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Abstract

In shared autonomy, user input and robot autonomy are combined to control a robot to achieve a 

goal. Often, the robot does not know a priori which goal the user wants to achieve, and must both 

predict the user’s intended goal, and assist in achieving that goal. We formulate the problem of 

shared autonomy as a Partially Observable Markov Decision Process with uncertainty over the 

user’s goal. We utilize maximum entropy inverse optimal control to estimate a distribution over 

the user’s goal based on the history of inputs. Ideally, the robot assists the user by solving for an 

action which minimizes the expected cost-to-go for the (unknown) goal. As solving the POMDP to 

select the optimal action is intractable, we use hindsight optimization to approximate the solution. 

In a user study, we compare our method to a standard predict-then-blend approach. We find that 

our method enables users to accomplish tasks more quickly while utilizing less input. However, 

when asked to rate each system, users were mixed in their assessment, citing a tradeoff between 

maintaining control authority and accomplishing tasks quickly.

I. Introduction

Robotic teleoperation enables a user to achieve their intended goal by providing inputs into a 

robotic system. In direct teleoperation, user inputs are mapped directly to robot actions, 

putting the burden of control entirely on the user. However, input interfaces are often noisy, 

and may have fewer degrees of freedom than the robot they control. This makes operation 

tedious, and many goals impossible to achieve. Shared Autonomy seeks to alleviate this by 

combining teleoperation with autonomous assistance.

A key challenge in shared autonomy is that the system may not know a priori which goal the 

user wants to achieve. Thus, many prior works [14, 1, 27, 7] split shared autonomy into two 

parts: 1) predict the user’s goal, and 2) assist for that single goal, potentially using prediction 

confidence to regulate assistance. We refer to this approach as predict-then-blend.

In contrast, we follow more recent work [11] which assists for an entire distribution over 

goals, enabling assistance even when the confidence for any particular goal is low. This is 

particularly important in cluttered environments, where it is difficult – and sometimes 

impossible – to predict a single goal.

We formalize shared autonomy by modeling the system’s task as a Partially Observable 

Markov Decision Process (POMDP) [21, 12] with uncertainty over the user’s goal. We 

assume the user is executing a policy for their known goal without knowledge of assistance. 
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In contrast, the system models both the user input and robot action, and solves for an 

assistance action that minimizes the total expected cost-to-go of both systems. See Fig. 1.

The result is a system that will assist for any distribution over goals. When the system is able 

to make progress for all goals, it does so automatically. When a good assistance strategy is 

ambiguous (e.g. the robot is in between two goals), the output can be interpreted as a 

blending between user input and robot autonomy based on confidence in a particular goal, 

which has been shown to be effective [7]. See Fig. 2.

Solving for the optimal action in our POMDP is intractable. Instead, we approximate using 

QMDP [18], also referred to as hindsight optimization [5, 24]. This approximation has many 

properties suitable for shared autonomy: it is computationally efficient, works well when 

information is gathered easily [16], and will not oppose the user to gather information.

Additionally, we assume each goal consists of multiple targets (e.g. an object has multiple 

grasp poses), of which any are acceptable to a user with that goal. Given a known cost 

function for each target, we derive an efficient computation scheme for goals that 

decomposes over targets.

To evaluate our method, we conducted a user study where users teleoperated a robotic arm to 

grasp objects using our method and a standard predict-then-blend approach. Our results 

indicate that users accomplished tasks significantly more quickly with less control input with 

our system. However, when surveyed, users tended towards preferring the simpler predict-

then-blend approach, citing a trade-off between control authority and efficiency. We found 

this surprising, as prior work indicates that task completion time correlates strongly with 

user satisfaction, even at the cost of control authority [7, 11, 9]. We discuss potential ways to 

alter our model to take this into account.

II. Related Works

We separate related works into goal prediction and assistance strategies.

A. Goal Prediction

Maximum entropy inverse optimal control (MaxEnt IOC) methods have been shown to be 

effective for goal prediction [28, 29, 30, 7]. In this framework, the user is assumed to be an 

intent driven agent approximately optimizing a cost function. By minimizing the worst-case 

predictive loss, Ziebart et al. [28] derive a model where trajectory probability decreases 

exponentially with cost, and show how this cost function can be learned efficiently from user 

demonstrations. They then derive a method for inferring a distribution over goals from user 

inputs, where probabilities correspond to how efficiently the inputs achieve each goal [29]. 

While our framework allows for any prediction method, we choose to use MaxEnt IOC, as 

we can directly optimize for the user’s cost in our POMDP.

Others have approached the prediction problem by utilizing various machine learning 

methods. Koppula and Saxena [15] extend conditional random fields (CRFs) with object 

affordances to predict potential human motions. Wang et al. [23] learn a generative predictor 

by extending Gaussian Process Dynamical Models (GPDMs) with a latent variable for 
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intention. Hauser [11] utilizes a Gaussian mixture model over task types (e.g. reach, grasp), 

and predicts both the task type and continuous parameters for that type (e.g. movements) 

using Gaussian mixture autoregression.

B. Assistance Methods

Many prior works assume the user’s goal is known, and study how methods such as potential 

fields [2, 6] and motion planning [26] can be utilized to assist for that goal.

For multiple goals, many works follow a predict-then-blend approach of predicting the most 

likely goal, then assisting for that goal. These methods range from taking over when 

confident [8, 14], to virtual fixtures to help follow paths [1], to blending with a motion 

planner [7]. Many of these methods can be thought of as an arbitration between the user’s 

policy and a fully autonomous policy for the most likely goal [7]. These two policies are 

blended, where prediction confidence regulates the amount of assistance.

Recently, Hauser [11] presented a system which provides assistance while reasoning about 

the entire distribution over goals. Given the current distribution, the planner optimizes for a 

trajectory that minimizes the expected cost, assuming that no further information will be 

gained. After executing the plan for some time, the distribution is updated by the predictor, 

and a new plan is generated for the new distribution. In order to efficiently compute the 

trajectory, it is assumed that the cost function corresponds to squared distance, resulting in 

the calculation decomposing over goals. In contrast, our model is more general, enabling any 

cost function for which a value function can be computed. Furthermore, our POMDP model 

enables us to reason about future human actions.

Planning with human intention models has been used to avoid moving pedestrians. Ziebart et 

al. [29] use MaxEnt IOC to learn a predictor of pedestrian motion, and use this to predict the 

probability a location will be occupied at each time step. They build a time-varying cost 

map, penalizing locations likely to be occupied, and optimize trajectories for this cost. 

Bandy et al. [4] use fixed models for pedestrian motions, and focus on utilizing a POMDP 

framework with SARSOP [17] for selecting good actions. Like our approach, this enables 

them to reason over the entire distribution of potential goals. They show this outperforms 

utilizing only the maximum likelihood estimate of goal prediction for avoidance.

Outside of robotics, Fern and Tadepalli [22] have studied MDP and POMDP models for 

assistance. Their study focuses on an interactive assistant which suggest actions to users, 

who then accept or reject the action. They show that optimal action selection even in this 

simplified model is PSPACE-complete. However, a simple greedy policy has bounded 

regret.

Nguyen et al. [20] and Macindoe et al. [19] apply similar models to creating agents in 

cooperative games, where autonomous agents simultaneously infer human intentions and 

take assistance actions. Here, the human player and autonomous agent each control separate 

characters, and thus affect different parts of state space. Like our approach, they model users 

as stochastically optimizing an MDP, and solve for assistance actions with a POMDP. In 

contrast to these works, our action space and state space are continuous.
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III. Problem Statement

We assume there are a discrete set of possible goals, one of which is the user’s intended 

goal. The user supplies inputs through some interface to achieve their goal. Our shared 

autonomy system does not know the intended goal a priori, but utilizes user inputs to infer 

the goal. It selects actions to minimize the expected cost of achieving the user’s goal.

Formally, let x ∈ X be the continuous robot state (e.g. position, velocity), and let a ∈ A be 

the continuous actions (e.g. velocity, torque). We model the robot as a deterministic 

dynamical system with transition function T: X × A → X. The user supplies continuous 

inputs u ∈ U via an interface (e.g. joystick, mouse). These user inputs map to robot actions 

through a known deterministic function 𝒟:U A, corresponding to the effect of direct 
teleoperation.

In our scenario, the user wants to move the robot to one goal in a discrete set of goals g ∈ G. 

We assume access to a stochastic user policy for each goal πg
usr(x) = p u x, g , usually learned 

from user demonstrations. In our system, we model this policy using the maximum entropy 

inverse optimal control (MaxEnt IOC) [28] framework, which assumes the user is 

approximately optimizing some cost function for their intended goal g, Cg
usr: X × U ℛ. 

This model corresponds to a goal specific Markov Decision Process (MDP), defined by the 

tuple X, U, T , Cg
usr . We discuss details in Sec. IV.

Unlike the user, our system does not know the intended goal. We model this with a Partially 

Observable Markov Decision Process (POMDP) with uncertainty over the user’s goal. A 

POMDP maps a distribution over states, known as the belief b, to actions. Define the system 

state s ∈ S as the robot state augmented by a goal, s = (x, g) and S = X × G. In a slight abuse 

of notation, we overload our transition function such that T : S × A → S, which corresponds 

to transitioning the robot state as above, but keeping the goal the same.

In our POMDP, we assume the robot state is known, and all uncertainty is over the user’s 

goal. Observations in our POMDP correspond to user inputs u ∈ U. Given a sequence of 

user inputs, we infer a distribution over system states (equivalently a distribution over goals) 

using an observation model Ω. This corresponds to computing πg
usr x  for each goal, and 

applying Bayes’ rule. We provide details in Sec. IV.

The system uses cost function Crob : S × A × U → ℛ, corresponding to the cost of taking 

robot action a when in system state s and the user has input u. Note that allowing the cost to 

depend on the observation u is non-standard, but important for shared autonomy, as prior 

works suggest that users prefer maintaining control authority [13]. This formulation enables 

us to penalize robot actions which deviate from 𝒟 u . Our shared autonomy POMDP is 

defined by the tuple (S, A, T, Crob, U, Ω). The optimal solution to this POMDP minimizes 

the expected accumulated cost Crob. As this is intractable to compute, we utilize Hindsight 

Optimization to select actions, described in Sec. V.
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IV. Modelling the user policy

We now discuss our model of πg
usr. In principle, we could use any generative predictor [15, 

23]. We choose to use maximum entropy inverse optimal control (MaxEnt IOC) [28], as it 

explicitly models a user cost function Cg
usr. We can then optimize this directly by defining 

Crob as a function of Cg
usr.

Define a sequence of robot states and user inputs as ξ = {x0, u0, ⋯, xT, uT}. Note that 

sequences are not required to be trajectories, in that xt+1 is not necessarily the result of 

applying ut in state xt. Define the cost of a sequence as the sum of costs of all state-input 

pairs, Cg
usr ξ = ∑t Cg

usr xt, ut . Let ξ0→t be a sequence from time 0 to t, and ξx
t T a 

sequence of from time t to T, starting at robot state x.

It has been shown that minimizing the worst-case predictive loss results in a model where 

the probability of a sequence decreases exponentially with cost, p ξ g ∝ exp −Cg
usr ξ  [28]. 

Importantly, one can efficiently learn a cost function consistent with this model from 

demonstrations of user execution [28].

Computationally, the difficulty lies in computing the normalizing factor ∫
ξ

exp −Cg
sur ξ , 

known as the partition function. Evaluating this explicitly would require enumerating all 

sequences and calculating their cost.

However, as the cost of a sequence is the sum of costs of all state-action pairs, dynamic 

programming can be utilized to compute this through soft-minimum value iteration [29, 30]:

Qg, t
≈ x, u = Cg

usr x, u + Vg, t + 1
≈ x′

Vg, t
≈ x = softmin

u
Qg, t

≈ x, u

Where x′ = T x, 𝒟 u , the result of applying u at state x, and softminx f(x) = − log ∫x 

exp(−f(x))dx.

The log partition function is given by the soft value function, 

Vg, t
≈ x = − log∫

ξx
t T exp −Cg

usr ξx
t T , where the integral is over all sequences starting at 

configuration time x and t. Furthermore, the probability of a single input at a given 

configuration is given by πt
usr u x, g = exp Vg, t

≈ x − Qg, t
≈ x, u  [29].

Many works derive a simplification that enables them to only look at the start and current 

configurations, ignoring the inputs in between [30, 7]. Key to this assumption is that ξ 
corresponds to a trajectory, where applying action ut at xt results in xt+1. However, if the 

system is providing assistance, this may not be the case. In particular, if the assistance 

strategy believes the user’s goal is g, the assistance strategy will select actions to minimize 
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Cg
usr. Applying these simplifications will result positive feedback, where the robot makes 

itself more confident about goals it already believes are likely. In order to avoid this, we 

ensure that the prediction probability comes from user inputs only, and not robot actions:

p ξ g = ∏
t

πt
usr ut xt, g

Finally, to compute the probability of a goal given the partial sequence up to t, we use 

Bayes’ rule:

p ξ ξ0 t =
p ξ0 t g p g

∑g′ p ξ0 t g′ p g′

This corresponds to our POMDP observation model Ω.

V. Hindsight optimization

Solving POMDPs, i.e. finding the optimal action for any belief state, is generally intractable. 

We utilize the QMDP approximation [18], also referred to as hindsight optimization [5, 24] 

to select actions. The idea is to estimate the cost-to-go of the belief by assuming full 

observability will be obtained at the next time step. The result is a system that never tries to 

gather information, but can plan efficiently in the deterministic subproblems. This concept 

has been shown to be effective in other domains [24, 25].

We believe this method is suitable for shared autonomy for many reasons. Conceptually, we 

assume the user will provide inputs at all times, and therefore we gain information without 

explicit information gathering. In this setting, works in other domains have shown that 

QMDP performs similarly to methods that consider explicit information gathering [16]. 

Computationally, QMDP is efficient to compute even with continuous state and action 

spaces, enabling fast reaction to user inputs. Finally, explicit information gathering where 

the user is treated as an oracle would likely be frustrating [10, 3], and this method naturally 

avoids it.

Let Q(b, a, u) be the action-value function of the POMDP, estimating the cost-to-go of 

taking action a when in belief b with user input u, and acting optimally thereafter. In our 

setting, uncertainty is only over goals, b(s) = b(g) = p(g|ξ0→t).

Let Qg(x, a, u) correspond to the action-value for goal g, estimating the cost-to-go of taking 

action a when in state x with user input u, and acting optimally for goal g thereafter. The 

QMDP approximation is [18]:

Q b, a, u = ∑
g

b g Qg x, a, u
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Finally, as we often cannot calculate arg maxa Q(b, a, u) directly, we use a first-order 

approximation, which leads to us to following the gradient of Q(b, a, u).

We now discuss two methods for approximating Qg:

1. Robot and user both act: Estimate u with πg
usr at each time step, and utilize 

Crob({x, g}, a, u) for the cost. Using this cost, we could run q-learning 

algorithms to compute Qg. This would be the standard QMDP approach for our 

POMDP.

2. Robot takes over: Assume the user will stop supplying inputs, and the robot will 

complete the task. This enables us to use the cost function Crob(s, a, u) = Crob(s, 
a, 0). Unlike the user, we can assume the robot will act optimally. Thus, for many 

cost functions we can analytically compute the value, e.g. cost of always moving 

towards the goal at some velocity.

An additional benefit of this method is that it makes no assumptions about the user policy 

πg
usr, making it more robust to modelling errors. We use this method in our experiments.

VI. Multi-Goal MDP

There are often multiple ways to achieve a goal. We refer to each of these ways as a target. 
For a single goal (e.g. object to grasp), let the set of targets (e.g. grasp poses) be κ ∈ K. We 

assume each target has robot and user cost functions Cκ
rob and Cκ

usr, from which we compute 

the corresponding value and action-value functions Vκ and Qκ, and soft-value functions Vκ
≈

and Qκ
≈. We derive the quantities for goals, Vg, Qg, Vg

≈, Qg
≈, as functions of these target 

functions.

A. Multi-Target Assistance

For simplicity of notation, let Cg(x, a) = Crob({x, g}, a, 0), and Cκ x, a = Cκ
rob x, a, 0 . We 

assign the cost of a state-action pair to be the cost for the target with the minimum cost-to-go 

after this state:

Cg x, a = C
κ∗(x, a) κ ∗ = arg min

κ
Vκ x′

Where x′ is the robot state when action a is applied at x.

Theorem 1—Let Vκ be the value function for target κ. Define the cost for the goal as 

above. For an MDP with deterministic transitions, the value and action-value functions Vg 

and Qg can be computed as:

Qg x, a = C
κ∗(x, a) + V

κ∗ x′ κ∗ = arg min Vκ x′

Vg = min
κ

Vκ x
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Proof—We show how the standard value iteration algorithm, computing Qg and Vg 

backwards, breaks down at each time step. At the final timestep T, we get:

Qg
T x, a = Cg x, a

= Cκ x, a for any κ

Vg
T x = min

a
Cg x, a

= min
a

min
κ

Cκ ∗ x, a

= min
κ

Vκ
T x

Since Vκ
T x = minaCκ ∗ x, a  by definition. Now, we show the recursive step:

Qg
t − 1 x, a = Cg x, a + Vg

t x′

= C
κ∗ x, a + min

κ
Vκ

t x′ κ∗ = arg min Vκ x′

= C
κ∗ x, a + V

κ∗
t x′ κ∗ = arg min Vκ x′

Vκ
t − 1 x = min

a
Qg

t − 1 x, a

= min
a

C
κ∗ x, a + V

κ∗
t x′ κ∗ = arg min Vκ x′

≥ min
a

min
κ

Cκ x, a + Vκ
t x′

= min
κ

Vκ
t − 1 x

Additionally, we know that Vg(x) ≤ minκ Vκ(x), since Vκ(x) measures the cost-to-go for a 

specific target, and the total cost-to-go is bounded by this value for a deterministic system. 

Therefore, Vg(x) = minκ Vκ(x). ■

B. Multi-Target Prediction

Here, we don’t assign the goal cost to be the cost of a single target Cκ, but instead use a 

distribution over targets.

Theorem 2—Define the probability of a trajectory and target as p(ξ, κ) ∝ exp(−Cκ(ξ)). Let 

Vκ
≈ and Qκ

≈ be the soft-value functions for target κ. The soft value functions for goal g, Vg
≈

and Qg
≈, can be computed as:

Vg
≈ x = softmin

κ
Vκ

≈ x

Qg
≈ x, u = softmin

κ
Qκ

≈ x, u
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Proof—As the cost is additive along the trajectory, we can expand out exp(−Cκ(ξ)) and 

marginalize over future inputs to get the probability of an input now:

πusr ut, κ xt =
exp −Cκ xt, ut ∫ exp −Cκ ξxt + 1

t + 1 T

∑κ′∫ exp −Cκ′ ξxt
t T

Where the integrals are over all trajectories. By definition, 

exp −Vκ, t
≈ xt = ∫ exp −Cκ ξxt

t T :

=
exp −Cκ xt, ut exp −Vκ, t + 1

≈ xt + 1
∑κ′ exp −Vκ′, t

≈ xt

=
exp −Vκ, t

≈ xt, ut

∑κ′ exp −Vκ′, t
≈ xt

Marginalizing out κ and simplifying:

πusr(ut xt) =
∑κ exp( − Qκ, t

≈ (xt, ut))

∑κ exp( − Vκ, t
≈ (xt))

= exp log
∑κ exp( − Qκ, t

≈ (xt, ut))

∑κ exp( − Vκ, t
≈ (xt))

= exp softmin
κ

Vκ, t
≈ (xt) − softmin

κ
Qκ, t

≈ (xt, ut)

As Vg, t
≈  and Qg, t

≈  are defined such that πt
usr(u x, g) = exp(Vg, t

≈ (x) − Qg, t
≈ (x, u)), our proof is 

complete. ■

VII. User Study

We compare two methods for shared autonomy in a user study: our method, referred to as 

policy, and a conventional predict-then-blend approach based on Dragan and Srinivasa [7], 

referred to as blend.

Both systems use the same prediction algorithm, based on the formulation described in Sec. 

IV. For computational efficiency, we follow Dragan and Srinivasa [7] and use a second order 

approximation about the optimal trajectory. They show that, assuming a constant Hessian, 

we can replace the difficult to compute soft-min functions Vκ
≈ and Qκ

≈ with the min value and 

action-value functions Vκ and Qκ.
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Our policy approach requires specifying two cost functions, Cκ
usr and Cκ

rob, from which 

everything is derived. For Cκ
usr, we use a simple function based on the distance d between the 

robot state x and target κ:

Cκ
usr(x, u) =

α d > δ
α
δ d d ≤ δ

That is, a linear cost near a goal (d ≤ δ), and a constant cost otherwise. This is by no means 

the best cost function, but it does provide a baseline for performance. We might expect, for 

example, that incorporating collision avoidance into our cost function may enable better 

performance [26].

We set Cκ
rob(x, a, u) = Cκ

usr(x, u) + (a − 𝒟(u))2, penalizing the robot from deviating from the 

user command while optimizing their cost function.

The predict-then-blend approach of Dragan and Srinivasa requires estimating how confident 

the predictor is in selecting the most probable goal. This confidence measure controls how 

autonomy and user input are arbitrated. For this, we use the distance-based measure used in 

the experiments of Dragan and Srinivasa [7], conf = max 0, 1 − d
D , where d is the distance 

to the nearest target, and D is some threshhold past which confidence is zero.

A. Hypotheses

Our experiments aim to evaluate the task-completion efficiency and user satisfaction of our 

system compared to the predict-then-blend approach. Efficiency of the system is measured 

in two ways: the total execution time, a common measure of efficiency in shared 

teleoperation [6], and the total user input, a measure of user effort. User satisfaction is 

assessed through a survey.

This leads to the following hypotheses:

H1 Participants using the policy method will grasp objects significantly faster than 

the blend method

H2 Participants using the policy method will grasp objects with significantly less 

control input than the blend method

H3 Participants will agree more strongly on their preference for the policy method 

compared to the blend method

B. Experiment setup

We recruited 10 participants (9 male, 1 female), all with experience in robotics, but none 

with prior exposure to our system. To counterbalance individual differences of users, we 

chose a within-subjects design, where each user used both systems.
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We setup our experiments with three objects on a table -a canteen, a block, and a cup. See 

Fig. 5. Users teleoperated a robot arm using two joysticks on a Razer Hydra system. The 

right joystick mapped to the horizontal plane, and the left joystick mapped to the height. A 

button on the right joystick closed the hand. Each trial consisted of moving from the fixed 

start pose, shown in Fig. 5, to the target object, and ended once the hand was closed.

At the start of the study, users were told they would be using two different teleoperation 

systems, referred to as “method1” and “method2”. Users were not provided any information 

about the methods. Prior to the recorded trials, users went through a training procedure: 

First, they teleoperated the arm directly, without any assistance or objects in the scene. 

Second, they grasped each object one time with each system, repeating if they failed the 

grasp. Third, they were given the option of additional training trials for either system if they 

wished.

Users then proceeded to the recorded trials. For each system, users picked up each object 

one time in a random order. Half of the users did all blend trials first, and half did all policy 

trials first. Users were told they would complete all trials for one system before the system 

switched, but were not told the order. However, it was obvious immediately after the first 

trail started, as the policy method assists from the start pose and blend does not. Upon 

completing all trials for one system, they were told the system would be switching, and then 

proceeded to complete all trials for the other system. If users failed at grasping (e.g. they 

knocked the object over), the data was discarded and they repeated that trial. Execution time 

and total user input were measured for each trial.

Upon completing all trials, users were given a short survey. For each system, they were 

asked for their agreement on a 1–7 Likert scale for the following statements:

1. “I felt in control”

2. “The robot did what I wanted”

3. “I was able to accomplish the tasks quickly”

4. “If I was going to teleoperate a robotic arm, I would like to use the system”

They were also asked “which system do you prefer”, where 1 corresponded to blend, 7 to 

policy, and 4 to neutral. Finally, they were asked to explain their choices and provide any 

general comments.

C. Results

Users were able to successfully use both systems. There were a total of two failures while 

using each system – once each because the user attempted to grasp too early, and once each 

because the user knocked the object over. These experiments were reset and repeated.

We assess our hypotheses using a significance level of α = 0.05, and the Benjamini–

Hochberg procedure to control the false discovery rate with multiple hypotheses.

Trial times and total control input were assessed using a two-factor repeated measures 

ANOVA, using the assistance method and object grasped as factors. Both trial times and 
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total control input had a significant main effect. We found that our policy method resulted in 

users accomplishing tasks more quickly, supporting H1 (F(1, 9) = 12.98, p = 0.006). 

Similarly, our policy method resulted in users grasping objects with less input, supporting 

H2 (F(1, 9) = 7.76, p = 0.021). See Fig. 6 for more detailed results.

To assess user preference, we performed a Wilcoxon paired signed-rank test on the survey 

question asking if they would like to use each system, and a Wilcoxon rank-sum test on the 

survey question of which system they prefer against the null hypothesis of no preference 

(value of 4). There was no evidence to support H3.

In fact, our data suggests a trend towards the opposite – that users prefer blend over policy. 

When asked if they would like to use the system, there was a small difference between 

methods (Blend: M = 4.90, SD = 1.58, Policy: M = 4.10, SD = 1.64). However, when asked 

which system they preferred, users expressed a stronger preference for blend (M = 2.90, SD 
= 1.76). While these results are not statistically significant according to our Wilcoxon tests 

and α = 0.05, it does suggest a trend towards preferring blend. See Fig. 7 for results for all 

survey questions.

We found this surprising, as prior work indicates a strong correlation between task 

completion time and user satisfaction, even at the cost of control authority, in both shared 

autonomy [7, 11] and human-robot teaming [9] settings.1 Not only were users faster, but 

they recognized they could accomplish tasks more quickly (see quickly in Fig. 7). One user 

specifically commented that “(Policy) took more practice to learn… but once I learned I was 

able to do things a little faster. However, I still don’t like feeling it has a mind of it’s own”.

As shown in Fig. 7, users agreed more strongly that they felt in control during blend. 

Interestingly, when asked if the robot did what they wanted, the difference between methods 

was less drastic. This suggests that for some users, the robot’s autonomous actions were in-

line with their desired motions, even though the user was not in control.

Users also commented that they had to compensate for policy in their inputs. For example, 

one user stated that “(policy) did things that I was not expecting and resulted in unplanned 

motion”. This can perhaps be alleviated with user-specific policies, matching the behavior of 

particular users.

Some users suggested their preferences may change with better understanding. For example, 

one user stated they “disliked (policy) at first, but began to prefer it slightly after learning its 

behavior. Perhaps I would prefer it more strongly with more experience”. It is possible that 

with more training, or an explanation of how policy works, users would have preferred the 

policy method. We leave this for future work.

D. Examining trajectories

Users with different preferences had very different strategies for using each system. Some 

users who preferred the assistance policy changed their strategy to take advantage of the 

1In prior works where users preferred greater control authority, task completion times were indistinguishable [13].
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constant assistance towards all goals, applying minimal input to guide the robot to the 

correct goal (Fig. 8). In contrast, users who preferred blending were often opposing the 

actions of the autonomous policy (Fig. 9). This suggests the robot was following a strategy 

different from their own.

VIII. Conclusion and Future Work

We presented a framework for formulating shared autonomy as a POMDP. Whereas most 

methods in shared autonomy predict a single goal, then assist for that goal (predict-then-

blend), our method assists for the entire distribution of goals, enabling more efficient 

assistance. We utilized the MaxEnt IOC framework to infer a distribution over goals, and 

Hindsight Optimization to select assistance actions. We performed a user study to compare 

our method to a predict-then-blend approach, and found that our system enabled faster task 

completion with less control input. Despite this, users were mixed in their preference, 

trending towards preferring the simpler predict-then-blend approach.

We found this surprising, as prior work has indicated that users are willing to give up control 

authority for increased efficiency in both shared autonomy [7, 11] and human-robot teaming 

[9] settings. Given this discrepancy, we believe more detailed studies are needed to 

understand precisely what is causing user dissatisfaction. Our cost function could then be 

modified to explicitly avoid dissatisfying behavior. Additionally, our study indicates that 

users with different preferences interact with the system in very different ways. This 

suggests a need for personalized learning of cost functions for assistance.

Implicit in our model is the assumption that users do not consider assistance when providing 

inputs – and in particular, that they do not adapt their strategy to the assistance. We hope to 

alleviate this assumption in both prediction and assistance by extending our model as a 

stochastic game.
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Fig. 1. 
Our shared autonomy framework. We assume the user is executing a stochastically optimal 

policy for a known goal, without knowledge of assistance. We depict this single-goal policy 

as a heatmap plotting the value function at each position. Here, the user’s target is the 

canteen. The shared autonomy system models all possible goals and their corresponding 

policies. From user inputs u, a distribution over goals is inferred. Using this distribution and 

the value functions for each goal, an action a is executed on the robot, transitioning the robot 

state from x to x′. The user and shared autonomy system both observe this state, and repeat 

action selection.

Javdani et al. Page 16

Robot Sci Syst. Author manuscript; available in PMC 2019 January 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
Arbitration as a function of confidence with two goals. Confidence = maxg p(g) − ming p(g), 

which ranges from 0 (equal probability) to 1 (all probability on one goal). (a) The hand is 

directly between the two goals, where no action assists for both goals. As confidence for one 

goal increases, assistance increases linearly. (b) From here, going forward assists for both 

goals, enabling the assistance policy to make progress even with 0 confidence.
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Fig. 3. 
Estimated goal probabilities and value function for an object grasping trial. Top row: the 

probability of each goal object and a 2-dimensional slice of the estimated value function. 

The transparent end-effector corresponds to the initial state, and the opaque end-effector to 

the next state. Bottom row: the user input and robot control vectors which caused this 

motion. (a) Without user input, the robot automatically goes to the position with lowest 

value, while estimated probabilities and value function are unchanged. (b) As the user inputs 

“forward”, the end-effector moves forward, the probability of goals in that direction 

increase, and the estimated value function shifts in that direction. (c) As the user inputs 

“left”, the goal probabilities and value function shift in that direction. Note that as the 

probability of one object dominates the others, the system automatically rotates the end-

effector for grasping that object.
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Fig. 4. 
Value function for a goal (grasp the ball) decomposed into value functions of targets (grasp 

poses). (a, b) Two targets and their corresponding value function Vκ. In this example, there 

are 16 targets for the goal. (c) The value function of a goal Vg used for assistance, 

corresponding to the minimum of all 16 target value functions (d) The soft-min value 

function Vg
≈ used for prediction, corresponding to the soft-min of all 16 target value 

functions.
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Fig. 5. 
Our experimental setup for object grasping. Three objects – a canteen, block, and glass – 

were placed on the table in front of the robot in a random order. Prior to each trial, the robot 

moved to the configuration shown. Users picked up each object using each teleoperation 

system.
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Fig. 6. 
Task completion times and total input for all trials. On the left, means and standard errors for 

each system. On the right, the time and input of blend minus policy, as a function of the time 

and total input of blend. Each point corresponds to one trial, and colors correspond to 

different users. We see that policy was faster and resulted in less input in most trials. 

Additionally, the difference between systems increases with the time/input of blend.
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Fig. 7. 
On the left, means and standard errors from survey results from our user study. For each 

system, users were asked if they felt in control, if the robot did what they wanted, if they 

were able to accomplish tasks quickly, and if they would like to use the system. 

Additionally, they were asked which system they prefer, where a rating of 1 corresponds to 

blend, and 7 corresponds to policy. On the right, the like rating of policy minus blend, 

plotted against the prefer rating. When multiple users mapped to the same coordinate, we 

plot multiple dots around that coordinate. Colors correspond to different users, where the 

same user has the same color in Fig. 6.

Javdani et al. Page 22

Robot Sci Syst. Author manuscript; available in PMC 2019 January 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 8. 
User input and autonomous actions for a user who preferred policy assistance, using (a) 

blending and (b) policy for grasping the same object. We plot the user input, autonomous 

assistance with the estimated distribution, and what the autonomous assistance would have 

been had the predictor known the true goal. We subtract the user input from the assistance 

when plotting, to show the autonomous action as compared to direct teleoperation. The top 3 

figures show each dimension separately. The bottom shows the dot product between the user 

input and assistance action. This user changed their strategy during policy assistance, letting 

the robot do the bulk of the work, and only applying enough input to correct the robot for 

their goal. Note that this user never applied input in the ‘X’ dimension in this or any of their 

three policy trials, as the assistance always went towards all objects in that dimension.
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Fig. 9. 
User input and autonomous assistance for a user who preferred blending, with plots as in 

Fig. 8. The user inputs sometimes opposed the autonomous assistance (such as in the ‘X’ 

dimension) for both the estimated distribution and known goal, suggesting the cost function 

didn’t accomplish the task in the way the user wanted. Even still, the user was able to 

accomplish the task faster with the autonomous assistance then blending.
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