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Abstract

A central question in ecology is to understand the ecological processes that shape community 

structure. Niche-based theories have emphasized the important role played by competition for 

maintaining species diversity. Many of these insights have been derived using MacArthur’s 

consumer resource model (MCRM) or its generalizations. Most theoretical work on the MCRM 

has focused on small ecosystems with a few species and resources. However theoretical insights 

derived from small ecosystems many not scale up large ecosystems with many resources and 

species because large systems with many interacting components often display new emergent 

behaviors that cannot be understood or deduced from analyzing smaller systems. To address these 

shortcomings, we develop a statistical physics inspired cavity method to analyze MCRM when 

both the number of species and the number of resources is large. Unlike previous work in this 

limit, our theory addresses resource dynamics and resource depletion and demonstrates that 

species generically and consistently perturb their environments and significantly modify available 

ecological niches. We show how our cavity approach naturally generalizes niche theory to large 

ecosystems by accounting for the effect of collective phenomena on species invasion and 

ecological stability. Our theory suggests that such phenomena are a generic feature of large, 

natural ecosystems and must be taken into account when analyzing and interpreting community 

structure. It also highlights the important role that statistical-physics inspired approaches can play 

in furthering our understanding of ecology.

I. INTRODUCTION

One of the most stunning aspects of the natural world is the diversity of species present in 

most ecosystems. The community structure of ecosystems are shaped through a complex 

interplay of the externally supplied resources available in an ecosystem, competition for 

these resources, as well as stochasticity [1–4]. A fundamental problem in community 

ecology is to understand how these processes give rise to observed pattern of species 

abundances. A rich theoretical framework has been developed to address this problem. 
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Niche-based theories have emphasized the role of competition for resources [2, 5–10], while 

neutral theory has highlighted the role of stochastic effects [4, 11–13], and several works 

have investigated the interplay between stochasticity and competition [14–18].

Many of these theoretical insights have been synthesized in what is commonly referred to as 

contemporary niche theory. Contemporary niche theory highlights the role played by 

equalizing mechanisms, processes that decrease fitness differences between organisms, and 

stabilizing mechanisms, processes that decrease competition for resources. These basic 

organizational schema have been successfully applied to understand community structure in 

a wide range of settings [1–3].

One of the simplest and most influential mathematical models for niche theory is 

MacArthur’s consumer resource model (MCRM) [2, 7, 8, 10]. Most analysis of MCRM – 

including those that inform contemporary niche theory and modern coexistence theory – 

have focused on small ecosystems with a few species and and few resources [2, 7, 8, 10]. 

However, it is unclear to what extent the theoretical insights derived from ecosystems with 

just a few species can be scaled up to diverse, natural ecosystems. One of the defining 

features of large complex systems is that they often display new “emergent behaviors” that 

cannot be understood or deduced from analyzing small systems with just a few parts [19–

22]. For this reason, it is essential to directly analyze large ecosystems with many resources 

and species and ask how they differ from the few-species ecosystems that have been 

analyzed previously. Recently, several works suggest that large ecosystems can exhibit 

unexpected behaviors such as phase transitions, emergent community-level cohesion, and 

the analogues of critical points [15, 23–27]. This highlights the need for new theoretical 

frameworks for directly analyzing large, heterogeneous ecosystems.

Perhaps the most successful and ubiquitous approaches for analyzing large systems in 

statistical physics is mean field theory. We emphasize that what is meant by a mean field 

theories in statistical physics is distinct from the way it is commonly understood in ecology 

[28, 29]. Unlike most usages in ecology, mean field theories in physics account for not only 

the means of various quantities but also fluctuations around the mean. In this paper, 

whenever we use the term mean field theory, we will mean it in this broader statistical 

physics definition rather than the narrow usage common in ecology. Mean field models have 

long history in statistical physics and have played a central role in the study of phase 

transitions and collective emergent behaviors in physical systems [30, 31]. Most mean field 

theories in physics focus on homogenous systems with identical components and couplings. 

However, more sophisticated variants such as the cavity method can be used to analyze 

heterogeneous “disordered systems” [32]. Here, we develop a statistical physics inspired 

mean field theory, based on a generalization of the cavity method, and use it to analyze 

diverse ecosystems. In this paper, we will refer to this as the cavity method (CM).

Our methods are inspired by and build upon recent work showing the connection between 

community ecology the physics of disordered systems [15, 23, 24, 27, 33–38]. It is also 

closely related to the statistical mechanics of interacting socio-economic agents [39]. 

However, unlike these previous works our analysis explicitly incorporates resource 

dynamics, including resource heterogeneity and depletion. This allows us to naturally 
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connect our results to contemporary niche theory and modern coexistence theory. One of the 

most striking aspects of our analysis is that we nd that modification of fitness and carrying 

capacity due to collective phenomena is a generic feature of all diverse ecosystems [40]. In 

diverse ecosystems, organisms can and do significantly reshape their environments by 

changing resource abundances and, importantly, depleting resources. Moreover, we show 

that many of the central theoretical quantities in our novel CM have natural ecological 

interpretations that generalize many classical quantities and results of niche theory to large 

ecosystems and quantify the effect of collective phenomena in shaping community structure.

II. MACARTHUR CONSUMER RESOURCE MODEL

In this work, we will analyze one of the canonical and most influential models in community 

ecology: MacArthur’s Consumer Resource Model (MCRM) [7, 8]. MCRM consists of S 
species or consumers with abundances Ni (i = 1 … S) that can consume one of M 

substitutable resources with abundances Rα (α = 1 … M). The consumer preferences of 

species i for resource α are encoded by a S × M matrix, ciα.

In the MCRM, the growth rate gi(R) of a species depends of the concentration of all the 

resources. To model the growth rate, following MacArthur, we assume that a species i have 

some minimum maintenance cost, mi, that they must meet. The growth rate, gi(R), is 

proportional to amount of resources consumed, weighted by a quality factor wα, minus this 

maintenance cost

gi R = ∑
α

CiαwαRα − mi . (1)

If gi > 0, then this is also the growth rate of species i.

The resources can be considered as “biotic”, i.e. organisms which are themselves being 

consumed, this is the scenario the original MCRM was designed to describe. These 

resources have their own internal dynamics which, following MacArthur, we assume can be 

modeled using logistic growth. Furthermore, when a resource is consumed, it’s abundance is 

reduced. This ecological dynamics is captured by the following coupled, nonlinear 

differential equations

dNi
dt = Nigi R

dRα
dt = Fα Rα − ∑

i
NiciαRα,

(2)

where Fα (Rα) = Rα (Kα − Rα ) describes the resource dynamics in the absences of 

consumption and Kα is the carrying capacity of each resource α. Such dynamics are 

standard when modelling biotic resources. Note also that both the species and resource 
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abundances Ni and Rα must be strictly non-negative. For our analysis of the MCRM, it will 

be useful to define an “effective resource capacity”

Kα
e f f N = Kα − ∑

i
Niciα (3)

that accounts for depletion of resources by consumers [23]. The MCRM can be rewritten in 

terms of Kα
e f f N  as

dNi
dt = Nigi R ,

dRα
dt = Rα Kα

e f f N − Rα .
(4)

A crucial property of these equations is that resources can be completely depleted from the 

environment. This will play an important role in what follows. Finally, we emphasize that 

these equations are identical those analyzed by MacArthur, Chesson, and others in deriving 

modern niche theory.

III. STATISTICAL MECHANICS APPROACH TO MACARTHUR’S 

CONSUMER RESOURCE MODEL

Previous approaches to analyzing the MCRM have largely been confined to small 

ecosystems with a few species and resources. Here, we consider the opposite limit of large, 

diverse ecosystems where both the number of species and number of resources is large, S, M 
≫ 1. In this limit, the number of parameters needed to define the ecosystem dynamics 

becomes extremely large. To overcome this problem, we follow a long tradition in 

theoretical ecology pioneered by Robert May of looking at the case where the parameters 

are drawn from a random distribution [41]. This allows us to ask questions about the 

behavior of a generic, diverse ecosystem.

We consider the case where all the consumption coefficients ciα , resource carrying 

capacities Kα , and maintenance costs mi are drawn from a random distribution. Our analytic 

calculations depend only on the mean and variances of the probability distributions. 

Denoting the expectation value of a parameters x over a distribution by 〈x〉, then we 

denote the mean and variances of our parameters by:

ciα = μc/S, ciα − ciα
2 = σc

2/S, mi = m, mi − m 2 = σm
2 , Kα = K, and 

Kα − Kα
2 = σK

2 . We can also define a parameter γ = M/S that measures the ratio of 

resources to species. This description is consistent with all species being generalists, that is, 

feeding from many resources. An examples is a predator which can feed on many different 

species with each prey making up a small part of its diet. In such a scenario, it is reasonable 

that the flux from each resources decreases with the number of resources M, through the 

scaling of ciα.
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A. Invasion, ecological stability, and self-consistency

One of the cornerstones of community ecology is the idea of invasion [6, 42, 43]. In our 

analysis, we will ask under what circumstances a new species can invade an ecosystem. 

Denote the growth rate of species i when it tries to invade the ecosystem gi
inv . We will call 

this the invasion growth rate. Since we are interested in statistical properties, we will be 

primarily concerned with the mean and variances of the invasion growth rate averaged over 

all species i in the regional species pool: gi
inv = g and gi

inv 2 − gi
inv 2 = σg

2 .

The key idea that we will exploit in our analysis is the observation that as S and M get large, 

both the invasion growth rates, gi
inv, and the effective carrying capacities, Kα

e f f  are the sum 

of a large number of small terms. Each individual resource makes only a small contribution 

(of order 1/M) to the growth of any consumer, and every consumer makes an order 1/S 
contribution to the effective resource capacity. Thus, from the central limit theorem, the 

distribution of growth rates gi
inv and the distribution of effective resources Kα

e f f  in the 

ecosystem can be well-approximated by a normal distribution. In the language of the cavity 

method of statistical physics, this corresponds to the replica symmetric solution. For future 

reference, denote the means and variance of the effective carrying capacity by 

Kα
e f f = Kα

e f f  and Kα
e f f 2 − Kα

e f f 2 = σ
Ke f f
2  (see Figure 1).

This suggests the following intuition for thinking about our ecosystem. Each species, i, has a 

invasion growth rate drawn from a normal distribution. In other words, we can think of 

gi
inv ≈ g + σgzi, where zi is a standard normal variable. Similarly, each resource has an 

effective carrying capacity that is also drawn from a normal distribution, with 

Kα
e f f ≈ Ke f f + σKzα, with zα standard, normal variable. In general, the means and variances 

g, Ke f f , σg
2, σ

Ke f f
2  depend on the abundances of all other species and resources. Our 

statistical mechanics inspired mean field approach exploits this observation to self-

consistently solve for the means and variances of the invasion growth rate and effective 

resource carrying capacity. In the physics literature, these is known as cavity method (CM). 

In general, this is a very subtle calculation but can be done using a generalized cavity 

equation (see below and in appendix).

In order to derive the CM self-consistency equations, we consider a system with S species 

and M resources and ask what happens when we add an additional species and resource to 

the system. We denote the abundances of the additional species and resource by N0 and R0 

respectively. This two-step cavity where both a resource and species is removed is similar to 

the procedure employed to analyze the Hopfield model and compressed sensing [44, 45] and 

is necessary to correctly capture subtle correlations between resource and species dynamics. 

This approach is intimately related to classic works by MacArthur and Levins that analyzed 

ecological dynamics by asking if a new species could invade an ecosystem [6]. Whereas 

their analysis was applicable to small ecosystems with a few species, our analysis is valid for 

large, diverse ecosystems.
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Since the number of species and resources in the original ecosystem is large (S, M ≫ 1), the 

addition of the new resource and consumer represent a small perturbation of the original 

system. For this reason, it is useful to define two susceptibilities, χ and ν that measure the 

sensitivity of an ecosystem to small perturbations. The resource susceptibility, χ, measures 

the average change in the mean resource abundance at steady-state if we slightly increase the 

supply of all the externally supplied resources. Denoting the steady-state value of a quantity

X by X , we can mathematically define χ, as

χ= 1
M ∑

α

∂Rα
∂Kα

. (5)

The average species-cost susceptibility, ν, measures the change in mean species abundances 

if we slightly decrease the minimum fitness cost (or equivalently increase the growth rate),

v = 1
S ∑

i

∂Ni
∂gi

= − 1
S ∑

i

∂Ni
∂mi

. (6)

These susceptibilities characterize the sensitivity of an ecosystem to perturbations and are 

derivatives which can be directly measured in experiments. To estimate ν, one would alter 

the environment to put stress on the consumers, for instance in the context of microbes, one 

might force microbes to express a useless protein such as GFP as done in [? ] to reduce mi. 

To estimate χ, one would alter the environment to vary the carrying capacity and measure 

how the resource abundance fixed point changes, this could be done in many ways for one 

example of an experiment varying the environment to impact resource abundances see [? ].

In terms of these quantities, one can derive a simple expression for the steady-state 

abundances of a newly added consumer and resource (see Appendix):

N0 =
max 0, g + σgz0

γσc
2χ

,

R0 =
max 0, Ke f f + σ

Ke f f
2 z0

1 − σc
2v

,

where as above z0 and z0 are independent, unit normal variables. These equations have a 

beautiful and straightforward interpretation. A new species added to the system will have an 

invasion growth rate g0
inv = g + σgz0, which is normally distributed. If the growth rate is 

negative, it will not be able to invade the system and go extinct. If its growth rate is positive 

when introduced in the ecosystem, then it survives with an abundance proportional to its 

invasion growth rate. We emphasize that this proportionality constant can differ significantly 

from what would be expected in a single-species ecosystem and depends on all the other 
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resources and species present in the ecosystem through the susceptibility χ and the variance 

of the consumption coeffcients σc
2 . For this reason, the invasion growth rate of a species 

when it invades an ecosystem is positively correlated with its abundance. Similarly, the new 

resource is depleted if its effective carrying capacity is negative. Otherwise the steady-state 

abundance of the new resource is proportional to its effective carrying capacity. These 

equations are similar to the arguments of MacArthur and Levins on the necessary conditions 

for invasibility to large ecosystems [6]. They also generalize results for species abundances 

derived in [27] using the Lotka-Volterra equation and the results in [24, 38, 39] which 

ignored resource depletion and resource fluctuations.

B. Comparison with numerics

Unlike small ecosystems, we cannot analytically solve for the all the resource and species 

abundances. However, we can take a statistical approach that allows us to calculate statistical 

properties of species and resource abundances at steady-state. We also restrict our analysis to 

uninvadable steady-states, defined as a steady-state which cannot be invaded by any species. 

This, both simplifies the mathematics, and allows us to more directly relate our calculations 

to ecology.

Using (7) is it possible to derive self-consistency equations for the fraction of species in the 

regional species pool that survive, ϕN , the mean abundance of the species N = 1/S∑i Ni,

and variance and second moment of surviving species abundances, δN 2  and 

qN = δN 2 + N 2 = 1/S∑i Ni
2 respectively. We can also calculate the analogous equations 

for resources: the fraction of resources with non-zero abundance,ϕR, the mean abundance of 

resources R = 1/M∑α Rα, and variance and second moment of the resource abundances, 

δR 2  and qR = δR 2 + R 2 = 1/M∑α Rα
2. The equations are derived in Appendix C and 

can be solved numerically.

The validity of our derivation is dependent on the MCRM having replica symmetry in the 

correspondence between the closely related cavity and replica methods (see e.g. [? ]), and 

while we do not rigorously prove replica symmetry is not broken in this setting, we expect 

this assumption to be correct because there is a convex Lyapunov function (see e.g. [8]) and 

therefore just one fixed-point in the MCRM. Broken replica symmetry occurs when the 

landscape is complex, see [? ]. The other assumption is a large system size S, M ≫ 1. The 

theory is expected to be exact for infinite systems, but as we will now discuss, our 

simulations demonstrate that moderately large ecosystems are well predicted by the theory 

in the setting of Gaussian distributed consumption coefficients for which it was derived.

To check the accuracy of our CM, we compared our analytic predictions to numerical 

simulations (see Figure 2). We simulated (2) for two different choices of distributions for the 

ciα. In the first set of simulation, the ciα were binary random variables with ciα = 1 with 

probability p and ciα = 0 with probability 1 − p. The probability p can be viewed as the level 

of generalism in the regional species pool. As p → 0, all organisms in the community are 

specialist and consume a handful of resources. When p → 1, the community consists of 
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generalists who can consume almost all resources. In the second set of simulations, we drew 

the consumption coeffcients from a Gaussian distribution with the same mean and variance 

as the corresponding Bernoulli distribution with probability p.

As shown in Fig. 2, our analytic results agree remarkably well with numerical simulations. 

The agreement between theory and numerics is nearly exact when ciα are drawn from a 

Gaussian and shows qualitative agreement even when the consumption coeffcients ciα are 

binary random variables. This is a result of the Gaussianity assumptions used to derive the 

cavity equations (see Appendix). The discrepancy between the binary case and Gaussian 

case stems from the fact that the for large S and M the ciα are strictly positive for the binary 

case but generically contain some negative elements for Gaussian distributions. A negative 

ciα implies that species i produces resource α at a fitness cost to itself. Thus, all simulations 

with Gaussian include a small fraction of public good producers that are accounted for in our 

theoretical calculations but are absent in the simulations with binary variables.

Despite these differences, for both choice of distributions the fraction of surviving species 

declines with increasing p. This is consistent with the basic idea of nichetheory that as p 

increases, there is increased competition resulting in greater competitive exclusion. In 

contrast, the mean abundances of surviving species and resources shows a non-monotonic 

behavior as a function of p in both numerical simulations and analytics (see appendix and 

Fig. 5 for additional simulation results).

IV. GENERALIZING NICHE THEORY TO LARGE ECOSYSTEMS

The MacArthur consumer resource model has played a central role in the development of 

niche-based theories of community assembly [2, 7–10]. However, most of these analyses 

have focused on small ecosystems with just a few species and resources. Here, we discuss 

the ecological implications of our analysis for understanding community assembly in large 

ecosystems with many species and resources.

A. Relating MCRM parameters to ecology

We begin by relating the parameters of the MCRM to more ecologically meaningful 

quantities such as the niche overlap, fitness, zero net- growth isoclines (ZNGI), and impact 

vectors. In ecology, the niche overlap,ρ , measures how much two species compete for the 

same resources. The larger the niche overlap, the more species compete. For small 

ecosystems, the niche overlap is bounded between 0 and 1, with a niche overlap of zero 

meaning the species do not compete for resources and a niche overlap of one indicating the 

species have identical consumption profiles. In the context of the two species MacArthur 

resource model, the niche-overlap between species can be thought of as the percentage of 

variance explained if one performs a regression of the first consumer’s consumption vector 

against the consumption vector of the second species[1, 7, 8]. Using this observation, we can 

naturally extend the idea of niche overlap to entire ecosystems by defining an ecosystem-

level niche overlap ρ in terms of the mean and variances of the consumption coeffcients ciα:
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ρ =
μc

2

μc
2 + σc

2 . (8)

One useful way of thinking about ρ is that it measures the niche-overlap between two 

species randomly drawn from the regional species pool. It is easy to see that when σc
2 ≪ μc,

all species have nearly identical consumption preferences and ρ → 1. In contrast when 

σc
2 ≫ μc, species will have very distinct consumer preferences and ρ → 0.

Another fundamental quantity in contemporary niche theory is the ecological fitness of an 

organism, f i = ∑αciαKα − mi [1,8]This fitness is the initial growth rate of organism i in the 

absence of other species. In general, the actual growth rate of a species will differ 

significantly from the fitness if the resource abundances differ significantly from the 

resource carrying capacities Kα. For this reason, we will refer to this as the “naive” fitness.

We show in the appendix that it is also possible to relate our parameters directly to ZGNIs 

and generalized impact vectors.

B. Niche overlap and coexistence

One of the fundamental results of niche-based theories is that as the niche-overlap between 

species increases, coexistence become more and more diffcult [1]. The underlying reason for 

this is species that have similar consumer preference are more likely to compete with each 

other, resulting in competitive exclusion. Thus, increasing the niche-overlap in the 

community should decrease the fraction of species ϕN that can co-exist in a community. On 

the other hand, stabilizing mechanisms that decrease the tness differences between species 

should increase coexistence. We can parameterize the fitness differences in the community 

by the dimensionless quantity σm/m equal to the standard deviation over the mean of the 

maintenance costs mi over all species in the regional species pool. This choice of 

parameterization is in line with contemporary niche theory where fitness differences are 

dened as the difference in growth rates when species have identical consumption preferences 

[1]. Figure 3 shows ϕN as a function of the niche overlap ρ and σm
2 /m. This choice of niche-

overlap corresponds to varying the probability p for having a non-zero ciα from 0:1 to 0:9 

(see Fig. 2). As predicted by niche theories, increasing ρ leads to increased competition and 

a smaller ϕN. In constrast decreasing σm/mi at a fixed ρ, leads to a larger fraction of species 

surviving. Thus, in this regard large ecosystems behave quite similarly to predictions made 

by analyzing smaller models.

C. Resource depletion, effective fitness, and carrying capacity

One important feature of our analysis, which we are able to analyze statistically with our 

CM approach, is the large-scale depletion of resources. As shown in Fig. 2, species can 

signiffcantly change the resource profile and deplete a large fraction of resources initially 

present in the environment. This collective behavior can change which species survive and 
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thrive in an environment. One way to measure this effect and the reshaping of the resource 

profile is to measure the correlation between the naive fitness of an organism, 

f i = ∑αciαmax Kα, 0 − mi, and its steady-state abundance in the ecosystem Ni . The fitness fi 

measures the growth rate of organism i if it is introduced into an environment in the absence 

of other species. For this reason, we expect fi to be highly predictive of Ni . when resource 

abundance profiles are not significantly perturbed by consumption. On the other hand, it is 

possible for correlation between fi and Ni to decrease significantly.

Fig. 4 shows fi versus Ni for numerical simulations where the ciα drawn from a binomial 

distribution with p = 0:1 and σm/m = 0.1, as well as the case where parameters are Gaussian 

random variables with mean an variance matching the binomial setting. From the figure, it is 

clear there is a significant correlation between fi and Ni . Organisms with higher fitness 

disproportionately survive in the ecosystem. However, a significant number of organisms 

that have a high naive fitness fi can still go extinct in the ecosystem (black points). The 

difference between plots (A,B) and (C,D) is that in the former Kα and mi are kept positive 

by ensuring they are drawn from a gamma distribution and the consumer preferences ciα are 

always positive since they are binary (1 with probability p or 0 otherwise). In (C,D), each of 

these parameters is drawn from a Gaussian distribution, but with the same mean and 

variance as in (A,B). This allows Kα, mi, and ciα to be negative. We will be agnostic about 

the physical meaning of negative ciα: it could for instance be related to a common good 

production by a species at an energetic cost to itself or simply that species i is preyed on by 

resource α. A more careful breakdown of relevant behaviors which could lead to the 

ecological engineering phenomena we will discuss such as poisons and common good 

production, and this is a direction of future work, but not considered in the present 

manuscript.

We find that allowing these negative consumer preference, does not dramatically alter the 

model predictions in terms of number/abundance or species/resources: we demonstrate a 

relatively good agreement between models which allow (Gaussian) and don’t allow 

(binomial) negative consumer preferences in Fig. 2. However, we also find that the two cases 

lead to different ecological engineering phenomena when one observes individual species in 

the environment as in Fig. 4. Here, in panel D the red points correspond to resources α with 

a negative carrying capacity (Kα < 0) which end up in the environment due to “help” from a 

set of fit species (i1, ...) because of the negative consumer preference ci1α, ... .

In Fig. 4 C, red points indicate species with negative fitness that can stably exist in the 

community f i < 0, Ni > 0  due to the effect of negative consumer preferences, which can 

boost resources above their carrying capacity. Thus, we see species that cannot survive in the 

environment in the absence of other species can fixate (red points). Importantly, this 

emergent phenomenon is a collective property of the whole ecosystem and results from a 

complex interplay between organisms and environment and is an interesting direction for 

future study.
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Additionally, Fig. 4 shows predictions from our CM for the correlation between fi and Ni .

Within our replicasymmetric ansatz, these correlations are described by normal distributions 

whose variances and covariances can be calculated using our self-consistent equations. The 

contour lines represent half a standard deviation spread of our normal distribution. Our 

theory qualitatively captures the shape of the correlation between fi and Ni . We give explicit 

expression for these correlations as well as the mutual information between species 

abundances and naive fitness in Appendix E.

V DISCUSSION

Niche-based theories have played a fundamental role in shaping our understanding of 

community assembly and community ecology. In this work, we use ideas and methods from 

statistical physics to analyze a canonical model in community ecology, MacArthur’s 

Consumer Resource Model (MCRM). Unlike previous works, our statistical physics inspired 

approach allows us to analyze large ecosystems with many species and resources. Our 

results suggest that organisms can significantly perturb their environments. The abundance 

of resources can be significantly altered and resource can even be completely depleted. We 

nd that such niche-construction is a generic feature of MCRM. This suggests that in complex 

ecosystems, organisms actively construct their environment. To quote Levins and Lewontin, 

“they are not the passive objects of external forces, but creators and modulators of these 

forces” [22]. These effects are even more dramatic when consumers can produce public 

goods at a fitness cost to themselves. In this case, species and resources that could not 

survive in isolation can fixate in the ecosystem.

To carry out our analysis, we developed a sophisticated theory based on the cavity method. 

One of the most striking things about our analysis is that many physical quantities that 

appear in the “cavity equations” have natural ecological interpretations in terms of invasion 

growth rates and effective carrying capacities. The underlying reason for this is that the 

cavity methods is based on asking how ecosystems are perturbed when a new species and a 

new resource are introduced into the ecosystem. Conceptually, this is very similar in spirit to 

many classical arguments in community ecology pioneered by Levins and MacArthur that 

ask whether a new species can invade [2, 6]. This naturally allows us to generalize many of 

the results from niche-based theories to large, diverse ecosystems. However, the price we 

pay for using our cavity approach is that we are limited to making statistical predictions.

An important question for future investigation is to ask how our results change if we make 

the model more realistic. In the MCRM, all species are assumed to have a linear, Type I 

functional response. It will be interesting to generalize our model to non-linear functional 

responses. We have also neglected the effects of environmental and demographic 

stochasticity. Stochasticity can induce phases transitions in ecosystems from a nichelike 

phase where competitive effects dominate community assembly to an ecologically neutral-

like phase where stochasticity is the primary determinant of community structure [15, 23]. It 

will be interesting to see if the techniques developed here can be generalized to this more 

complicated setting. Finally, we have assumed that our population can be modeled as a well-
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mixed community. However, spatial effects can qualitatively change the behavior of cellular 

populations [46, 47] and are likely to play an important role in community assembly.
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Appendix A:: Basic Setup

We brie y summarize MacArthur’s classical consumer resource model (MCRM). Species i = 

1 … S grows at a rate proportional to its utilization of resources, Rα, α = 1...M, in the 

environment. This is described by the equation:

1
Ni

dNi
dt = ∑

α
ciαRα − mi + hi, (A1)

where wα is the value of one unit of resource to a species (e.g. ATPs that can be extracted); 

ciα is the rate at which species i consumes resource α and converts that into a “growth rate”, 

mi; mi is the minimum amount of resources that must be consumed in order to have a 

positive growth rate. We have also added a small perturbation hi to the system that will do a 

linear expansion in. The original MCRM corresponds to the choice hi = 0.

We define the growth rate to be

gi R = ∑
α

ciαWαRα − mi . (A2)

In consumer resource model, resources satisfy their own dynamical equations:

dRα
dt = Rα Kα + bα − Rα − ∑

j
c jαN jRα, (A3)

where the first term (with bα = 0) describes the resource dynamics in the absence of any 

species and the second term models the consumption of resource by species in the 

environment, and bα is small perturbation. The original MCRM corresponds to the choose 

bα = 0. Furthermore, define the effective carrying capacity

Kα
e f f = Kα − ∑

j
c jαN j . (A4)
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We will consider the case when the consumer preferences ciα are random variables that can 

be characterized by their means and variances. In particular,

ciα =
μc
S , (A5)

and

ciαc jβ =
σc

2

S δi jδαβ +
μc

2

S2 ≈
σc

2

S . (A6)

To perform the cavity equations, it is useful to define several other quantities. Let us a define 

the fluctuating part of the consumer preferences diα as

ciα ≡
μc
S + σcdiα . (A7)

Then, we have that

diα = 0, (A8)

and

diαd jβ =
δi jδαβ

S . (A9)

We will also assume that the carrying capacities are drawn from a Gaussian distribution with

Kα = K, (A10)

and

δKαδKβ = Kα − K Kβ − K = δαβσK
2 . (A11)

Finally, we assume that the minimum survival coeffcients are also drawn from Gaussian 

distribution with

mi = m, (A12)
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and

δmiδm j = mi − m m j − m = δi jσm
2 . (A13)

For future reference, it will also be helpful to define the ratio

γ= M
S , (A14)

the average resource abundance,

R = 1
M ∑

α
Rα, (A15)

and the average species abundance

N = 1
S ∑

j
N j . (A16)

With these definitions, notice that we can rewrite (A1) as

1
Ni

dNi
dt = μγ R − m + σ∑

α
diαRα − δmi, (A17)

And rewrite (A3) as

1
Rα

dRα
dt = K − μc N − Rα − σc∑

j
d jαN j + δKα . (A18)

We can de ne the mean growth rate of the population

g = μcγ R − m (A19)

and the mean e ective capacity of resources in the ecosystem to be

Ke f f = K − μc N (A20)

as in the main text. In terms of these quantities, we can rewrite these equations as
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1
Ni

dNi
dt = g + σ∑

α
diαRα − δmi,

1
Rα

dRα
dt = Ke f f − Rα − σc∑

j
d jαN j + δKα .

(A21)

The terms on the right hand sides of the equation above have a natural interpretation as the 

“fluctuating parts” of the growth rate and effective carrying capacity. In particular, we have 

rewritten the growth rate for species i as the sum of the mean growth rate g and a uctuating 

component δgi defined as

δgi = σ∑
α

diαRα − δmi . (A22)

We have split the effective carrying capacity of resource α is divided into a mean Keff and 

fluctuating component δKα
e f f  defined as

δKα
e f f = − ∑

j
d jαN j + δKα . (A23)

Appendix B:: Deriving the Species and Resource Distributions

To derive the cavity equations, we will relate a system with S species and M resources to a 

new system where we add an additional resource R0 and and additional species N0. Thus, 

the cavity equations relate a ecosystem with S + 1 and M + 1 resources to a ecosystem with 

S and M resources.

Then we can write equations for this new ecosystem (to leading order in S):

1
Ni

dNi
dt = g + σc∑

α
diαRα − δmi + σcdi0R0, (B1)

and

1
Rα

dRα
dt = Ke f f − Rα − σc∑

j
d jαN j + δKα − σcd0αN0 . (B2)

We can also write down the corresponding equations for the new resource and species:
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1
N0

dN0
dt = g + σc∑

α
d0αRα − δm0 + σcd00R0, (B3)

and

1
R0

dR0
dt = Ke f f − R0 − σc∑

j
d j0N j + δK0 − σcd0αN0 . (B4)

We now focus on steady-state. Let us denote the steady-state value of a quantity X by X . 

Then, we can define some susceptibilities that are extremely useful for what follow:

χiβ
N =

∂Ni
∂Kβ

χαβ
R =

∂Rα
∂Kβ

(B5)

and

vi j
N =

∂Ni
∂m j

vα j
R =

∂Rα
∂m j

.
(B6)

Now we are in a position to perform the cavity calculation. Let us denote the steady-state 

value of a quantity X in the absence of the new resource and species as X /0. Then, since the 

addition of a resource and species represents a small perturbation (order 1/S), we can write:

Ni = Ni/0 − σc∑
β

χiβ
N d0βN0 − σc∑

j
vi j

N d j0R0, (B7)

and

Rα = Rα/0 − σc∑
β

χαβ
R d0βN0 − σc∑

j
vα j

R d j0R0 . (B8)

We can now plug in these expressions into the steady-state equations for N0 and R0. This 

gives:
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0 = N0 g + σd00R0 + δm0 + σc∑
α

d0αRα/0 − σc
2∑

αβ
χαβ

R d0αd0βN0 − σc
2∑

α, j
vα j

R d0αd j0R0 .

(B9)

If we now take leading order contributions to S in this expression, and take expectation value 

over expressions this reduces to

0 = N0 g + σd00R0 − γσ2 1
M ∑

α
χαα

R N0 + δm0 + σ∑
α

d0αRα/0 . (B10)

Notice that, to leading order in S, we can model the term δm0 + σ∑αd0αRα/0, which is just 

the invasion growth rate minus the mean growth rate g0
inv − g, as a Gaussian random eld with 

mean 0 and variance:

σg
2 = σc

2γ 1
M ∑

α
Rα/0

2 + σm
2 = σc

2γqR + σm
2 , (B11)

and

qR = 1
M ∑

α
Rα/0

2 . (B12)

If we let zN be random field with mean zero and unit variance, and define the average 

suspectibility

χ= 1
M ∑

α
χαα

R (B13)

then we can write the equation for N0 as

0 = N0 μγ R − m − γσ2χN0 + σgzN . (B14)

We can also derive a similar equation for R0. This is given by
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0 = R0 Ke f f − R0 − σc∑
j

d j0N j/0 − σc
2∑

jβ
χiβ

N d j0d0βN0

− σc
2∑

j, k
v jk

N d j0dk0R0 + δK0 − σcd00N0 .

(B15)

Using the same logic as above, to leading order we have

0 = R0 Ke f f − R0 + σc
2vR0 + σ

Ke f f zR , (B16)

where

v = 1
S ∑

j
v j j

N , (B17)

and

σ
Ke f f
2 = σK

2 + σc
2qN, (B18)

with

qN = 1
S ∑

j
N j/0

2 . (B19)

We can solve these equations and get

N0 =
max 0, g + σgzN

γσ2χ
(B20)

R0 =
max 0, Ke f f + σ

Ke f f zR

1 − σ2v
. (B21)

Thus, the distributions for N and R are given by truncated Gaussians.
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Appendix C:: Self Consistency Equations

Let us now write some self-consistency equations in the replica symmetric phase. Let us 

define the number of non-zero species and resources as S* and M* respectively. 

Furthermore, de ne

ϕS = S∗

S , (C1)

ϕM = M∗

M . (C2)

Our goal is, given some parameters K, σK, m, σm, μ, σ, S, M , to find the values for 

ϕS, ϕN, N , R , qR, qN, χ,v . Since there are eight unknowns we will need eight equations. It 

will also be useful to define:

Δg = μγ R − m
σg

, (C3)

Δ
Ke f f = K − μ N

σ
Ke f f

, (C4)

and the function

w j Δ = ∫
−Δ

∞ dz
2π

e
−z2

2 z + Δ j . (C5)

First, let us write self-consistency equations for the susceptibilities. Taking derivatives with 

respect to m and K of (B21) and noting that the fraction of non-zero species and non-zero 

resources is N and R respectively gives

v = −
ϕN

γσc
2χ

, (C6)
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χ=
ϕR

1 − σc
2v

. (C7)

Notice now that if we define y = max 0, a
b + c

b z  with z a gaussian random variable we have 

that:

y j = b
c

j∫
− b

a

∞
dz 1

2π
e

−z2
2 z + b

a
j
. (C8)

We can now use the fact that (B21) implies that the species distribution and resource 

distribution is given by a truncated Gaussian to write self consistency equations for the 

fraction of nonzero resources and species as well as the the moments of their abundances:

ϕN = w0 Δg , (C9)

ϕR = w0 Δ
Ke f f , (C10)

N =
σg

γσc
2χ

w1 Δg , (C11)

R =
σ

Ke f f

1 − σc
2v

w1 Δ
Ke f f , (C12)

qN = N2 =
σg

γσc
2χ

2
w2 Δg , (C13)

qR = R2 =
σ

Ke f f

1 − σc
2v

2

w2 Δ
Ke f f . (C14)
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Together (C4), (C7), and (C14) define the 10 selfconsistency equations we need, along with 

the de nitions (B11) and (B18). We solve these mean field equations numerically using the 

sum of squared differences between the left and right sides of equations (C9-C14) as an 

energy function which we minimize using the basinhopping optimization algorithm from the 

scipy.optimize. The algorithm uses random perturbations, local minimization, and an accept 

or reject criterion to attempt to minimize function which may be non-convex. The 

parameters we used were a temperature of 1, a step size of 0:5, and 5 iterations or 

initializations. Note that the equations can also be solved iteratively, but we found these 

solutions were stable for a smaller set of parameter values using this approach.

Appendix D:: Zero net-growth nullclines and generalized impact vectors

We can also easily relate our mean-field quantities to ZGNIs. Recall, that ZGNI’s delineate 

range of resource conditions in which a species maintains a positive growth rate [9, 10]. 

Each species i defines a ZGNI in the resource space Ri
ZGNI defined by the equation 

gi Ri
ZGNI = 0 . Geometrically, we can view Ri

ZGNI as a hyperplane in resource space whose 

dot product with the consumption coeffcients ciα of species i equals mi (see Eq. 1). If mi ≫ 
1, the ZGNI is well-approximated by the plane perpendicular to ciα. We can calculate some 

statistical properties of these ZGNI. Notice that the mean value of each component is just

Riα
ZGNI = m

γμc
, (D1)

and the expected value of the square is just

Riα
ZGNI 2 =

σm
2 + m2

γσc
2 . (D2)

In Modern Niche Theory, another important quantity is the impact vector of a species i. The 

impact vector describes how resources are depleted by the addition of another individual. 

Here, we introduce the idea of generalized impact vectors that measure how the steady state 

concentration of a resource α changes due to the introduction of a species j Alternatively, we 

can consider a system without resource β and then ask how it’s addi-tion changes the species 

abundance of a species i. These de ne the generalized impact vectors (GIVs).

These are of course the leading order contribution (in S) to the cavity equations under the 

replica symmetric assumption, namely (B8) and (B7). Thus, the components of the two 

“generalized’ impact vectors are given by:

Rα − Rα/ j = − σc∑
β

χαβ
R d jβN j, (D3)
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Ni − Ni/β = − σc∑
j

vi j
N d jβRβ, (D4)

Appendix E:: Comparison of individual fitness to true growth rate and 

steady state abundance

We want to quantify how much the naive fitness (the growth rate of an organism without 

other the growth rate of an organism without other growth rate gi
inv, which in turn is closely 

related to the steady state abundance of each of the species in the community. From the 

definition of the invasion growth rate:

gi
inv = ∑

α
ciαRα/i − mi, (E1)

and

f i = ∑
α

ciαKα − mi, (E2)

we can compute the level of correlation between the two using the CM. To begin, we 

compute the means of each of these distributions:

f i = ∑
α

ciα Kα − mi = γμcK − m, (E3)

and

gi
inv = ∑

α
ciα Rα/i − mi = γμc R − m . (E4)

The final equality in the preceding equation holds in the asymptotic limit of large S and M. 

Note that the con-sumer preferences ciα of an individual species are independent of the 

resources steady state levels when that species i is not included in the community as in the 

previous equation. We can also compute the correlation between fluctuations from the mean 

naive fitness and the mean invasion growth rate: i.e. if a species has a higher or lower 

individual fitness, if a species has a higher or lower individual in the community? To 

understand this correlation, we define δ f i = f i − f i  and δgi
inv = gi

inv − gi
inv  and compute:
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δ f iδgi
inv =

∑
α

σcdiαKα +
μc
S Kα − Kα + δmi

. ∑
α

σcdiαRα/i +
μc
S Rα/i − Rα/i + δmi

In the large S limit, the important terms remaining in the average above are:

δ f iδgi
inv = γ

σc
2

M ∑
α

Rα/iKα + σm
2 , (E5)

thus in the asymptotic limit we can write the correlation between the two forms of fitness as:

δ f iδgi
inv = γσc

2 Rα/iKα + σm
2 . (E6)

To compute the correlation between carrying capacity and resource level we modify (B21) 

from our capacity calculation, which yields such a relationship:

Rα Kα =
max 0, Kα − μc N + σc qNzN

1 − σc
2v

. (E7)

Using this relationship and letting k be drawn from the same distribution as Kα, where

R k =
max 0, k − μc N + σc qNzN

1 − σc
2v

, (E8)

we compute

kR k k, zN
. (E9)

The full form of this integral is thus:

∫ dkkR k e

− k − K 2

2σK
2

zN

. (E10)
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By rewriting this as

∫ dk k − K R k e

− k − K 2

2σK
2

+ ∫ dkKR k e

− k − K 2

2σK
2

zN

, (E11)

it may be simplified via integration by parts on the first term, yielding: 

kR k k, zN
= σK

2 R′ k + K R k

= 1
1 − σ2v

σK
2 w0 Δ

Ke f f + Kw1 Δ
Ke f f ,

 where Δ
Ke f f = K − N

σ
Ke f f

, and

w j Δ = ∫
−Δ

∞ dz
2π

e
−z2

2 z + Δ j . (E12)

Note, we can also compute Pearson’s correlation coeffcient for these two tness metrics:

cρ =
δ f δginv

δ f 2 δginv 2 (E13)

=
γσc

2 kR k k, zN
+ σm

2

σm
2 + γσc

2 σK
2 + K2 γσc

2 R2 + σm
2

=

γσc
2

1 − σc
2v

σK
2 w0 Δ

Ke f f + Kw1 Δ
Ke f f + σm

2

σm
2 + γσc

2 σK
2 + K2 γσc

2 R2 + σm
2 .

(E14)

Using (C10) and (C12) we can write the preceding expression as:

γσc
2

1 − σc
2v

σK
2 ϕR + K

1 − σc
2v

σ
Ke f f

R + σm
2

σm
2 + γσc

2 σK
2 + K2 γσc

2 R2 + σm
2 . (E15)
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1. Abundance vs naive tness

Note that given the relationship that N is a scaled version of ginv where all negative values 

are truncated to zero (B21), it follows that we can compute the correlation between Ni and fi 

where Ni =
gi
inv

γσc
2χ

. Where we let Ni = Ni if Ni > 0 and Ni = 0 otherwise. To better understand 

that the correlation between the abundance and fitness of a species, we compute the 

correlation between N and f:

δNδ f = 1
γσc

2χ
γσc

2

1 − σc
2v

σK
2 ϕR + K

1 − σc
2v

σ
Ke f f

R + σm
2 , (E16)

δN 2 =
γσc

2 R2 + σm
2

γσc
2χ 2 , (E17)

and

δ f 2 = σm
2 + γσc

2 σK
2 + K2 . (E18)

Using these covariances, along with the means:

f = γμcK − m, (E19)

N =
γμc R − m

γσc
2χ

, (E20)

we are able to generate theoretical predictions for the distribution of f, N. See Fig 4 where 

the theoretical plot of f, N is compared with values of fittness f and abundance N for all 

species in a network over many realizations.

2. Resource capacity versus resource abundance

In the same Fig 4, we additionally plot a theoretical prediction overlayed with numerics of 

how the resource capacities Kα are related to the resource abundances Rα.
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If we define Rα =
Kα

e f f

1 − σc
2v

, , which is equal to the prediction of Rα when the resources 

abundance is positive, and use the fact

δKα
e f f = − ∑

j
d jαN j + δKα, (E21)

then we may combine these two relations to yield:

δRα = 1
1 − σc

2v
−∑

j
d jαN j/α + δKα . (E22)

We can thus compute the correlations:

1
M ∑

α
δKαδKα σK

2 , (E23)

1
M ∑

α
δKαδRα

σK
2

1 − σc
2v

, (E24)

1
M ∑

α
δRαδRα

σc
2qN + σK

2

1 − σc
2v 2 . (E25)

Also the means are easy to compute:

Kα K, (E26)

Rα
K − μ N
1 − σc

2v
. (E27)

This allows us to make theoretical predictions for how the resource abundances are 

correlated to resource capacities.
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3. Mutual information between individual fitness and true growth rate

The mutual information between two Gaussian variables x and z is simply (note the means 

of these random variables do not contribute so we will assume them are zero mean random 

variables):

I x, z = 1
2ln

σx
2σz

2

σx
2σz

2 − σxz
2 . (E28)

Thus,

I f , ginv = − 1
2ln 1 − cρ

2 . (E29)

This gives us a theoretical prediction using the predicted form for the correlation coeficient 

(E15).

Appendix F:: Additional simulations and notes

We discussed how the theoretical curves were generated in Appendix C. The numerical 

simulations were performed by solving the corresponding ODEs (4) and integrating 

numerically until time 50, 000 with 1000 steps. Although it is not always needed, we 

improved the accuracy by additionally including a small amount of migration noise which 

we lowered linearly to a negligible roundoff error over the course of the integration to help 

ensure that a species that was favored to survive would not go extinct.

We also ran simulations in other regimes, such as the one shown in Fig 5 where we consider 

fixing μc = 1 while varying σc to study the setting when we are less interested in comparing 

specialists to generalists and more interested in the effect of niche overlap and how a high 

overlap in the generating distribution can reduce the number of surviving species.
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FIG. 1. Analyzing MacArthur Consumer’s Resource Model for large, diverse ecosystems.
(Top) The growth rate for a species i is a sum of terms resulting from consuming M ≫ 1 

resources. For this reason, from the central limit theorem, it can be well modeled by a 

(truncated) normally distributed variable. (Bottom) Each resource α is consumed by S ≫ 1 

consumers. From the central limit theorem, the effective carrying capacity of the resource 

(i.e. the resource abundance at steady-state) can also be modeled using a (truncated) normal 

distribution. The truncation is due to the fact that neither species nor resource abundances 

can become negative. To derive our analytic cavity equations, we require selfconsistency for 

the means and variance of these distributions.
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FIG. 2. Comparison of numerical simulations with theory.
Ecosystems were simulated with the consumption coefficients ciα = 0, 1 drawn from a 

Bernoulli distribution with probability p (black lines) or a Gaussian distribution with same 

mean and variance as the binomial distribution (red line). Here S = M = 30, K = 1, σk = 1, m 
= 1, σm = .1, and 250 trials were used in these simulations: the error bars denote ±2 standard 

deviations. The Ka and mi were drawn iid from a gamma distribution in the binomial plot to 

ensure nonnegativity of the parameters, and a Gaussian distribution in the Gaussian 

approximation plot. The numerical results were compared to theoretical predictions from the 
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self-consistent cavity equations for ecologically stable steady-states (green circles). (A) 

Fraction of species that survive ϕN , (B) fraction of resources that are not depleted ϕR, (C) 

average abundance of all species 〈N〉, (D) average abundance of all resources 〈R〉 as a 

function of the probability p. (E) Mean-abundance of surviving species 〈N〉/ϕN and (F) 

mean-abundance of surviving resources 〈R〉/R.
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FIG. 3. Co-existence and diversity.
Here we use the same parameters as in the previous plot, apart from allowing σm to vary, 

and show the cavity prediction of the fraction of surviving species ϕN as a function of p and 

the standard deviation over mean σm/m of the maintenance costs mi of species. In this 

regime increasing p leads to more similar species by increasing the niche overlap ρ as 

defined in (8) from ρ ≈ 77 to ρ ≈ 99 in the range shown above. As predicted by niche 

theories, increasing ρ leads to increased competition and a smaller ϕN while decreasing 

σm/mi leads to larger fraction of species surviving at a fixed p.
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FIG. 4. Predicting the effective fttness and effective carrying capacity
(A) Steady-state abundance Ni versus the fitness f i = ∑αciαmax Kα, 0 − mi for each species 

i . Fitness is defined as the initial growth rate of species i in the environment in the absence 

of all other species. Points colored black are species with positive fitness that go extinct in 

the community f i > 0, Ni = 0 . (B) Comparison of the steady state resource levels Rα with 

their capacity Kα. The filled circles are generated from simulations with M = S = 30 

resources and species, the data is generated from 50 separate trials. Parameters for 

simulations as in Figure 2 with p = and σm/m = 0.1. Black points indicate resources which 

have a positive capacity but go extinct in the community. The difference between plots for 

(A,B) and (C,D) is that in the former Kα and mi are always positive because they are drawn 

from a gamma distribution and Bernoulli distribution respectively. In (C,D), each of these 

parameters is drawn from a Gaussian distribution with the same mean and variance as in 

(A,B). This means that a small fraction of the Kα, mi, and ciα are negative. Negative ciα 
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corresponds to production of resource α by species i at a fitness cost to itself (i.e. public 

good production). In (C,D), red points indicate species with negative fitness that can stably 

exist in the community f i < 0, Ni > 0  or resources with negative Kα that are produced by 

the ecosystem. Contours show theoretical predictions of our CM for correlation betweenNi

and fi as well as Rα and Kα (see Appendix E for details). Each contour represents half a 

standard deviation of our theory.
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FIG. 5. Comparing CRM theory vs simulation - another setting.
All parameters defining the species were drawn from a Gaussian distribution as in main text 

but with σm = 1 (a larger maintenance cost variance). Interestingly, we see a difierent 

behavior than in Fig 2 in that the average abundance 〈N〉 of all species is increasing with 

increasing niche overlap. Also, the number of surviving species is reduced by high niche 

overlap as it is in Fig 2, which makes sense since when species are very similar they will 

compete more directly for the same resources. The parameters used are: σm = 1; m = 1; σk = 

1; K = 1, and simulations were run assuming an equal number of species and resources S = 

M = 30 (γ = 1). Additionally, μc = 1 was fixed and σc varied (note that the niche overlap ρ is 

determined by these two variables). The theoretical predictions from the cavity solution 

(blue), match well with the numerical solutions (red) for the CRM model averaged over 100 

trials with and plotted with ±2 standard deviation error bars (dashed lines).
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