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Abstract

Metastases are responsible for the majority of cancer-related deaths. While genomic heterogeneity 

within primary tumors is associated with relapse, heterogeneity among treatment-naïve metastases 

has not been comprehensively assessed. We analyzed sequencing data for 76 untreated metastases 

from 20 patients and inferred cancer phylogenies for breast, colorectal, endometrial, gastric, lung, 

melanoma, pancreatic, and prostate cancers. We found that within individual patients a large 

majority of driver gene mutations are common to all metastases. Further analysis revealed that the 

driver gene mutations that were not shared by all metastases are unlikely to have functional 

consequences. A mathematical model of tumor evolution and metastasis formation provides an 

explanation for the observed driver gene homogeneity. Thus, single biopsies capture most of the 

functionally important mutations in metastases and therefore provide essential information for 

therapeutic decision making.

The clonal evolution model of cancer proposes that cells accrue advantageous mutations and 

clonally expand such that these mutations are eventually present in all tumor cells (1–4). 

Recent studies reported mutations in putative driver genes that were only present in 

subpopulations of tumor cells (5, 6). The extent to which the acquisition of advantageous 

mutations continues after the initiation of the primary tumor (7) or during metastasis 

formation is unknown (8, 9). The growing list of putative driver genes and the increased 

sensitivity of next-generation sequencing have facilitated the discovery of subclonal driver 

gene mutations within a tumor (5, 10). Nevertheless, the evolutionary dynamics and the 

clinical importance of driver gene mutation heterogeneity in solid tumors are not fully 

understood.

Cells acquire a few mutations during each division due to imperfect DNA replication; hence, 

any population of cells is genetically heterogeneous (11). Because cancer cells continue to 

divide after cancer initiation, many new mutations are expected to be present in tumor 

subpopulations. However, to assess functional heterogeneity, advantageous mutations in 

putative driver genes must be distinguished from neutral replication errors in those genes. 

For example, within oncogenes only few recurrently mutated positions are functional and 

therefore many mutations—even in driver genes—may not have important functional 

consequences. Moreover, although metastatic disease is responsible for most cancer-related 

deaths, the heterogeneity of driver gene mutations has predominantly been evaluated in 

primary tumors. Biopsies of metastatic lesions are not readily available and typically are 

acquired after exposure to toxic and mutagenic chemotherapies. These treatments can induce 

selective bottlenecks and confound the interpretation of genetic alterations.
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Because driver gene mutations increasingly inform clinical treatment decisions, undetected 

driver heterogeneity among metastases poses a barrier to the success of this precision 

medicine approach (12). If the founding cells of different metastases carry distinct driver 

gene mutations, disease progression and treatment could be fundamentally more complex 

than expected from a primary tumor biopsy alone. Additional driver gene mutations might 

be present in all or in a subset of metastases (Fig. 1). In both scenarios, more biopsies would 

be necessary for accurate diagnosis and optimal treatment. Here, we comprehensively 

analyzed the evidence for driver gene mutation heterogeneity among untreated metastases 

across cancer types. We also developed a mathematical model to determine the evolutionary 

mechanisms that give rise to inter-metastatic driver mutation heterogeneity.

We analyzed data from 20 cancer patients for whom genome- or exome-wide sequencing 

was performed for at least two distinct treatment-naïve metastases (13–19). In total, we 

studied 115 samples including 76 untreated metastases samples from diverse tissues (mean 

of 3.8 and median of 3 metastases per patient) (fig. S1; table S1). We assessed somatic 

mutations of patients with pancreatic, endometrial, colorectal, breast, gastric, lung, 

melanoma, and prostate cancer (Fig. 2A). We classified nonsynonymous variants into 

putative driver and passengers mutations according to the TCGA consensus list of 299 

putative driver genes (10). To allow for a consistent interpretation of driver gene mutation 

heterogeneity, we excluded two hypermutated subjects with more than 1000 nonsynonymous 

mutations and focused on the remaining eighteen subjects. In these subjects, we found a 

median of 4.5 mutated driver genes (range 2–18) (Fig. 2A).

To determine the evolutionary timing of somatic mutations, we inferred cancer phylogenies 

and mapped all variants onto evolutionary trees (20) (supplementary materials; fig. S2). We 

classified mutations into those present in all metastases (MetTrunk, hereafter referred to as 

trunk) and those present in a subset of metastases (MetBranch, hereafter referred to as 

branch) (Fig. 2B). We observed similar numbers of nonsynonymous or splice-site variants 

(hereafter referred to as nonsynonymous) in both categories (Fig. 2A). In contrast, trunks 

exhibited a 2-fold enrichment of the ratio of driver gene mutations to nonsynonymous 

mutations compared to branches (9.1% vs. 4.0%, two-sided paired t-test P = 0.004; Fig. 3A). 

Nevertheless, we observed mutations in driver genes that were heterogeneous among 

metastases for 12 of 18 subjects.

To investigate whether heterogeneous mutations in putative driver genes were likely to be 

functional, we employed a variety of approaches. We found that a large proportion of 

nonsynonymous variants in driver genes along trunks were previously detected at least once 

in other cancers (COSMIC, Catalogue Of Somatic Mutations In Cancer; 37.8%, 31/82) 

whereas a much smaller proportion along branches was present in COSMIC (15.6%, 5/32; 

two-sided Fisher’s exact test P = 0.025; Fig. 3B). The fraction of driver gene mutations in 

branches in COSMIC was in fact similar to that of passenger gene mutations in either trunks 

or branches (14.1%, 128/905 and 12.5%, 89/712). Because mutations that are true drivers 

are often recurrent, we investigated how frequently identical nonsynonymous variants were 

found in COSMIC. While variants in driver genes along trunks on average occurred in 

0.32% COSMIC samples (occurrence mean of 82.0 in 25,516 COSMIC samples), driver 
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gene mutations acquired along branches occurred more than 100-fold less frequently 

(0.0016%; Fig. 3C; two-sided Wilcoxon rank-sum test P = 0.008).

We then utilized several methods to predict the functional impact of 1,755 nonsynonymous 

variants along trunks and branches. We found that driver gene mutations acquired along 

trunks were more likely to have predicted functional consequences (Fig. 3, D-F; fig. S3). 

Variants with the most likely protein-changing effects (mutation consequences with high 

impact, e.g., frameshift or nonsense mutations) were frequently observed in driver genes 

along trunks but rarely observed along branches (30.5% vs 6.3%; two-sided Fisher’s exact 

test P = 0.006; Fig. 3D). The frequency of high impact variants in driver genes along 

branches was no higher than that in passenger genes. FATHMM (21) predicted significantly 

stronger functional effects for driver gene mutations along trunks than along branches (mean 

scores of −2.1 vs. 1.0; scores below −0.75 indicate likely driver mutation; two-sided 

Wilcoxon rank-sum test P < 0.001; Fig. 3E). Similarly, CHASMplus (22) predicted 

significantly higher gene-weighted scores for driver gene mutations along trunks than along 

branches (mean scores 0.47 vs. 0.16; higher values indicate likely functional effects; two-

sided Wilcoxon rank-sum test P < 0.001; Fig. 3F).

To identify the evolutionary determinants of inter-metastatic heterogeneity, we developed a 

mathematical framework to assess how rates of growth, mutation, and dissemination give 

rise to driver gene mutation heterogeneity (23, 24) (supplementary materials). The original 

clone in the primary tumor grows with a rate of r0 = b0 – d0 per day (birth rate bi, death rate 

di for each clone i) and disseminates cells to distant sites with rate q0 per day (Fig. 4A). 

When a cell divides, a daughter cell can acquire an additional driver mutation with 

probability u. This model produces inter-metastatic heterogeneity if not all detectable 

metastases were seeded from the same subclone in the primary tumor.

Following previously measured growth and selection parameters, we assume a growth rate 

of r = 1.24% per day and a relative growth advantage of a driver gene mutation of s=0.4%(s 
= bi/b0 - 1) (25, 26). To mimic the composition of our cohort, we consider the first four 

metastases that reach a detectable size of 108 cells (~1 cm3). We find that the probability of 

inter-metastatic driver heterogeneity is 10.5% (Fig. 4; d = 0.2475, q = 10−7). The original 

founding clone of the primary tumor most likely seeds all detectable metastases (green cells; 

Fig. 1A). The increased growth rate conferred by a new driver mutation is insufficient to 

compensate for the time spent waiting for the driver mutation to occur (figs. S4-S5).

The model reveals that the probability of observing inter-metastatic driver heterogeneity 

increases when the primary tumor grows very slowly before metastases are seeded, the 

average growth advantage of additional driver mutations is very large, and the driver gene 

mutation rate is high (fig. S6C). In contrast, a high dissemination rate produces less inter-

metastatic heterogeneity because metastases are established before driver subclones greatly 

expand (Fig. 4E, fig. S7C). For very high driver growth advantages but slowly growing 

cancers, another scenario is possible: all metastases are seeded from the same highly 

advantageous subclone (Fig. 1B). Finally, if driver mutations instead increase the 
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dissemination rate, an almost ten-fold increase is required to produce inter-metastatic driver 

heterogeneity (Fig. 4F; fig. S8).

In real patients, we expect less inter-metastatic heterogeneity for several reasons. First, 

driver gene mutations may not confer the same advantage in the microenvironment of the 

primary tumor and of a distant site, reducing the probability of heterogeneity (fig. S9). 

Second, primary tumor growth may slow down due to space or nutrient constraints or 

surgical removal, also reducing the expected inter-metastatic heterogeneity (fig. S10). Third, 

advanced cancer cells have already acquired multiple driver gene mutations in various 

pathways, possibly reducing the number of additionally available driver gene mutations that 

confer a significant selective advantage (fig. S6B).

Overall, we observed a depletion of heterogeneous mutations in putative driver genes among 

metastases (Fig. 3). Moreover, the majority of those that were observed had only weak or no 

predicted functional effects. These results are compatible with multiple recent studies on 

neutrally evolving cancers after transformation (7, 27, 28). However, the mathematical 

framework demonstrates that a lack of inter-metastatic driver heterogeneity does not imply 

neutral evolution but can also be explained by various other factors, including primary tumor 

growth dynamics (Fig. 4). Furthermore, growth rates may saturate and fitness gains of 

additional driver gene mutations become smaller because available resources (nutrients, 

oxygen, etc.) are already almost optimally utilized; a phenomenon that is observed in 

bacterial evolution (29).

Several limitations of this study should be noted. First, we exclusively focused on single 

nucleotide variants and small insertions/deletions because their functionality can be 

predicted by multiple methods and their heterogeneity has immediate clinical consequences 

for therapy selection (12). We did not assess recurrent noncoding, copy-number, or 

epigenetic alterations since functional prediction methods for them are not yet available. 

Second, we cannot exclude the possibility that mutations in yet undiscovered driver genes of 

metastases are heterogeneous. Third, we could not evaluate micro-metastases that are not 

visible clinically.

Because therapy selection and treatment success of previously untreated patients 

increasingly depends on the identification of genetic alterations, it will be critical to extend 

this analysis to larger cohorts and more cancer types to investigate whether minimal driver 

gene mutation heterogeneity is a general phenomenon of advanced disease. This pan-cancer 

analysis of untreated metastases suggests that a single biopsy accurately represents the driver 

gene mutations of a patient’s metastases.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Three scenarios of heterogeneity of mutations in driver genes.
The original clone (green cells) contains three driver gene mutations (D1, D2, D3). Brown, 

yellow, and red cells acquired additional driver mutations during the growth of the primary 

tumor (PT) and may expand to form detectable subpopulations (brown) which can seed 

metastases. Top panels illustrate seeding subpopulations and biopsies (blue circles) of 

different regions (R1, R2) of the PT and of distinct metastases (M1, M2). Bottom panels 

illustrate reconstructed cancer phylogenies from those biopsies. (A) Original clone seeds all 

metastases. All metastases share same founding driver mutations. Subclones with additional 

driver mutations (D4) evolve too late to seed metastases, but might be detectable in the PT. 

(B) A single highly metastatic subclone evolves and gives rise to all metastases. All 

metastases share same founding driver mutations. (C) A new subclone with an additional 

driver mutation (D4) evolves and independently seeds metastases. PT regions and metastases 

exhibit driver mutation heterogeneity.
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Fig. 2. Most mutations in putative driver genes occur on the trunk of metastases.
(A) Twenty patients with 76 untreated metastases. Thirteen patients acquired mutations in 

putative driver genes along the MetBranch (MB) while seven did not. (B) Inferred 

phylogeny of a colorectal cancer exhibits inter-metastatic driver mutation heterogeneity. 

Nonsynonymous mutations in driver genes are denoted in orange. Percentages denote branch 

confidence. Integers denote number of point mutations per branch. Table shows predicted 

functional effects of mutations in driver genes. Heterogeneous driver mutations were 

predicted to have no functional effect or were likely sequencing artifacts (low coverage and 

low VAF across all sites). MetTrunk (MT) denotes that variant was acquired on the trunk of 

all metastases. Sample origin: rectum: PT1–5; liver: Met1–6.
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Fig. 3. Predicted functional mutations in putative driver genes are strongly enriched along 
metastases trunks.
(A) Ratio of driver gene mutations to nonsynonymous mutations is enriched by 42-fold 

along trunks compared to branches. Orange diamond denotes mean, black bar denotes 

median (two-sided paired t-test P = 0.004). (B) Fraction of nonsynonymous variants in 

driver genes along MetTrunk in COSMIC was 38% compared to 16% along MetBranch 

(two-sided Fisher’s exact test P = 0.025). (C) Relative occurrence of variants in driver genes 

along MetTrunk in individual COSMIC samples was 0.32% compared to 0.0016% along 

MetBranch (two-sided Wilcoxon rank-sum test P = 0.008). (D) VEP inferred that 30% and 

6% of driver gene mutations were of high impact along MetTrunk and MetBranch, 

respectively (two-sided Fisher’s exact test P = 0.006). (E-F) FATHMM (value below −0.75 

indicates likely driver mutation) and CHASMplus predicted increased functional 

consequences for variants in driver genes in MetTrunk. Two-sided Wilcoxon rank-sum tests 

were used. Thick black bars denote 90% confidence interval. No other statistically 
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significant differences were observed. Numbers in brackets denote number of variants in 

each group. * indicates P < 0.05, ** P < 0.01, *** P < 0.001.
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Fig. 4. Mathematical analysis provides an explanation for inter-metastatic driver gene mutation 
homogeneity or heterogeneity.
(A) Primary tumor expands stochastically from a single advanced cancer cell and seeds 

metastases. Cells of original clone (green) divide at rate b0 and die at rate d per day. 

Additional driver mutations increase the birth rate to b1 = b0(1+s), where s denotes the 

relative driver advantage (b1 ≥ b0, q = q1; B-E), or increase the dissemination rate (q1 ≥ q0, 

b1 = b0; F). (B) Representative model realizations for typical parameter values. Growth rate 

r0 = 1.24% per day, s = 0.4%, dissemination rate q0 = 10−7 per cell per day. (C) Distribution 

of metastases detection times for parameter values in B. Numbers denote mean ± standard 

deviation. Colored marks show mean detection times of first, second, third, and fourth 

metastases seeded by the corresponding subclone (SC). (D-F) Probability of distinct driver 

mutations among four metastases. Green dashed lines depict bounds separating parameter 

regions of likely inter-metastatic driver homogeneity from heterogeneity. Orange dotted 

lines denote s = 0.4%. (D) Fixed q0 = 10−7. (E) Fixed death-birth rate ratio d/b0 = 0.95. (F) 

Fixed q0 = 10−7. Other parameter values: d = 0.2475, driver mutation rate u = 3.4 10−5 per 

cell division.
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