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Introduction: F-box proteins are the substrate-recognizing subunits of SKP1 (S-phase
kinase-associated protein 1)–cullin1–F-box protein (SCF) E3 ligase complexes that play
pivotal roles in multiple cellular processes, including cell proliferation, apoptosis, angio-
genesis, invasion, and metastasis. Dysregulation of F-box proteins may lead to an un-
balanced proteolysis of numerous protein substrates, contributing to progression of hu-
man malignancies. However, the prognostic values of F-box members, especially at mRNA
levels, in breast cancer (BC) are elusive. Methods: An online database, which is con-
structed based on the gene expression data and survival information downloaded from
GEO (http://www.ncbi.nlm.nih.gov/geo/), was used to investigate the prognostic values of
15 members of F-box mRNA expression in BC. Results: We found that higher mRNA ex-
pression levels of FBXO1, FBXO31, SKP2, and FBXO5 were significantly associated with
worse prognosis for BC patients. While FBXO4 and β-TrCP1 were found to be correlated
to better overall survival (OS). Conclusion: The associated results provide new insights into
F-box members in the development and progression of BC. Further researches to explore
the F-box protein-targetting reagents for treating BC are needed.

Introduction
Ubiquitin proteasome system (UPS) governs diverse cellular processes such as cell proliferation, cell cy-
cle progression, transcription, and apoptosis through targetting specific substrate proteins for ubiqui-
tylation and degradation. The ubiquitin-activating E1 enzyme, ubiquitin–conjugating E2 enzyme and
ubiquitin-protein E3 ligase exert the multistep enzymatic processes to catalyze the ubiquitinated sub-
strates. The SKP1–cullin1–F-box protein (SCF) E3 ligase complex, which is composed of the invariant
components S-phase kinase-associated protein 1 (SKP1), the E3 ligase RBX1 (also known as ROC1) and
cullin 1, as well as variable F-box proteins [1], is so far the best characterized E3 ligase family member
[2]. The F-box proteins are able to bind to a distinct subset of substrates though its WD40 or leucine-rich
domains and determine the substrate specificity of SCF complex [3]. Until now, 69 mammalian F-box pro-
teins have been identified, they can be organized into three subclasses [4]: (i) the well-studied β-TRCP1,
FBXW7 (also known as Fbw7, Sel-10, hCdc4, or hAgo), and β-TRCP2 (also known as FBXW11), which
contain WD40 repeat domains; (ii) FBXL family members, including SKP2 (also known as FBXL1), which
contain leucine-rich repeat domains; and (iii) FBXO proteins. Owing to the pivotal and indispensable roles
in cell cycle regulation that have been identified, the relationship between these proteins and tumorigen-
esis attract much attention [5].
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Table 1 Clinical characteristics of the microarray datasets used in the analysis

GEO ID Platform

Number
of

patients
Age

(years)
Tumor

size (cm) ER+
Lymph
node+ Grade 1 Grade 2 Grade 3

Relapse
event

Average
relapase-free
survival References

GSE12276 GPL570 204 NA NA NA NA NA NA NA 204 2.2 +− 1.8 Bos et al.
(2009)

GSE16391 GPL570 55 61 +− 9 NA 55 33 2 35 18 55 3.0 +− 1.2 Desmedt et
al. (2009)

GSE12093 GPL96 136 NA NA 136 0 NA NA NA 20 7.7 +− 3.2 Zhang et al.
(2009)

GSE11121 GPL96 200 NA 2.1 +− 1 NA 0 58 136 35 46 7.8 +− 4.2 Schmidt et
al. (2008)

GSE9195 GPL570 77 64 +− 9 2.4 +− 1 77 36 14 20 24 13 7.8 +− 2.5 Loi et al.
(2008)

GSE7390 GPL96 198 46 +− 7 2.2 +− 0.8 134 NA 30 83 83 91 9.3 +− 5.6 Desmedt et
al. (2007)

GSE6532 GPL96 82 64 +− 10 2.5 +− 1.2 70 22 0 54 1 19 6.1 +− 3.1 Loi et al.
(2007)

GSE5327 GPL96 58 NA NA 0 NA NA NA NA 11 6.8 +− 3.1 Minn et al.
(2007)

GSE4922 GPL96 1 69 2.2 1 0 1 0 0 0 12.17 Ivshina et al.
(2006)

GSE2494 GPL96 251 62 +− 14 2.2 +− 1.3 213 84 67 128 54 NA NA Miller et al.
(2005)

GSE2990 GPL96 102 58 +− 12 2.3 +− 1.1 73 15 27 20 36 40 6.6 +− 3.9 Sotirious et
al. (2006)

GSE2034 GPL96 286 NA NA 209 0 NA NA NA 107 6.5 +− 3.5 Wang et al.
(2005)

GSE1456 GPL96 159 NA NA NA NA 28 58 61 40 6.2 +− 2.3 Pawitan et al.
(2005)

Total 1809 57 +− 13 2.2 +− 1.1 968 190 227 534 312 646 6.4 +− 4.1

Breast cancer (BC) is the most common malignant disease that causes the most cancer-related deaths amongst
females worldwide [6]. According to the expression patterns of hormone and growth factor receptors, BCs are classi-
fied into four major molecular subtypes: luminal A and B, HER2-like, and basal-like. Due to the heterogeneous and
high morbidity of disease, the death rates of BC remain high [7]. Therefore, the detailed molecular mechanism un-
derlying the BC development and progression is important to be explored, and it is essential to identify novel targets
for predicting or treating BCs. Amongst the 69 F-box proteins, only four members—FBXW7, SKP2, β-TrCP1, and
β-TrCP2—have been extensively studied, and 15 of them are so far identified to play determined roles in cancers and
they are grouped into four categories: tumor suppressive, oncogenic, context-dependent, or undetermined functions
in cancer [4]. Nevertheless, the prognostic values of each individual F-box proteins, specially at the mRNA level in
BCs are still elusive.

Kaplan–Meier plotter (KM plotter) database is constructed based on the gene expression data and survival infor-
mation downloaded from GEO (http://www.ncbi.nlm.nih.gov/geo/) [8]. Owing to its ease of access to database, this
online survival analysis tool has been widely used to analyze the prognostic values of individual genes in lung can-
cer, ovarian cancer, gastric cancer, and BC [9–12]. In the present study, we selected 15 well-identified members of
F-box family to assess their prognostic values for BC. The relationship between F-box mRNA expression and clinical
characteristics were also analyzed by KM plotter database.

Materials and methods
An online KM plotter database [8] was used to assess the prognostic values of 15 F-box members’ mRNA expres-
sion in BC as previously described [11]. The background database of this online survival analysis tool was estab-
lished using gene expression data and survival information of 1809 patients (1402 BC patients with overall survival
(OS) data) downloaded from GEO (Affymetrix HGU133A and HGU133+2 microarrays) [8]. These two microarrays
are frequently used because these two arrays contain 22277 probe sets at nearly identical platforms. An overview
of the clinical data is presented in Table 1 [13–25]. Each of 15 individual members of F-box members were entered
into this online analysis database respectively (http://kmplot.com/analysis/index.php?p=service&cancer=breast), and
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Figure 1. The prognostic values of the mRNA expression of F-box in all BCs

Overexpression of FBXO1 (A), FBXO31 (B), SKP2 (C), and FBXO5 (D) are significantly associated with worse OS in all BC patients.

Overexpression of FBXO4 (E) and β-TrCP1 (F) are associated with better prognosis.

Kaplan–Meier survival curves were acquired. Hazard ratio (HR), 95% confidence intervals (CI), and log rank P-values
were also obtained on the webpages, and P-values of <0.05 were considered as statistically significant.

Results
Prognostic roles of F-box in all BC patients
We first examined the prognostic effects of 15 members of F-box mRNA in all BC patients by KM plotter database.
As shown in Figure 1, FBXO1 (HR = 1.39 95%CI: 1.12–1.72, P=0.0025), FBXO31 (HR = 1.37 95%CI: 1.10–1.69,
P=0.0040), SKP2 (HR = 1.85 95%CI: 1.49–2.30, P=0.0008), and FBXO5 (HR = 1.65 95%CI: 1.33–2.05, P=0.0004)
were significantly associated with worse OS in all BC patients (Figure 1A–D). However, FBXO4 (HR = 0.56 95%CI:
0.41–0.77, P=0.0003) and β-TrCP1 (HR = 0.73 95%CI: 0.59–0.90, P=0.0034) were associated with better prognosis
(Figure 1E,F). The mRNA expression levels of FBXW8, FBXL3, FBXO10, FBXO11, FBXO18, FBXO9, β-TrCP2, and
FBXL10 were not correlated with OS in all BC patients (Supplementary Figure S1).
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Figure 2. The prognostic values of the mRNA expression of F-box in luminal A type BCs

The high expression of FBXO1 (A), SKP2 (B), and FBXO5 (C) are correlated to worse survival, and FBXW8 (D) and β-TrCP1 (E) are

associated with longer OS in luminal A type BC patients.

Prognostic roles of F-box members in different BC subtypes
Then, we respectively assessed the prognostic effects of F-box in BCs with different intrinsic subtypes. For luminal A
type BC patients, FBXO1 (HR = 1.46 95%CI: 1.02–2.08, P=0.0358), SKP2 (HR = 1.80 95%CI: 1.25-2.57, P=0.0012),
and FBXO5 (HR = 1.92 95%CI: 1.33–2.76, P=0.0004) were correlated to worse survival (Figure 2A–C). Whereas
FBXW8 (HR = 0.55 95%CI: 0.33–0.92, P=0.0219) and β-TrCP1 (HR = 0.56 95%CI: 0.39–0.80, P=0.0014) were
significantly associated with longer OS (Figure 2D,E). The rest members of F-box were not correlated to prognosis in
luminal A type BC (Supplementary Figure S2).

In luminal B type BC patients, only high mRNA expression of FBXO4 was significantly associated with better
survival, the HR was 0.38 (95%CI: 0.18-0.79, P=0.0070, Figure 3A). The remaining F-box members did not show
any prognostic value in luminal B type BC patients (Supplementary Figure S3).

In HER2-overexpressing BC, high mRNA expression of FBXW8 was associated with poor prognosis, the HR was
2.29 (95%CI: 0.99, 5.30), P=0.0475 (Figure 3B). However, FBXL3 (HR = 0.36, 95%CI: 0.16–0.84, P=0.0134) was
significantly associated with better OS (Figure 3C). The rest of F-box members were not associated with prognosis in
HER2-overexpressing BC patients (Supplementary Figure S4).
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Figure 3. The prognostic values of some selected F-box in luminal B type, HER2-expressing or Basal-like BCs

Survival curves of FBXO4 (A) are plotted for luminal B type BC patients. Survival curves of FBXW8 (B) and FBXL3 (C) are plotted

for HER2-overexpressing BC patients. Survival curves of FBXW8 (D) are plotted for basal-like BC patients.

With regard to basal-like BC, none of the selected F-box members was associated with prognosis (Supplementary
Figure S5). Only FBXW8 (HR = 0.52, 95%CI: 0.27–1.01, P=0.051) was modestly associated with better prognosis
(Figure 3D).

Prognostic roles of F-box members in BC patients with different status of
TP53
Furthermore, we assessed prognostic values of F-box members in BCs with different status of TP53. As shown in
Table 2, only SKP2 (HR = 1.79, 95%CI: 0.92–3.49, P=0.0809) was modestly associated with worse survival for
wild-TP53-type BCs, the other F-box members were not correlated with prognosis. In mutant-TP53-type BC, FBXL3
was significantly associated with longer OS, however, the other F-box members did not show any prognostic values.

Prognostic roles of F-box members in BC patients with different
pathological grades
Next, we assessed prognostic values of F-box members in different pathological grade BCs. We could see from the
Table 3 that none of the F-box members was found to be associated with prognosis in grade I BC patients. While in
grade II BC, FBXW7 (HR = 0.27, 95%CI: 0.07–1.02, P=0.0383) was correlated with better OS, FBXO1 (HR = 2.10,
95%CI: 1.34–3.30, P=0.0001) and SKP2 (HR = 1.56, 95%CI: 1.01–2.40, P=0.0420) were significantly associated
with poor survival. However, the higher mRNA expression of FBXO4 (HR = 0.59, 95%CI: 0.35-0.99, P=0.0430) and
FXBL3 (HR = 0.52, 95%CI: 0.31–0.88, P=0.0136) were associated with better survival for grade III BCs.

Discussion
F-box protein is one of the core components of SCF multisubunit E3 ligase complex, it determines the substrate speci-
ficity of SCF complex by binding to substrates through WD40 or leucine-rich domains [3]. F-box family members are
divided into three subclasses, including 10 FBXW proteins, 22 FBXL proteins, and 37 FBXO proteins. F-box proteins
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Table 2 The association between the F-box members and the prognosis of BC with different p53 status

F-box family Affymetrix IDs p53 HR 95%CI P-value

FBXW7 229419 at Mutant 1.99 (0.50, 7.98) 0.3193

Wild / / /

FBXO4 223493 at Mutant 1.20 (0.32, 4.48) 0.7888

Wild / / 1.88)/

FBXW8 231883 at Mutant 1.01 (0.26, 3.90) 0.9886

Wild / / /

FBXL3 225132 at Mutant 0.11 (0.01, 0.91) 0.0136

Wild 1.28 (0.55, 3.01) 0.5648

FBXO1 204826 at Mutant 0.94 (0.44, 2.01) 0.8786

Wild 0.87 (0.46, 1.66) 0.6758

FBXO10 227222 at Mutant 0.83 (0.22, 3.07) 0.7745

Wild / / /

FBXO11 222119 s at Mutant 0.83 (0.38, 1.82) 0.6423

Wild 0.57 (0.29, 1.12) 0.1004

FBXO18 224683 at Mutant 0.50 (0.13, 2.02) 0.3248

Wild / / /

FBXO31 219785 s at Mutant 0.53 (0.24, 1.19) 0.1201

Wild 0.98 (0.51, 1.86) 0.9411

SKP2 203625 at Mutant 0.70 (0.33, 1.52) 0.3681

Wild 1.79 (0.92, 3.49) 0.0809

FBXO5 218875 at Mutant 1.02 (0.46, 2.27) 0.9562

Wild 1.24 (0.92, 3.49) 0.0809

FBXO9 238472 at Mutant 1.93 (0.48, 7.73) 0.3471

Wild / / /

β-TrCP1 216091 s at Mutant 1.47 (0.63, 3.43) 0.3684

Wild 1.01 (0.53, 1.92) 0.9799

β-TrCP2 209455 at Mutant 0.79 (0.37, 1.71) 0.5514

Wild 1.52 (0.79, 2.92) 0.2037

FBXL10 226215 s at Mutant 1.43 (0.38, 5.41) 0.6004

Wild / / /

are implicated in multiple cellular processes, including cell proliferation, apoptosis, angiogenesis, and invasion via me-
diating degradation of numerous substrates [4]. In this study, by using an online survival analysis tool, we found that
high mRNA expression of FBXO4 and β-TrCP1 were associated with better outcome for BCs, and FBXO1, FBXO31,
FBXO5, and SKP2 were significantly correlated to worse prognosis.

FBXO4 is generally identified as a tumor suppressor, FBXO4-deficient mice will develop highly aggressive
melanomas, as well as lymphomas, histolytic sarcomas, mammary and hepatocellular carcinomas [26,27]. Muta-
tion or loss of FBXO4 impairs the dimerization of the SCFFbx4 ligase, resulting in accumulation of nuclear cyclin
D1 and oncogenic transformation [28–30]. However, how FBXO4 determinates the cell fates of BC cells is unclear.
We searched the Pubmed database and did not find any articles on the relationship between FBXO4 and BC. Hence,
we used the KM plotter database to analyze the prognostic effect of FBXO4 in BC and found that high mRNA ex-
pression of FBXO4 was associated with longer OS for all BC patients. Additionally, high FBXO4 mRNA expression
was correlated to better survival in luminal B and grade III BC patients.
β-TRCP1 and β-TRCP2 either exert their oncogenic or tumor suppressive roles depending on the specific cel-

lular context(s). Interestingly, female mice with β-TRCP1−/− mammary glands exhibited hypoplastic phenotypes,
which suggested that β-TRCP1 was critical for tissue development [31]. β-TRCP1 was significantly up-regulated
in prostate cancer and hepatoblastoma [32], and high expression of β-TRCP1 at both mRNA and protein levels in
colorectal cancer were correlated with poor clinical prognosis [33]. However, in gastric cancers, somatic mutation
of β-TRCP1, which impaired ligase activity, contributed to tumor development and progression through β-catenin
stabilization [34]. In TNBC cells, knockdown of β-TRCP1 reduced the cell proliferative ability [35], implicating a
tumor suppressive role of β-TRCP1 in BC. Here, we showed that high mRNA expression of β-TRCP1 was associated
with longer OS in luminal A type BC or all BC patients. On the other hand, β-TRCP2 also has tumor type-dependent

6 c© 2019 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
License 4.0 (CC BY).



Bioscience Reports (2019) 39 BSR20180949
https://doi.org/10.1042/BSR20180949

Table 3 Correlation of F-box with different pathological grade status of BC patients

F-box family Affymetrix IDs Grades HR 95%CI P-value

FBXW7 229419 at I 0.57 (0.05, 6.27) 0.6390

II 0.27 (0.07, 1.02) 0.0383*

III 1.32 (0.79, 2.21) 0.2833

FBXO4 223493 at I 1.66 (0.15, 18.35) 0.6780

II 1.10 (0.35, 3.48) 0.8711

III 0.59 (0.35, 0.99) 0.0430*

FBXW8 231883 at I 0.26 (0.02, 3.57) 0.2910

II 0.94 (0.30, 2.92) 0.9179

III 0.79 (0.48, 1.32) 0.3707

FBXL3 225132 at I 2.02 (0.18, 22.59) 0.5610

II 0.80 (0.25, 2.51) 0.6973

III 0.52 (0.31, 0.88) 0.0136*

FBXO1 225132 at I 0.73 (0.28, 1.87) 0.5070

II 2.10 (1.34, 3.30) 0.0001*

III 0.91 (0.66, 1.27) 0.5884

FBXO10 227222 at I 0.44 (0.04, 4.86) 0.4900

II 0.87 (0.28, 2.70) 0.8039

III 1.58 (0.95, 2.64) 0.0768

FBXO11 222119 s at I 0.66 (0.26, 1.67) 0.3750

II 0.89 (0.58, 1.38) 0.6109

III 1.37 (0.98, 1.91) 0.0628

FBXO18 224683 at I 1.76 (0.16, 19.53) 0.6390

II 0.59 (0.18, 1.97) 0.3872

III 0.81 (0.49, 1.36) 0.4288

FBXO31 219785 s at I 1.11 (0.45, 2.76) 0.8187

II 1.22 (0.79, 1.87) 0.3661

III 1.32 (0.95, 1.83) 0.0953

SKP2 203625 at I 1.59 (0.65, 3.92) 0.3078

II 1.56 (1.01, 2.40) 0.0420*

III 1.01 (0.73, 1.40) 0.9648

FBXO5 218875 s at I 1.65 (0.67, 4.07) 0.2727

II 1.41 (0.92, 2.17) 0.1110

III 1.38 (0.99, 1.91) 0.0570

FBXO9 238472 at I 0.57 (0.05, 6.27) 0.6390

II 1.91 (0.58, 6.37) 0.2812

III 0.98 (0.58, 1.65) 0.9426

β-TrCP1 216091 s at I 0.60 (0.24, 1.51) 0.2719

II 1.01 (0.66, 1.55) 0.9678

III 0.84 (0.60, 1.16) 0.2890

β-TrCP2 209455 at I 0.88 (0.35, 2.20) 0.7763

II 1.04 (0.68, 1.59) 0.8656

III 1.30 (0.94, 1.81) 0.1155

FBXL10 226215 s at I 0.50 (0.04, 5.54) 0.5610

II 0.51 (0.15, 1.70) 0.2661

III 0.66 (0.39, 1.11) 0.1146

roles in dominating tumorigenesis. Overexpression of β-TRCP2 was observed in a variety of human cancers, in-
cluding prostate, breast, and gastric cancers [36]. Whereas mutation of β-TRCP2 in gastric cancer caused β-catenin
accumulation, and contributed to carcinogenesis by activating WNT signaling pathway [37]. Inhibition of β-TRCP2
by miR-106b-25 cluster in non-small lung cancer cells promoted cell invasion and metastasis [38]. However,β-TRCP2
was not associated with prognosis in BC patients according to the current results analyzed by KM plotter database.

FBXO1, also known as cyclin F, meditates centrosome duplication and is critical for maintaining genome integrity,
thus it has been regarded as an emerging tumor suppresser [39]. Knockout FBXO1 in MEFs leads to cell cycle defects
[40]. In hepatocellular carcinoma, FBXO1 was down-regulated and low expression levels of FBXO1 were significantly
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associated with worse clinical characteristics and poorer prognosis [41]. Unexpectedly, we suggested an uncanonical
function of FBXO1 exerted in BC, as we showed that high mRNA expression levels of FBXO1 were associated with
worse survival in BC patients.

FBXO31 was regarded as an emerging tumor suppressor, which is often down-regulated in several human cancers,
including BC, gastric cancer, and hepatocellular cancer [42–44]. FBXO31 was involved in DNA damage response
for maintaining genomic stability. After DNA damage induced by genotoxic agents or γ-irradiation, phosphoryla-
tion of FBXO31 was increased immediately [45], then SCF/FBXO31 promoted MDM2 ubiquitination, resulting in
accumulation of p53 and growth arrest [46]. Overexpression of FBXO31 in cancer cells inhibited cell growth and
colon formation, and ectopic expression of FBXO31 significantly decreased tumor formation in xenograft nude mice
[42–44]. However, overexpression of FBXO31 in lung cancer promoted cell growth and metastasis [47], and higher ex-
pression levels of FBXO31 predicted worse survival in esophageal squamous cell carcinoma [48]. Therefore, FBXO31
may also exert its role in tumorigenesis depending on tumor cell types. In our study, we used the KM plotter database
to reveal that higher expression of FBXO31 mRNA was associated with poorer prognosis in BC patients.

The F-box protein SKP2 plays an oncogenic role in human cancers. Mechanistically, SKP2 facilitates ubiquitina-
tion and degradation of many tumor suppressors, such as p21, p27, p57, FOXO1, and others [2]. Furthermore, SKP2
enhances DNA damage response and promotes DNA double-strand break repair pathways in cancer cells [49]. As
a result, SKP2 is up-regulated in several human cancers, including colorectal cancer [50], bladder cancer [51], BC
[52,53], melanoma [54], prostate cancer [55], hepatocellular cancer [56], cervical cancer [49], and lymphoma [57]. In
BC, SKP2 has been reported to correlate to poorer prognosis [58–60]. Additionally, immunohistochemical analysis
indicated that overexpression of SKP2 were more frequently observed in ER-negative BC [53,59]. In our study, the
higher expression of SKP2 mRNA was significantly associated with shorter OS in luminal A type BC patients. Pre-
vious results have indicated that SKP2 expression was associated with higher tumor grade in BCs or bladder cancers
[51,59,60]. Interestingly, we showed that high mRNA expression of SKP2 was correlated to poor prognosis in grade
II BC patients, but not in grade I or grade III BC patients.

FBXO5 is also suggested to play an emerging oncogenic role in human cancers. FBXO5 functions as an endoge-
nous inhibitor of APC/C, which results in the stabilization of APC/C ubiquitin substrates, such as cyclin A, cylcin B,
or Secure [61]. Up-regulation of FBXO5 in p53-deficient cells could promote cell proliferation, tetraploidy, and ge-
nomic instability [62]. By analysis of more than 1600 benign and malignant tumors, Lehman et al. [61] suggested that
FBXO5 was strongly overexpressed in malignant tumors, rather than in benign tumors. Furthermore, overexpression
of FBXO5 was associated with poor outcome in ovarian cancer [63], prostate cancer [64], and hepatocellular carci-
noma [65]. In BC patients, overexpression of FBXO5 was significantly correlated with histologic grade and prognosis
[66]. Consistently, our results demonstrated that FBXO5 had an oncogenic role in BC, higher expression of FBXO5
in mRNA level was significantly associated with poorer survival, especially in luminal A type BC patients.

FBXO11 was able to inhibit tumor cell growth and induced cell death by target BCL-6 for degradation [67], and
deletion or mutation of FBXO11 in pancreatic cancer patients was associated with poor prognosis [68]. In BCs,
FBXO11 restrained tumor initiation and metastasis by promoting SNAIL ubiquitylation and degradation, and over-
expression of FBXO11 was correlated with longer metastasis-free survival [69,70]. However, our results did not find
any relationship between the FBXO11 mRNA expression and OS in BC.

FBXW8 forms a functional E3 ligase complex with cullin 7 to exert a tumor suppressive role [4]. Ectopic expression
of FBXW8 in choriocarcinoma JEG-3 cells increased the percentage of cells at S-phase and decreased the percentage
of G2/M-phase cells [71], suggesting that FBXW8 was critical for cell growth. As FBXW8-meditated cyclin D1 and
HPK1 degradation was necessary for cancer cell growth [71,72]. However, there is still no result about the prognos-
tic role of FBXW8 in BC. Our results indicated that overexpression of FBXW8 mRNA was significantly associated
with better prognosis in luminal A and basal-like BC patients, however, it was correlated with worse survival in
HER2-overexpressiong BC patients.

An accumulation of pathological data have been proved that FBXW7 is a tumor suppressor by targetting various
oncogenic proteins, such as Notch, cyclin E, c-Myc, and c-Jun, for degradation [73,74]. Interestingly, FBXW7 ex-
pressed in the host microenvironment also suppressed cancer metastasis depending on the FBXW7/NOTCH/CCL2
axis [75]. Hence, FBXW7 mutation, resulting in loss-of-function of FBXW7, was frequently observed amongst pri-
mary human cancers. Approximately 6% of human cancers were FBXW7 mutated, and 9% of primary endometrial
cancers were FBXW7 mutated [76]. Reduced expression of FBXW7 has been reported to be correlated with worse
outcomes in several human cancers, including gastric cancer [77], colorectal cancer [78], cervical squamous carci-
noma [79], glioma [80], and prostate cancer [81]. For BCs, FBXW7 was significantly down-regulated, knockdown
of FBXW7 in BC cells promoted cell proliferation, migration, and inhibited cell apoptosis [82,83]. Inactivation of
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FBXW7 by promoter-specific methylation was correlated with poorly differentiated BC [84]. FBXW7 mRNA ex-
pression was reduced in BC patients with high histological grade and hormone receptor-negative tumors [85]. A
meta-analysis including 1900 patients indicated that the prognostic value of FBXW7 at mRNA level in BC was de-
pending on ER status and molecular subtypes [86]. According to our results, increased mRNA expression of FBXW7
was associated with better OS only in grade II BC patients.

Amongst the large family members of F-box, only few members have been extensively studied. Here, we used the
KM plotter database to assess the prognostic values of the selected 15 members of F-box mRNA expression in BC
and demonstrated that FBXO1, FBXO31, SKP2, and FBXO5 were significantly associated with worse prognosis in BC
patients. FBXO4 and β-TrCP1 were found to be correlated to better OS. These associated results provide new insights
into F-box members in the development and progression of BC. Further studies are needed in order to get detailed
understanding of functional characterization of each F-box member and determine whether they can be potential
treatment targets of BC.
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