the supplemental
material). The top 50 keystone OTUs belonged mainly to the phyla Alphaproteobacteria
and Gammaproteobacteria in the winter network and were affiliated with the phyla
Bacteroidetes and Alphaproteobacteria in the summer network (Fig. S3).

For both the summer and winter networks, temperature was among the most
connected nodes. The subnetwork built around temperature showed that more OTUs
correlated significantly with the temperature in seawater in the summer than in the
winter (Fig. 5; see also Fig. S4 in the supplemental material). In the winter subnetwork,
temperature tended to have positive correlations with OTUs (37 positive links; 46 total
links), including the classified clades belonging to the phyla Alphaproteobacteria (12

FIG 5 Co-occurrence network structures in winter (a) and summer (b) seawater. The networks are visualized with group attribute layouts
based on phylum or subphylum. Nodes that were significantly correlated with water temperature are shown in dashed boxes. The colors
of the nodes indicate different phylum or subphylum OTUs, as shown in the key at the bottom. An orange line indicates a positive
interaction between two OTUs (nodes), while a black line indicates a negative interaction.
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positive links; 20 total links), Gammaproteobacteria (9 positive links; 11 total links), and
Planctomycetes (3 positive links; 3 total links) (Fig. S4). However, in the summer
subnetwork, temperature tended to have negative correlations with OTUs (61 negative
links; 68 total links), including the classified clades belonging to the phyla Actino-
bacteria (8 negative links; 8 total links), Bacteroidetes (26 negative links; 27 total
links), Alphaproteobacteria (8 negative links; 11 total links), and Gammaproteobac-
teria (4 negative links; 6 total links) (Fig. S4). In the subnetworks that included only
temperature-related and unrelated nodes, fewer copresence links and more exclu-
sion links were observed in seawater in the summer than in the winter (Fig. 5; see also
Table S2 in the supplemental material). By removing the OTUs that had significant
correlations with temperature from the networks, subnetworks were generated (see Fig. S5
in the supplemental material), and these showed fewer copresence links and more exclu-
sion links in seawater in the summer than in the winter (Fig. S5 and Table S2).

DISCUSSION

The thermal effluents from two nuclear power plants in Daya Bay have been present
for more than 20 years and have generated comparatively stable and long thermal
gradients (a temperature increase from 0 to 10°C) in the discharge areas. The environ-
mental patches across thermal gradients are heterogeneous and very strongly inter-
connected on a microbial scale; thus, this is a useful model for the study of the
metacommunity structure and processes of bacterioplankton. Our results showed that
the bacterioplankton community structure was highly heterogeneous across the ther-
mal gradients and between winter and summer. Using a metacommunity approach, we
found that the spatial BCC patterns in the thermal discharge area were significantly
explained by purely environmental factors rather than by purely spatial factors, sug-
gesting that species sorting had a strong effect on bacterioplankton assembly. How-
ever, this species-sorting effect was weaker in summer than in winter seawater.
Co-occurrence network analysis revealed that bacterioplankton communities coexisted
more (copresence links) than expected by chance in both seasons; however, the
exclusion links/total links ratio was higher in summer seawater than in winter seawater.

Thermal effluents had significant impact on bacterioplankton community
structure; however, the effect differed by season. High heterogeneity of bacterio-
plankton community structure was detected across the thermal gradients and between
seasons, even at coarse levels of taxonomic resolution, reflecting the different environ-
mental optima of bacterioplankton taxa across the thermal gradients and between

TABLE 2 Major topological properties of the empirical bacterioplankton co-occurrence
networks in seawater in winter and in summer and their associated random networks

Parameter

Winter Summer

Observed Random Observed Random

No. of original OTUs 500 500
No. of nodes 332 332 314 314
No. of edges 2,183 2,183 2,226 2,226
Avg no. of neighbors 13.15 13.15 14.18 14.18
Clustering coefficient 0.407 0.041 0.384 0.044
Betweenness centrality 0.0087 0.0047 0.016 0.0047
Closeness centrality 0.308 0.394 0.254 0.407
Network diam 11 4 14 4
Network radius 1 3 1 3
Network centralization 0.155 0.039 0.183 0.038
Network density 0.04 0.04 0.045 0.045
Characteristic path length 3.86 2.539 4.784 2.461
Network heterogeneity 1.122 0.271 0.952 0.264
Connected components 8 1 4 1
Log response ratio 0.99 0.94
Copresence links 1,696 1,429
Exclusion links 487 797
Exclusion links/total links 0.22 0.36
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seasons (34–37) or differences in the intensity of water warming (16). In findings similar
to our winter results, decreased relative abundances of Alphaproteobacteria and Gam-
maproteobacteria in warmer waters were also observed by Xiong et al. (16) and Von
Scheibner et al. (38) in investigations of water temperatures from about 20°C to 30°C.
In addition, we showed that high temperatures of �38°C promoted the relative
abundance of Cyanobacteria (primarily Synechococcus), supporting previous observa-
tions that temperature was an important factor influencing Synechococcus distribution
and was positively correlated with the abundance of Synechococcus when the temper-
ature was in an adaptive range (39, 40). In summer seawater, we found lower percent-
ages of Actinobacteria at sites with more thermal effluents, which was probably related
to the obviously increased relative abundance of Cyanobacteria. This finding is consis-
tent with previous reports showing negative relationships between the relative abun-
dances of Cyanobacteria and Actinobacteria in aquatic ecosystems (19, 41). Further-
more, Bacteroidetes have been found to be likely to attach to marine eukaryotic algae
or animals (42, 43). The decreased abundances of eukaryotic algae and zooplankton
under thermal impacts in our study area (2, 3, 8) might therefore be one of the reasons
for the lower relative abundances of Bacteroidetes at sites with higher levels of effluents
in summer seawater.

Among all the environmental factors examined, the spatially structured temperature
created by thermal effluents played the strongest role in determining bacterioplankton
metacommunity structure across thermal gradients in both seasons studied. Differ-
ences in traits cause different bacterial populations to have different sensitivities to
temperature during their growth processes (44–47); thus, temperature is one of the
most important factors in shaping bacterioplankton community structure (19, 35, 48).
This finding was further confirmed by the positive linear correlations between BCC
dissimilarities and temperature differences in any pairwise comparison of sampling
sites. A higher regression coefficient was also observed for summer seawater than for
winter seawater, indicating that summer bacterioplankton communities showed higher
turnover in response to temperature and thus were more sensitive to thermal impacts
than winter bacterioplankton communities. This finding might be related to the fact
that to keep up with the increased rates of biological activity (for example, colonization,
extinction, reproduction, and dispersal) created by faster metabolic kinetics in warmer
environments (i.e., summer versus winter coastal ecosystems), aquatic organisms must
maintain higher turnover at higher temperatures (11, 49).

In a network analysis, we found that temperature had more positive correlations
with OTUs in winter seawater and showed more negative correlations with OTUs in
summer seawater. In Daya Bay, the surface water temperature is �25°C during most of
the year, reaching a minimum of 14°C in January and a maximum of 32.8°C in July (50).
Because of the adaptation of local bacterioplankton communities to the ambient
temperature (51), most bacterioplankton may have an optimum temperature near the
average water temperature of Daya Bay. In the winter, the background sea temperature
in the bay was 21°C, and increased water temperatures caused by thermal effluents
might promote the growth of most bacterioplankton taxa. In the summer, the ambient
seawater temperature was 31°C, which might be higher than the optimum temperature
of many bacterioplankton taxa; thus, the increased water temperatures caused by
thermal effluents might stress and inhibit the growth of more bacterioplankton taxa
(52).

BCC spatial patterns were predominantly shaped by species sorting, but this
effect was weaker in summer than in winter seawater. We found significant
heterogeneity in the BCCs across the thermal gradients in both seasons, suggesting
that in the thermal discharge area, i.e., where water is frequently exchanged with the
surrounding seawater (current velocity, 0.05 to 0.10 m/s [28, 29]), the high dispersal
rates of bacterioplankton communities between specific habitats and the surrounding
seawater did not induce mass effects with BCC homogenization across thermal gradi-
ents. The VPA revealed that in each season, the BCC variations across the thermal
gradient were significantly explained by purely environmental factors rather than by
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geographic distances only, suggesting that species sorting played a more important
role than the spatially dependent dilution role of surrounding seawater on the thermal
effluent water in generating BCC spatial patterns across thermal gradients. Previous
studies suggest that the strong effect of species sorting is most likely due to the
extremely high population growth rates of bacteria (21, 30). Studies of currents that
focused on the dynamics of bacterioplankton community structure have confirmed
that BCCs can rapidly track changes in the environment (53–55). Therefore, the persis-
tence of newly arrived bacterioplankton populations that migrated via flowing water
was more likely to be determined by species sorting of heterogeneous patches than by
mass effects (56). This result was in accordance with recent studies that revealed that
bacterial spatial distributions were more closely linked to local environmental charac-
teristics than to purely spatial factors (30, 57).

Our results showed that across thermal gradients, purely environmental factors
explained a smaller portion of bacterioplankton community structure in summer than
in winter seawater, suggesting weaker species sorting of bacterioplankton metacom-
munity processes in summer than in winter seawater. A larger portion of the BCC
variation could not be explained by the selected environmental factors and geographic
distances for summer than for winter seawater, suggesting that bacterioplankton
assembly might be more stochastic and difficult to predict on the basis of the
environmental and spatial factors examined in summer than in winter seawater. This
result was further confirmed by linear correlations of the BCC Bray-Curtis dissimilarities
with temperature differences between any pair of sampling sites, which show a lower
correlation coefficient for summer correlations than for winter correlations. Previous
studies showed that the exponential increase in the metabolic rate as the temperature
increases affects nearly all biological processes (11, 49). Thus, in the two seasons
studied, high temperatures in summer seawater may simply increase the stochasticity
of the colonization and extinction of bacteria across thermal gradients. Moreover, the
higher level of disorder in biological and environmental conditions created by faster
metabolic kinetics and irregular molecular movement in summer seawater may also
contribute to the enhanced stochasticity of the bacterioplankton assembly (11, 19, 58)
and make bacterioplankton assembly more difficult to predict on the basis of environ-
mental and geographic factors in summer than in winter seawater. Our results also
revealed strong mixed effects of temperature and geographic distance in both seasons,
emphasizing that marine bacterioplankton assembly was determined by spatially
structured environmental gradients (16, 59).

Niche sharing dominated the processes of species sorting, but the relative
importance of niche segregation was enhanced in summer seawater. Co-
occurrence networks allow a deeper analysis of the ecological processes structuring
microbial communities, such as neutral processes and species sorting (e.g., niche
sharing and segregation) (32, 33). Our results showed that the observed co-occurrence
networks of both the winter and summer bacterioplankton communities were remark-
ably different from the corresponding random networks, suggesting that species
sorting plays a more important role than neutral processes in shaping marine bacte-
rioplankton assembly. This finding was in agreement with our VPA and other evidence
in recent studies (19, 33). Our study also revealed that bacterioplankton communities
coexisted more (copresence links) than expected by chance in both seasons. Copres-
ence links could be caused by niche sharing because of ecological interactions, such as
facilitative or mutual attraction, while exclusion links could result from niche segrega-
tion due to competition interactions (32, 60). In the thermal discharge seawater we
studied, co-occurrence bacteria tended to show more niche sharing than niche segre-
gation in both winter and summer seawater, suggesting that although co-occurrence
taxa were more likely to share nutritional resources and thus compete more, they
tended to co-occur frequently, probably because they also shared other traits (e.g.,
cross-feeding, coaggregation, or cocolonization) that allowed them to survive together.

The summer seawater temperature was higher than the optimum temperature of
many bacterioplankton taxa, and the increased temperatures caused by thermal efflu-
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ents might inhibit the growth of many heat-sensitive taxa (52). Therefore, the roles of
niche segregation between heat-sensitive and -insensitive OTUs might be enhanced in
summer seawater (52). This inference was further confirmed by the co-occurrence
network analysis, which showed a higher ratio of negative correlations between the
relative abundances of the temperature-related and non-temperature-related OTUs in
the summer network than in the winter network. This finding probably reveals one of
the reasons for the higher sensitivity of bacterioplankton communities to temperature
in summer seawater than in winter seawater. Moreover, in the subnetworks excluding
temperature-related OTUs, a higher ratio of negative correlations between the relative
abundances of OTUs was also observed for summer seawater than for winter seawater,
suggesting that in addition to temperature, other factors (e.g., resources) might also
have had a species-sorting effect on bacterioplankton assembly and resulted in niche
segregation between co-occurrence OTUs in summer seawater. In the bay we studied,
where there is no shortage of nutrients, since it has been a typical aquaculture area for
years (50), bacterioplankton growth may not be constrained by resources in the winter.
However, in the summer, with further increases in the water temperature and higher
metabolic rates of bacterioplankton communities, resource consumption and demand
probably both continued to increase and likely resulted in the insufficiency of certain
resources for the growth of some bacterioplankton in higher-temperature habitats (58).
Therefore, the roles of niche segregation between resource-sensitive and -insensitive
OTUs might be enhanced in summer seawater (61). With the increased roles of niche
segregation, co-occurrence bacterioplankton OTUs in summer seawater tended to have
fewer copresence links and more exclusion links than those in winter seawater.

Conclusion. Our results suggest that in the thermal effluent area, i.e., where water
is exchanged very frequently with the surrounding seawater and thermal effluent
water, the spatial patterns of marine BCCs were significantly shaped by species sorting
rather than by mass effects or by the dilution of thermal effluent water by the
surrounding seawater. However, this species-sorting effect was weaker in summer than
in winter seawater. In addition, bacterioplankton metacommunity structure was pre-
dominately shaped by niche sharing in both seasons, but the niche segregation roles
were enhanced in summer community assembly. Finally, we propose that with the
enhanced niche segregation between heat-sensitive and -insensitive taxa and the
increased stochastic assembly processes in summer seawater, bacterioplankton com-
munities were more sensitive to thermal impacts and were more difficult to predict in
summer than in winter seawater in the face of different intensities of thermal impacts.

MATERIALS AND METHODS
Study area. Our study area, Daya Bay, is located in the northern South China Sea (22.5°N to 22.9°N,

114.5°E to 114.9°E) between Shenzhen and Huizhou in Guangdong Province near Hong Kong (Fig. 1). The
region of Daya Bay is characterized by a subtropical climate. The area of Daya Bay is 650 km2 at flood tide,
and its depth is between 6 and 15 m. The surface water salinity ranges from 22 to 33, and the
temperature ranges from 15°C to 32°C (2, 8, 27). The bay is dominated by an irregular semidiurnal tide
with a narrow tidal range. The mean wind velocity is 4.4 m/s in winter and 4.8 m/s in summer (8, 27). The
two nuclear power stations are located in Dapeng Cove, which is an important maricultural area (27). The
1,800-MW Daya Bay Nuclear Power Station (DNPS) has operated since 1994 and discharges heated water
at a rate of 2.9 � 107 m3/year (3). Another nuclear power station, the Lingao Nuclear Power Station
(LNPS), which is located near the DNPS, has been in operation since 2002. In the cooling system, cooling
water is drawn from intake points in a coastal water body. After going through the cooling systems,
heated water is released back into the same water body at a unified outlet site away from the intake
points. The velocity of thermal effluents at the outlet site is about 2.0 m/s (3, 28, 29). By the influence of
currents, the velocity of effluents is slowed down, with a mean velocity of about 0.08 m/s in the discharge
area (3, 28, 29). Thermal effluents elevate the temperature of the receiving water body and significantly
affect the ecosystems in Daya Bay (2, 27).

Water sampling and chemical determination. In our study area, Daya Bay, the warmest months in
the year of sampling (i.e., 2017) included June, July, August, and September, with an average high
temperature of 31.0°C; the coldest months were January, February, and December, with an average high
temperature of 21.0°C. Samples were collected on 7 January and 28 July 2017, which were typical winter
and summer days in the subtropical bay with water temperatures of 21.0°C and 31.0°C, respectively. For
this study, we set five sampling sites for each season. Four sites were located along the direction of the
thermal effluent (winter: WS1, WS2, WS3, and WS4; summer: SS1, SS2, SS3, and SS4), and the remaining
site (winter, WS5; summer, SS5) was set as a control and was located in the inflow area of the cooling
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system upstream of the thermal effluents (Fig. 1). In winter and summer, the site layouts were
inconsistent due to the differences in hydrologic conditions (e.g., higher tide level and higher current
velocity in winter than in summer seawater [28, 29]). At each sampling site, we obtained three replicates.
The maps of the sampling sites were generated based on an open-access Google satellite map using the
ggmap package (https://github.com/dkahle/ggmap) in the R statistical computing environment (https://
www.R-project.org) (Fig. 1). A 5-liter surface seawater sample was collected at each replicate site and was
filtered through 0.2-�m-pore-size Isopore filters (Millipore, Billerica, MA, USA). Before the experiments,
the filters were unsealed and UV sterilized in a clean bench. The filters were stored at –70°C until further
analyses of the bacterioplankton communities. The water temperature, dissolved oxygen, pH, and salinity
were measured in the field. Approximately 500 ml of surface water was collected for the nutrient analysis.
Ammonium nitrogen (NH4

�), nitrate nitrogen (NO3
–), soluble reactive phosphate (PO4

3–), and silicate
(SiO3

2–) levels (all measured in micromoles per liter) were determined using a UV-visible spectropho-
tometer (UV2450; Shimadzu, Tokyo, Japan) according to marine monitoring specifications (62). Total
organic carbon (TOC) was measured using a TOC analyzer (TOC-VCPH; Shimadzu, Tokyo, Japan) according
to a standard procedure (62).

DNA extraction, amplification, sequencing, and data processing. Genomic DNA was extracted
from the biomass collected on the filters using a PowerWater DNA isolation kit (MoBio Laboratories,
Carlsbad, CA, USA) and was purified using a PowerClean DNA clean-up kit (MoBio Laboratories, Carlsbad,
CA, USA). DNA was quantified, and its quality was determined, using a NanoDrop 2000 spectrophotom-
eter (Thermo Scientific, Wilmington, DE). The V3 and V4 hypervariable regions of bacterial 16S rRNA
genes were amplified with primers F341 (5=-CCTACGGGAGGCAGCAG-3=) and R806 (3=-GGACTACHVGG
GTWTCTAAT-5=). To pool multiple samples in one Illumina sequencing run, a unique 12-mer tag was
added to the 5= end of each primer for each DNA sample. Three replicates of each sample were PCR
amplified in a 50-�l reaction mixture, which contained 25 �l 2� PCR Premix Taq, 10 mM each primer,
60 ng of genomic DNA, and 20 �l of nuclease-free water. Cycling conditions were as follows: 94°C for
5 min, followed by 30 cycles of denaturation at 94°C for 30 s, annealing at 52°C for 30 s, extension at 72°C
for 30 s, and a final extension at 72°C for 10 min. The PCR products were visualized on 1% agarose gels,
and the positive amplicons were quantified using the PicoGreen dsDNA assay kit (Invitrogen Corporation,
Carlsbad, CA, USA) and were equally combined and purified with Zymo’s Genomic DNA Clean &
Concentrator kit (Zymo Research Corporation, Irvine, CA, USA). Finally, amplicons were sequenced using
the Illumina HiSeq 2500 platform.

Raw reads of the 16S rRNA gene sequences were processed using the mothur software package
(version 1.30.0, 2013) (http://www.mothur.org) according to the MiSeq standard operating procedure
(63). In brief, the raw reads were combined, denoised, trimmed, quality-filtered, and aligned to the SILVA
databases (64) using mothur. After initial processing, the high-quality sequences were clustered into
OTUs at a 97% similarity level. Each of the representative OTU sequences was classified using the SILVA
databases at the recommended bootstrap threshold of 80% (65). To minimize bias caused by sequencing
depth, all singletons and OTUs occurring in only one sample were excluded from the OTU table. To
correct for differences in sequencing depth, the minimum number of sequences in the whole sample (i.e.,
40,851 sequences per sample) was randomly subsampled for analyses of the following metrics described
below.

Network analysis. In each season studied, we selected the 500 most abundant OTUs, which
accounted for 88.2% of the total winter sequences and 83.9% of the total summer sequences, for the
performance of co-occurrence network analyses. We removed OTUs present in less than one-third of the
samples, because they could cause artifactual associations (32). By using the Cytoscape plugin CONET
(http://psbweb05.psb.ugent.be/conet/), significantly positive and negative interactions were identified
based on an ensemble approach that combined five different measures: Bray-Curtis and Kullback-Leibler
dissimilarities, Pearson and Spearman correlations, and mutual information (32). These five similarity
measures were computed to cover a wide range of relationships (e.g., linear or nonlinear), to address
noise and outliers, and to reduce the impact of choosing a single measure (32). For each measure, we
requested the 1,000 top positive and negative edges in the “threshold-setting menu” (32). P values were
further computed from method- and edge-specific permutations and bootstrap score distributions with
1,000 iterations each. Measure-specific P values were merged using Brown’s method and were corrected
for multiple testing by the Benjamini-Hochberg method. The unstable edges with scores outside the 0.95
range of their bootstrap distribution were removed. Co-occurrence networks were further visualized by
Cytoscape, version 3.5.1, with a group attribute layout based on the phylum or subphylum (66). The
subnetworks of nodes (OTUs) that had nonsignificant correlations with the seawater temperature were
also generated. The topology of the resulting undirected network was investigated using the imple-
mented tool network analyzer of Cytoscape (67) and was compared to an Erdös–Rényi random network
of similar size, which was calculated by the implemented tool Network Randomizer, version 1.1.3.

Statistical analyses. To assess the significant differences in the environmental characteristics and
the relative abundances of phyla and of lineages and clades across the thermal gradients and between
seasons, we conducted one-way ANOVA followed by post hoc comparisons and Student t tests using the
stats package in R. A detrended correspondence analysis (DCA) and permutational multivariate analysis
of variance using distance matrices (PERMANOVA) were performed to test the significant differences in
the BCCs across the thermal gradient and between seasons using the vegan package in R. Using the
lmPerm package in R, analysis of covariance (ANCOVA) with permutation tests was used to test the
differences between the summer and winter regression lines formed between BCC dissimilarities and
temperature differences for any pair of sampling sites.
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The PCNM (principal coordinates of neighborhood matrix) method was used to transform geographic
distances between any pair of sites within S1, S2, S3, and S4 into rectangular data that were suitable for
constrained ordination or regression. A partial redundancy analysis (RDA)-based variance partitioning
analysis (VPA) was carried out to partition the variations in BCCs across sites S1, S2, S3, and S4 into purely
environmental, purely geographic distance-related, mixed geographic distance- and environment-
related, and unexplained components (30, 31). The best subset of environmental parameters and
geographic distance in the VPA was chosen by the BIOENV procedure. The VPA results were further
tested by RDA-based partial permutation tests. To further identify the key environmental factors that
significantly explained the BCC pattern across the thermal gradient, RDA was performed. The models in
RDA were validated by analysis of variance. PCNM, VPA, BIOENV procedure, RDA, and RDA-based partial
permutation tests were all carried out in the vegan package of R. The top 50 keystone OTUs and the OTUs
that had significant links to the seawater temperature were visualized by heat maps using the phyloseq
package in R.

Accession number(s). The sequence data were submitted to the National Center for Biotechnology
Information (NCBI) Sequence Read Archive (SRA) (https://www.ncbi.nlm.nih.gov/sra) under accession
number SRP158638.
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