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Abstract

The development of novel miniaturized wireless and wearable functional Near-Infrared 

Spectroscopy (fNIRS) devices have paved the way to new functional brain imaging that can 

revolutionize the cognitive research fields. Over the past few decades, several studies have been 

conducted with conventional fNIRS systems that have demonstrated the suitability of this 

technology for a wide variety of populations and applications, to investigate both the healthy brain 

and the diseased brain. However, what makes wearable fNIRS even more appealing is its 

capability to allow measurements in everyday life scenarios that are not possible with other gold-

standard neuroimaging modalities, such as functional Magnetic Resonance Imaging. This can have 

a huge impact on the way we explore the neural bases and mechanisms underpinning human brain 

functioning. The aim of this review is to provide an overview of studies conducted with wearable 

fNIRS in naturalistic settings in the field of cognitive neuroscience. In addition, we present the 

challenges associated with the use of wearable fNIRS in unrestrained contexts, discussing 

solutions that will allow accurate inference of functional brain activity. Finally, we provide an 

overview of the future perspectives in cognitive neuroscience that we believe would benefit the 

most by using wearable fNIRS.
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Understanding and identifying the relationships between human behaviour and cognitive 

processes represented the main goal of cognitive neuroscientists over the past century. 

Historically, neuropsychological assessments were conducted investigating the effect of task 
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manipulations on participants’ performance and behavioural variables (e.g., response times, 

accuracy, etc.), with cognitive models built on the basis of the outcome of the cognitive tests. 

Neuropsychological tests were - and still are - often used as a support for diagnostic 

purposes, e.g. for the early detection of cognitive disabilities such as Alzheimer’s (Spooner 

& Pachana, 2006). However, there is not always a univocal correspondence between a 

certain stimulus and behaviour, and behavioural variables might not be enough in 

characterizing some cognitive functions (Poldrack, 2006).

Nowadays, the field of cognitive neuroscience concerns itself with mapping information 

processing models of the mind onto the structural and operational (e.g., electrical, metabolic, 

hemodynamic) features of the brain. This has been enabled by neuroimaging technologies 

currently available to neuroscientists, such as neurovascular-based techniques (i.e., 

functional magnetic resonance imaging (fMRI), functional near-infrared spectroscopy 

(fNIRS), positron-emission-tomography (PET)), and electromagnetic techniques (i.e., 

electroencephalography (EEG) and magnetoencephalography (MEG)).

In classical neuroimaging investigations, participants are required to undertake a timely rigid 

constructed experimental procedure involving one or many different types of stimuli that 

intend to elicit a behaviour that can be associated with particular brain regions. Often, the 

experimental paradigm used to elicit the mental processing (e.g., showing a long series of 

single words one at a time) does not require the participant to be engaged in a mental task 

that is very similar to one that would typically be encountered in everyday life. Indeed, as 

neuroimaging is done within the tight constraints of the neuroimaging laboratory and 

instrument, everyday life behaviour cannot be exactly replicated. For example, interactions 

with other people (including physical ones), and complex integrative tasks such as serial 

multitasking where a person is swapping between very different tasks such as cooking or 

shopping (Burgess, 2015). These situations are hard to mimic in e.g. an fMRI scanner. In 

fact, fMRI as well as PET and MEG impose significant physical constraints, given the fact 

that measurements are taken with participants restrained in a scanner. Moreover, all these 

techniques are highly susceptible to motion artifacts and/or cannot be brought outside the 

lab, thus not being suitable for use on freely-moving subjects and in everyday life.

These issues limit the questions that can be asked, and raise the question of the ecological 

validity (i.e., the degree to which the task performance predicts the real-world behaviour 

(Burgess et al., 2006)) of the results. For these reasons, a neuroimaging method which can 

be used while people perform almost any activity that they would in everyday life, especially 

over lengthy durations, opens up the possibility of asking very different scientific questions, 

especially exploratory ones. Moreover, the method can, if used appropriately, decrease the 

possibility of an error of scientific inference in mapping mind to brain.

A solution for monitoring the neural correlates of daily life activities can be achieved by 

wearable fNIRS devices. fNIRS is one of the most recent neuroimaging technique and, over 

the past few decades, it has rapidly grown to become an invaluable and powerful tool for 

neuroscientists and clinicians to monitor changes in brain tissue oxygenation and 

hemodynamic (Boas, Elwell, Ferrari & Taga, 2014). fNIRS utilises near-infrared (NIR) light 

(650-1000 nm) to measure the concentration changes of oxygenated (HbO2) and 

Pinti et al. Page 2

Jpn Psychol Res. Author manuscript; available in PMC 2019 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



deoxygenated (HbR) haemoglobin, taking advantage of the different absorption spectra of 

the two chromophores in the NIR wavelength range. When a brain region becomes 

metabolically active, there is an oversupply of cerebral blood flow (CBF) to meet the 

increase in oxygen demand; this is reflected by an increase in ΔHbO2 and a decrease in 

ΔHbR (i.e., the hemodynamic response) and is an indicator of functional brain activity 

(Scholkmann et al., 2014). fNIRS measurements are performed by placing a certain number 

of NIR light sources, shining light into the brain, and optical detectors, collecting the back-

scattered light, onto the participants’ head. The transmitted and the back-scattered light are 

usually guided through fibre optics connected to the main recording unit of the fNIRS 

system.

Most of the conventional fNIRS instruments are quite heavy and big in size, and need carts 

to be transported (Scholkmann et al., 2014). Thanks to the recent technological 

advancements, more portable and miniaturized fNIRS devices were developed. This new 

generation of wearable devices allow participants to freely and naturally move in the 

environment without tight physical restraints. These systems are battery-powered, wearable, 

and data can be either stored on the wearable recording unit or transmitted wirelessly to a 

laptop. Wireless EEG solutions were proposed as well for use in outdoor environments and 

on freely-moving individuals (Debener, Minow, Emkes, Gandras, & Vos, 2012; Mihajlović, 

Grundlehner, Vullers, & Penders, 2015). EEG can provide measurement of neural activity 

with a higher temporal resolution than fNIRS (~ms versus ~tens of ms) so it might be more 

suitable for monitoring neural responses to fast processes and stimuli happening in everyday 

scenarios. However, EEG is more susceptible to motion artifacts than fNIRS, and thus 

people’s movements walking in the real-world must be limited. Therefore, fNIRS might be a 

better option when a wider range of movements are needed and a higher spatial localization 

of brain activity is required (fNIRS spatial resolution ~2-3 cm versus EEG ~5-9 cm).

The availability of this novel fNIRS technology, paves the way to new neuroscientific 

investigations that can now be performed in more naturalistic and ecologically-valid settings, 

with people free to walk and interact with the environment as they would do in real-life. The 

aim of this review is to give an overview of the studies performed so far with wearable 

fNIRS devices in the field of cognitive neuroscience in more naturalistic situations. In this 

framework, we also aim at discussing (a) the challenges associated with the use of fNIRS on 

freely moving people, focusing on the analysis approaches and limitations, (b) provide 

recommendations for successful use of the technology in naturalistic situations, and (c) 

discuss the possible future directions.

Overview of Wearable fNIRS Systems

The last decade has seen a trend towards the development of miniaturized and wearable 

fNIRS devices. Such systems are based on the continuous-wave (CW) NIRS technology 

(Scholkmann et al., 2014), and overcome the issues and restrictions related to bulky fibre 

optic bundles, usually by having LEDs directly coupled to the head and flexible headbands 

holding sources and detectors. In addition, these instruments are battery operated, being 

more portable and allowing measurements in everyday life scenarios with minimal 
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restraints; data are usually stored in the device itself or sent to a PC through wireless 

communication.

Concerning the number of channels, this depends on the number of sources and detectors the 

device is equipped with. A channel is composed by one source and one detector, and 

represents the measurement point, i.e., the investigated brain tissue volume located at half of 

the source-detector distance and at a depth of around half the source-detector distance (Patil, 

Safaie, Moghaddam, Wallois, & Grebe, 2011). The first wearable system implementing 

wireless telemetry was limited by the number of optodes (i.e., light source or detector), 

having one detector and one light source, resulting in one measurement channel, and 

permitting the monitoring of very limited brain regions (Hoshi & Chen, 2002; Shiga, 

Yamamoto, Tanabe, Nakase, & Chance, 1997). Significant progress was made subsequently, 

and more sophisticated devices were developed and validated, with a higher number of 

channels (e.g., 16 (Ayaz et al., 2013), 20 (Piper et al., 2014), 22 (Atsumori et al., 2009), 32 

(Muehlemann, Haensse, & Wolf, 2008)) to meet the need for higher head coverage for 

different functional investigations. For example, one of the first portable optical brain 

imagers (Chance, Luo, Nioka, Alsop, & Detre, 1997) was improved and extended from one 

to 16 channels (4 LEDs light sources and 10 detectors; sampling frequency=2 Hz) at Drexel 

University (Ayaz et al., 2013), allowing now the monitoring of both dorsal and inferior 

frontal cortical areas. Additionally, the palm-sized wireless system described by 

Muehlemann, Haensse, and Wolf (2008) can measure up to 32 channels at a sampling 

frequency of 100 Hz (Muehlemann et al., 2008). Channels configuration and number can be 

easily adapted on individual’s needs using systems with modular optodes (Funane et al., 

2017; Chitnis et al., 2016a). More recently, multi-distance, eight- and four-wavelength 

systems were implemented (Chitnis et al., 2016b; Wyser, Lambercy, Scholkmann, Wolf, & 

Gassert, 2017), permitting the monitoring of changes in both brain hemodynamics (ΔHbO2, 

ΔHbR) and metabolism (oxidized cytochrome-c-oxidase (ΔoxCCO)), at different depths, 

and with a scalable number of channels, thanks to the modular optodes design (Wyser et al., 

2017). In addition, the availability of short-separation channels in the system presented by 

Wyser et al. (2017) improves the signals’ quality by automatically removing the influence of 

systemic physiological changes originating at the more superficial layers of the head 

(Tachtisdis & Sholkmann, 2016; Wyser et al., 2017). Wearable solutions integrating 

simultaneous EEG and fNIRS measurements were proposed as well (Lareau et al., 2011; 

Safaie, Grebe, Moghaddam, & Wallois, 2013), taking advantage of the suitability of fNIRS 

for multimodal imaging. However, to date, in order to minimize the power consumption and 

have a miniaturized and light wearable device that functions for long time periods, the 

number of channels is still limited when compared to conventional fNIRS instruments that 

can reach whole head coverage.

From 2009, several companies began to commercialize wearable and wireless fNIRS 

devices. The systems available so far in the market were reviewed by Quaresima and Ferrari 

(2016) (NOTE: in addition to the list provided by the authors, a newer system, the Brite23, 

has been recently introduced by Artinis, Netherlands, with 23 channels, a maximum 

sampling rate of 100 Hz, wireless data transmission and possible hyperscanning 

configuration). In Table 1, we expanded the information provided by Quaresima and Ferrari 

(2016) with additional details on the available systems (Quaresima & Ferrari, 2016).
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Twenty devices are currently commercially available, with different number of channels 

(from 1 to 496) and sampling frequencies (1-100 Hz). The majority of them implement 

wireless data transmission and allow the synchronization of multiple devices (up to 7) for 

hyperscanning measurements (i.e., simultaneous recording of brain activity of two or more 

individuals (Babiloni & Astolfi, 2014)). High-density (i.e., more dense set of source-detector 

pairs (Eggebrecht et al., 2012)) optical tomography systems for the prefrontal cortex are 

available as well, with 204 and 496 channels (Quaresima & Ferrari, 2016), that allows the 

performance of diffuse optical tomography (DOT) measurements. DOT configurations 

involve the use of multiple source-detector distances resulting in overlapping channels that 

allows researchers to sample tomographical maps of HbO2 and HbR and to gather several 

measurements at different depths, which improves the lateral and depth resolution 

(Eggbrecht et al., 2012, Zhao & Cooper, 2017). Most of the instruments are designed for 

measuring only the prefrontal cortex (Table 1), mainly to maximize the functioning duration 

of the system, and the optical components are usually connected to a small processing and 

recording/transmitting unit holding the battery, usually carried through a backpack (Figure 

1).

Most instruments have fixed source-detector separations, typically 3 cm for adult studies. 

Two DOT systems are available and allow measurement of brain activity at different depths, 

while two systems permit the adjustment of source-detector separations with custom 

configurations. The majority of the instruments use two wavelengths to resolve oxy- and 

deoxy- haemoglobin concentrations, except the Pocket NIRS HM from Dynasense and the 

SPEEDNIRS and LIGHTNIRS from Shimadzu that use three-wavelengths to account for the 

scattering, and the WOT-100 from Hitachi, which uses only one wavelength to resolve total-

haemoglobin. Eleven of the available systems are completely fibreless and optical 

components are directly coupled to the head (Table 1; see Figure 1 A for an example); the 

others use shorter and lighter wires than conventional fNIRS systems to guide the light that 

are connected to the control unit (see Figure 1 B for an example), still allowing for free 

movement. To prevent detector saturations in case of outdoor use, shading caps are available 

(Figure 1 A); alternatively, some devices implement a reference detector measuring the 

ambient light that is used to correct for stray light.

Literature Review

A literature review of research articles using wearable fNIRS devices in more ecologically-

valid cognitive experiments was carried out in order to identify the most common 

applications of wireless fNIRS in the field of cognitive neuroscience so far, and to set the 

starting point for our discussions and future directions. More precisely, we focused on the 

studies employing the new class of wearable and/or wireless devices in unrestrained contexts 

with freely-moving participants while undertaking a cognitive task. The search procedure 

was performed using the PubMed database, manual search from articles references and the 

publication surveys available on the Society for functional Near Infrared Spectroscopy 

website (http://fnirs.org/publications/nirs-niri-publications/). For database searching, we 

used the keywords functional near-infrared spectroscopy, fNIRS, wireless, portable, 

wearable, and brain. Articles were selected on the basis of the following inclusion criteria:
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1. Original research papers published on peer-reviewed journals until September 

2017. Review papers and conference proceedings were excluded.

2. Papers involving task-evoked functional activity experiments with a cognitive 

task performed on freely moving participants and not in a typical laboratory 

setup (usually, seated and interacting with a computer only).

3. Articles employing wearable fNIRS devices to measure brain activity in response 

to cognitive tasks. Papers using conventional fNIRS instrumentation were 

excluded.

In case of multiple cognitive tasks examined within the same paper, only the ones involving 

the use of wearable fNIRS devices, and with freely-moving subjects were considered. Ten 

original research papers were included in the present review. Following the procedure 

adopted by Herold et al. (2017), from articles’ full-texts we collected information 

concerning the application of wireless fNIRS (e.g., population, and experimental protocol), 

the pre-processing, and the statistical analysis of fNIRS data. In the following sections, we 

present the approaches adopted in the reviewed studies with additional details, providing an 

overview of the application of wearable fNIRS (Table 2), and data acquisition (Table 3), data 

pre-processing (Table 4) and statistical inference (Table 5).

Population and Experimental Protocol

The majority of the studies (Table 2) included in the present review were performed on a 

cohort of healthy young adults (Atsumori et al., 2010; Balardin et al., 2017; McKendrick et 

al., 2016; McKendrick, Mehta, Ayaz, Scheldrup, & Parasuraman, 2017; Mirelaman et al., 

2014; Pinti et al., 2015; Takeuchi, Mori, Suzukamo, Tanaka, & Izumi, 2016) and two on 

healthy older adults (Maidan et al., 2016; Takeuchi et al., 2016). Two papers examined 

individuals with neurological deficits such as Parkinson’s Disease (Maidan et al., 2016; 

Nieuwhof et al., 2016), and one included individuals with mild cognitive impairments (Doi 

et al., 2013).

All the studies examined in this review (Table 2) involved a motor-cognitive dual-task 

walking (DTW) protocol, in which participants were asked to perform a secondary cognitive 

task while walking. For instance, in the study of Atsumori et al. (2010), the secondary task 

was an attention demanding task (ball-carrying) that was carried out while walking 

(Atsumori et al., 2010). Other cognitive tasks employed in addition to walking involved 

serial subtractions (Maidan et al, 2016; Mirelaman et al., 2014; Nieuwhof et al., 2016), 

counting forward (Mirelaman et al., 2014; Nieuwhof et al., 2016), reciting a series of digits 

(digit span (Nieuwhof et al., 2016), a verbal letter fluency task (Doi et al., 2013) and playing 

a game on a smartphone (Takeuchi et al., 2016). A table tennis task was used by Balardin et 

al. (2017) to investigate the feasibility of wearable and wireless fNIRS in case of moderate 

levels of motion (Balardin et al., 2017). Whilst the above-mentioned studies were performed 

in indoor environments, more interestingly four studies (Balardin et al., 2017; McKendrick 

et al., 2016; McKendrick et al., 2017; Pinti et al., 2015) were carried out outside in everyday 

life contexts. Balardin et al. (2017) monitored changes in prefrontal cortex activity during 

the execution of everyday life actions (Balardin et al., 2017). The study by McKendrick et 

al. (2016) aimed at investigating situation awareness and mental workload on people during 
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navigation of a college campus using a hand-held display, or an augmented reality wearable 

display while simultaneously performing a visual perception or an auditory 1-back task 

(McKendrick et al., 2016). More recently, the auditory 1-back was repeated on participants 

while sitting, walking indoor and walking outdoor around a busy college campus 

(McKendrick et al., 2017). Pinti et al. (2015) investigated the neural correlates of a 

prospective memory (PM) task conducted in the streets of London on freely-moving subjects 

with no particular restrictions and no preparation of the environment (Pinti et al., 2015).

Typical block design experiments (i.e., conditions are repeated over time and spaced out by 

rest periods) are usually employed except for the papers by Pinti et al. (2015) and Balardin 

et al. (2017), where continuous monitoring with minimum task repetitions were adopted 

(Balardin et al., 2017; Pinti et al., 2015). For instance, in Pinti et al. (2015) conditions were 

repeated twice while in most neuroscience experimental investigations blocks and events are 

repeated multiple times (e.g., 10 or more). This was done to mimic real-life situations as 

much as possible and to have more ecologically-valid cognitive tasks (Pinti et al., 2015). 

Rest periods are usually represented by normal walking (NW, i.e., walking with no 

secondary task) conditions (Atsumori et al., 2010; McKendrick et al., 2016; Pinti et al., 

2015; Takeuchi et al., 2016), standing while performing a secondary task (Pinti et al., 2015) 

or standing still (Balardin et al., 2017; Doi et al., 2013; Maidan et al., 2016; McKendrick et 

al., 2017; Mirelaman et al., 2014; Nieuwhof et al., 2016).

Data Acquisition

Cortical hemodynamic responses (Table 3) were usually investigated over the pre-frontal 

cortex (PFC) since this region is easily accessible, and most of the commercially available 

system allows the monitoring of only frontal regions (Atsumori et al., 2010; Doi et al., 2013; 

Maidan et al., 2016; McKendrick et al., 2016; McKendrick et al., 2017; Mirelaman et al., 

2014; Nieuwhof et al., 2016; Pinti et al., 2015; Takeuchi et al., 2016). In one study, 

supplementary motor and primary motor cortex were probed instead during a table tennis 

task (Balardin et al., 2017).

Data Pre-processing

The pre-processing of fNIRS data is a crucial step as the results of statistical analyses 

strongly rely on the quality of the data. It is thus extremely important to reduce the impact of 

physiological noises, motion artifacts and slow drifts present in the fNIRS signals. Table 4 

summarizes the details of the pre-processing steps adopted in the reviewed studies to de-

noise fNIRS data.

Data Analysis

The presence of functional activation in the investigated brain regions was statistically 

assessed (Tak & Ye, 2014) in most of the studies (Table 5) using the averaging method, i.e. 

averaging signal segments across task and rest periods, and inferring functional brain 

activity on the basis of the difference between task and rest mean values (Atsumori et al., 

2010; Doi et al., 2013; Maidan et al., 2016; McKendrick et al., 2016; McKendrick et al., 

2017; Mirelaman et al., 2014; Nieuwhof et al., 2016; Takeuchi et al., 2016).
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One paper adopted the General Linear Model (GLM) approach instead, i.e. fitting the fNIRS 

data with task-related regressors modelling the theoretical hemodynamic response to the 

assigned cognitive task (Balardin et al., 2017). Continuous Wavelet Transform (CWT) was 

used in 2 articles to investigate the functional connectivity between brain regions (Balardin 

et al., 2017; Mirelaman et al., 2014).

Challenges and Way Forward

When recording fNIRS data in unrestrained contexts and on mobile people, there are some 

methodological issues that need to be considered and addressed. In this section, we discuss 

and summarize the technology limitations (Table 6), providing some suggestions to 

overcome these issues, and to get meaningful fNIRS data and results.

Body Movements

In order to arrive at a correct neuroscientific conclusion, it is necessary to record good 

quality fNIRS data. However, the signals’ quality can be deteriorated by several factors.

If we consider recording neuroimaging data on freely moving people, the first concern 

relates to the execution of body and head movements. In fact, although fNIRS is more 

tolerant to movements, and wearable devices are miniaturized and even more robust than 

conventional fNIRS instruments, motion artifacts are more likely to occur when participants 

are walking rather than sitting on a chair, as they are allowed to move freely and perform a 

wider range of movements. For example, motion errors can corrupt fNIRS signals with shifts 

from baseline values (Figure 2 A, green shaded areas) or fast and narrow spikes (Brigadoi et 

al., 2014), characterized by a positive correlation between HbO2 and HbR (Figure 2 A, 

yellow shaded areas).

To date, several methods are available to identify and correct for motion artifacts 

(Scholkmann, Spichtig, Muehlemann, & Wolf, 2010), and were reviewed by Brigadoi et al. 

(2014) (Brigadoi et al., 2014). Among these, the wavelet-based (Molavi & Dumonts, 2012) 

and the targeted principal component analysis (tPCA) approaches (Yücel, Selb, Cooper, & 

Boas, 2014) appeared to be the most effective. In Figure 2 B, we show the effectiveness of 

tPCA to correct both baseline shifts (green shaded areas) and higher-frequency spikes 

(yellow shaded areas). In the latter, the physiological anti-correlation between HbO2 and 

HbR typical of functional activity (Obrig et al., 2000) is effectively restored.

Only 3 of the reviewed papers included the correction of motion errors. Since correcting for 

such artifacts was demonstrated to be better than rejecting corrupted trials (Brigadoi et al., 

2014), we suggest employing one of the available correction techniques, and especially the 

wavelet-based filtering or tPCA (Table 6), as part of the pre-processing flow. Head 

movements can also lead to a loss of coupling between the optodes and the head that further 

deteriorates signals’ quality. In case of poor optical coupling, no physiological signals are 

sampled and time-series are only constituted of white-noise (Figure 3 A), characterized by a 

constant power spectral density (PSD). The fNIRS probes thus have to be securely attached 

to the head, with good contact with the skin.
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In addition, when using fNIRS in outdoor environments, optical detectors should be 

protected from the stray sunlight. In this case, the detectors will be overexposed and 

measured intensity signals will appear as flat lines or be full of spikes with non-

physiological amplitudes (Figure 3 B). Detector overexposure and saturation can be 

prevented using light-shielding caps/hats (Figure 1 A; McKendrick et al., 2016, 2017; Pinti 

et al., 2015) or detectors with very high dynamic range or using fNIRS devices that 

incorporate a reference detector measuring only the ambient light that is then subtracted 

from the other channels’ signals (e.g., Brite23 and Octamon from Artinis, Table 1).

In order to identify noisy channels due to poor coupling or not-measuring channels due to 

detectors saturation, we highly recommended to (a) visually inspect the recorded signals and 

(b) assess channels’ quality using more objective measures e.g. following the approach 

proposed by Piper et al. (2014) based on the coefficient of variation (CV) of the signals, 

excluding those channels with CV values higher than 15% (Piper et al., 2014). Signals’ 

quality can be evaluated checking for the presence of the heart beat oscillation (~0.6 - 1 s) in 

the time-series, especially in ΔHbO2, or a frequency peak in the range ~1 - 1.5 Hz in the 

PSD of the signal (Figure 2 C). This ensures that physiologically meaningful components 

are measured.

Systemic Interferences

To improve the accuracy of functional investigations through fNIRS, the influence of 

physiological confounding factors need to be taken into consideration as well. In fact, fNIRS 

signals are contaminated by components of systemic origin that are not related to neuronal 

activity and that can lead to false positives and/or false negatives when inferring functional 

activity (Tachtsidis & Scholkmann, 2016). These physiological changes can arise both at the 

intra- and extra-cerebral compartments of the head, and can be both spontaneous and evoked 

by the cognitive task (Scholkmann et al., 2014). We expect the effect of systemic 

interferences to be even more pronounced in case of physical activity. For example, rapid 

posture changes (e.g., from laying down to standing up) can induce venous pooling or 

orthostatic hypotension (Balardin et al., 2017). In addition, walking can lead to changes in 

e.g. heart and breathing rates. In Figure 4, we show examples of heart rate (A) and breathing 

rate (B) signals recorded during the experiment performed by Pinti et al. (2015) (Pinti et al., 

2015).

Walk-related changes can be observed in both signals when passing from experimental 

conditions involving walking (W; yellow shaded areas, lasting ~6 min) to standing 

conditions (S; blue shaded areas, lasting ~3 min), with increases and decreases in both heart 

rate and breathing rate levels.

Measuring acceleration (Figure 4 C) or GPS data can help in the interpretation of 

physiological and hemodynamic changes, providing information on participants’ movements 

(e.g., walk vs. stand, speed). Walking for long periods can cause fatigue with consequent 

systemic changes that alter the brain hemodynamic responses. As shown in Figure 5, 

changes in breathing rate exhibits trends very similar to concentration signals, and in 

particular ΔHbO2 (Kirilina et al., 2012; Tachtsidis & Scholkmann, 2016), both when the 

participant is walking (W; yellow shaded areas) and standing (S; blue shaded areas). To 
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reduce fatigue, longer rest periods lasting a few minutes are recommended (Herold et al., 

2017), to allow physiological and hemodynamic variables to reach their baseline values.

Different methods were proposed so far to reduce the impact of these components 

(Scholkmann et al., 2014). One of the most straightforward is to filter the fNIRS signals in 

specific frequency bands, preserving the functional activity range and excluding the noise 

frequencies. In the reviewed studies, low-pass filters are more often used. However, fNIRS 

signals can also include slow trends related to instrumental noise and/or very low frequency 

vasomotion regulations (<0.1 Hz). We thus recommend to use low-pass filters together with 

high-pass filters (i.e., band-pass filters) to remove both slow trends and higher frequency 

physiological noises (e.g., heart rate (~1 Hz)). Attention should be paid in the choice of the 

cut-off frequencies to ensure that only the noise components are filtered out.

Additionally, the use of short-separation (SS) channels was demonstrated to be effective in 

removing the extra-cerebral signals components (e.g., superficial skin blood flow) from 

long-separation channels (Gagnon et al., 2012). SS channels are created by placing a light 

source very close to a detector, usually at less than 1 cm distance, and record data from the 

extra-cerebral tissue. However, such superficial signal regression techniques (Funane et al., 

2014, Gagnon et al., 2012) require a larger number of optodes, as each long separation 

channel must be combined with a short separation channel as close as 1.5 cm (Gagnon, 

Yücel, Boas, & Cooper, 2014). This is not fully possible with most of the commercially 

available wearable devices since the number of channels is still limited compared to 

conventional systems and are designed to maximize the investigation of the cortical tissue. 

Superficial regression can, to date, be performed with DOT devices (e.g., Genie from 

MMRA, and NIRSIT from Obelab, Table 2) that have a denser array of optodes, with the 

possibility of sampling from SS channels.

Other approaches based on independent component analysis (ICA) (Kohno et al., 2007), 

principal component analysis (PCA; Zhang, Brooks, Franceschini, & Boas, 2005), Bayesan 

filtering (Scarpa et al., 2011) and anti-correlation maximization (CBSI; Cui, Bray, & Reiss, 

2010) have been proposed as well. Currently, the most effective methodology able to 

separate systemic components from fNIRS cortical signals (Scholkmann et al., 2014) is to 

combine fNIRS measurements with systemic physiological data (e.g., mean blood pressure, 

heart rate, scalp blood flow). These systemic signals can be e.g. used as additional regressors 

in the GLM analysis of fNIRS data (Tachtsidis, Koh, Stubbs, & Elwell, 2010; Kirilina et al., 

2012) or combined with ICA to identify the components to remove (Patel, Katura, Maki, & 

Tachtsidis, 2011).

Only one of the studies we reviewed (Pinti et al., 2015) monitored changes in heart rate and 

breathing rate, and none included SS channels signal regression or PCA/ICA approaches. 

However, we recommend measuring physiological signals alongside fNIRS for a more 

effective reduction of systemic interferences. In fact, thanks to the feasibility of fNIRS for 

multimodal monitoring, this can be easily performed through the use of wearable 

physiological monitors (e.g., chest straps; Pinti et al., 2015) that do not interfere with the 

optical equipment and with participants’ movements.
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Statistical Analysis

Concerning the statistical analysis of fNIRS data, the most common method to infer 

functional brain activity from fNIRS signals is to use averaging or GLM approaches (see 

Tak and Ye (2014) for a review (Tak & Ye, 2014)) and group-level analyses can be 

performed on a channel-wise basis or on topographic maps. These methods are commonly 

used to analyse fNIRS data recorded with typical fNIRS systems and can be expanded to the 

analysis of fNIRS data gathered through the new generation of wireless fNIRS devices.

The averaging method consists in computing the average concentration changes across task 

and rest periods, and using statistical tests (e.g., ANOVAs) to assess the presence of 

functional activation in task periods versus rest periods. The GLM approach provides more 

statistical power by considering the whole fNIRS time series. It expresses fNIRS data as a 

linear combination of regressors reflecting the experimental protocol and an error term. 

Regressors are computed through the convolution of delta and boxcar functions representing 

the experimental design with the hemodynamic response function (HRF). If on the one hand 

the averaging method has less statistical power considering only segments of fNIRS data, on 

the other hand the GLM is strongly model-dependent and requires assumptions on the shape 

and dynamics of the HRF. Both methods require the knowledge of the timeline of events, 

which are pre-established and known in conventional experimental protocols structured as 

typical block- or event-related design paradigms.

However, the analysis is not so immediate in case of unstructured experimental protocols 

such as those conducted in everyday life situations with wireless fNIRS systems, where 

brain activity is continuously monitored with minor control over the presentation of stimuli. 

For instance, in the work by Pinti et al. (2015), functional brain activity over the PFC was 

measured during the execution of an unstructured prospective memory task (Pinti et al., 

2015). In that case, participants were asked to respond and “fist bump” in greeting particular 

targets (either certain people or stationary objects) located in the testing area. However, the 

onsets of functional events associated with those actions were not pre-established as in 

typical block or event-related design experiments, and were very difficult to identify from 

the analysis of video recordings of participants’ behaviour. In fact, the peaks of 

hemodynamic responses (i.e., increase in ΔHbO2 and decrease in ΔHbR) are expected to 

occur ~6 s after the stimulus onset (Scholkmann et al., 2014); however, non-synchronous 

hemodynamic responses to the targets’ fist bumping were observed (Figure 6 A, arrows), 

where the ΔHbO2 and ΔHbR peaks were anticipated of ~15 s.

This means that, in this case, functional events are more likely to occur when the participant 

spotted/approached the target (i.e., intention retrieval) rather than actually fist bumped it 

(i.e., intention realization). Recovery or prediction of the onset of the event corresponding to 

the moment when the participant retrieves the intention can be extremely difficult and time 

consuming from the video. This is also true when brain activity is continuously monitored 

during everyday life activities as in the study by Balardin et al. (2017), and it is very hard to 

match fNIRS signal changes to participants’ behaviour (Balardin et al., 2017). For instance, 

the authors investigated the inter-hemispherical functional connectivity using 1 min sliding 

window over the 4 hours continuously recorded fNIRS data. The spectrogram of the time-
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varying connectivity revealed a frequency peak of 0.002 Hz that, however, could not be 

linked to a particular daily activity.

To overcome the issues related to the identification of functional events in unstructured 

protocols, alternative approaches must be developed. A first attempt was proposed by Pinti 

et al. (2017). The authors developed an algorithm based on the GLM fitting procedure, 

called AIDE (Automatic IDentification of functional Events) that recovers the onsets of 

functional events directly from fNIRS data with good accuracy. Functional events (both the 

onset and duration) are determined identifying the activation model (i.e., the convolution of 

a boxcar representing the timeline of the events with the HRF) that gives the best fit with the 

activation signal (Pinti et al., 2017). In Figure 6 B-C, are presented the results of the 

application of AIDE to the example of Figure 6 A. More precisely, Figure 6 B shows the 

activation model (black line) giving the best fit with the activation signal (red line) that best 

describes the occurrence of functional trends (i.e., increase in the activation signal). The 

corresponding boxcar, representing the timeline of functional events, is reported in Figure 6 

C (black line). In agreement with the visual inspection of signals that suggested anticipated 

hemodynamic responses, functional events (Figure 6 C, orange asterisks) actually happened 

~20 s before the participant reached the targets (Figure 6 C, magenta lines). This confirms 

that functional events occur during the intention retrieval process rather than in 

correspondence of the intention realization. The main advantage of AIDE is that it does not 

make assumptions on the timings of functional events so that they can be identified also in 

case of experimental protocols with no particular structure. On the other hand, AIDE is 

model-dependent as it is based on the GLM. Hence, assumptions on the model and shape of 

the HRF have to be made. In addition, the impact of serial autocorrelations in fNIRS data 

must be taken into consideration and further improved from the current version of the 

algorithm.

To increase the strength of the statistical inference results and to formulate more accurate 

conclusions, we also recommend reporting results for both ΔHbO2 and ΔHbR. In fact, 

functional activation corresponds to an increase in ΔHbO2 and decrease in ΔHbR (Obrig et 

al., 2000). Changes in oxyhemoglobin are very often used as the marker to assess functional 

activity because of its high-contrast changes. However, this signal has been demonstrated to 

be strongly influenced by systemic changes (Kirilina et al., 2012), and can give rise to global 

and poorly localized hemodynamic responses (Zhang X., Noah, & Hirsch, 2016). On the 

contrary, ΔHbR is less affected by confounding factors (Kirilina et al., 2012) and a more 

robust indicator of brain activity, giving more localized and specific results (Hirsch, Zhang 

X., Noah & Ono, 2017).

In addition, the problem of correction for multiple comparisons needs to be taken into 

consideration, especially with the development of multi-channel fNIRS systems with a 

larger number of channels. The multiple comparison problem arises when more than one 

statistical inference is carried out. In that case, the significance level (i.e., the p-value) has to 

be adjusted to control for Type I errors. Typical approaches can be applied to control for 

family-wise error rates (FWER) in case of channel-wise statistical analyses, such as the 

widely-used Bonferroni correction or the Least Significant Differences (LSD). In case of 

statistical tests performed on topographic fNIRS maps, other approaches were proposed to 
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control for FWER, such as the tube formula or the Euler characteristic (EC) method (see Tak 

and Ye (2014) for a review (Tak & Ye, 2014)). More recently, the use of alternative and less 

conservative approaches was explored. An example is the False Discovery Rate (FDR) 

method, that evaluates the expected proportion of falsely declared-active channels respect to 

the declared active channels. This approach provides a more robust and powerful measure of 

Type I errors than e.g. the Bonferroni correction, whilst ensuring a good compromise 

between power and specificity, and is highly recommended for channel-wise comparisons 

(Tak & Ye (2014); Singh & Dan, 2006).

Optodes Placement and Spatial Registration

In order to record reproducible fNIRS data and compare measurements across studies and 

individuals, a consistent placement of the fNIRS optodes overlying the desired or the same 

brain regions across subjects is crucial. The easiest way to achieve this is to place the fNIRS 

optodes or channels with respect to particular anatomical landmarks on the scalp as defined 

by the 10-20 system (Jasper, 1958; Okamoto & Dan, 2005) of electrode placement typically 

used for EEG. The 10-20 system identifies landmark points on the head surface that 

correspond to particular cortical structures on the basis of percentages of the distance 

between four references points (nasion, inion, right and left preauricular points). However, 

this approach alone provides only a qualitative assessment of channel location. By adding a 

3D digitizer, the optodes x, y, z coordinates can be recorded and used to register the fNIRS 

channels onto a common brain space to recover more accurate information on the underlying 

anatomical brain regions.

The registration of functional neuroimaging data onto a common brain template is extremely 

important to compare study results among research groups, modalities and individuals. 

Nowadays, the most used brain platform is the Montreal Neurological Institute (MNI) 

stereotaxic space, created through the registration onto the Talaraich coordinate system and 

average of MRI structural images of several individuals. The registration of functional data 

onto the MNI brain template is quite straightforward for fMRI or PET as structural images 

of the brain can be obtained. However, this is not the case for fNIRS as no anatomical 

images can be collected and data are sampled only from the cortical surface. To this goal, 

several approaches were proposed and reviewed by Tsuzuki and Dan (2014). In brief, 

initially the spatial registration of fNIRS channels was performed using the structural MRI 

of each individual by transforming the digitized fNIRS probe locations into the MRI space 

through rigid body rotations and translations. In the subject’s MRI space, fNIRS positions 

are projected from the head surface onto the brain cortex (Okamoto & Dan, 2005). 

Alternative approaches include the reconstruction of the functional image using the optical 

properties of the brain (Aasted et al., 2015). However, in order to perform channel-wise or 

topographic maps comparisons across individuals, it is necessary to normalize the single 

subject’s MRI coordinates into the standard MNI brain. Typically, this is done by 

normalizing the structural MRI into the MNI template and the inverse transformation 

matrices are then applied to the fNIRS optodes.

As MRI scans are not always available, and MRI is expensive and would reduce the 

economic advantages of fNIRS, new stand-alone approaches to register the digitized fNIRS 
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optodes locations onto the standard MNI space that do not require the MRI scans of each 

individual were developed (Singh, Okamoto, Dan, Jurcak & Dan, 2005). More recently, 

these approaches were improved even further to become completely stand-alone and do not 

need the use of a 3D digitizer (Cutini, Scatturin & Zorzi, 2011; Tsuzuki et al., 2007).

Once fNIRS optodes are registered onto the MNI template, between-subjects, -studies and -

modalities comparisons can be carried out. If channels are placed in a similar location and 

overlap the same brain anatomical region across individuals, channel-wise comparisons can 

be performed. However, channels can cover different anatomical regions in case of subjects 

with different head sizes and shapes and can impact group-level channel-wise analyses. 

Alternatively, brain atlases, such as the Automated Anatomical Labelling (AAL), that 

consider macro-anatomical regions can be adopted to identify regions of interest (ROI) and 

increase the reproducibility by considering groups of channels within a ROI rather than 

single channels (Tsuzuki & Dan, 2014).

These methods are implemented in the main software for fNIRS data analyses, such as 

Homer2 (Huppert, Diamond, Franceschini, & Boas, 2009), SPM-fNIRS toolbox (Tak, Uga, 

Flandin, Dan, & Penny, 2016) and in the previous version NIRS-SPM (Ye, Tak, Jang, Jung, 

& Jang, 2009), and POTATO (Sutoko et al., 2016).

Discussion and Future Directions

Over the last few decades, fNIRS has rapidly become a powerful method to image brain 

activity and investigate cognitive functions that cannot be studied in artificial contexts such 

as an fMRI scanner (e.g., social interactions (Hirsch et al., 2017), motor control (Herold et 

al., 2017), neurodevelopment (Lloyd-Fox, Blasi, & Elwell, 2010)). The boundaries of these 

neuroscientific investigations can now be further extended thanks to the availability of 

wearable fNIRS instrumentation (Quaresima & Ferrari, 2016), allowing the monitoring of 

brain functioning in even more ecologically-valid scenarios and in outdoor environments 

(Balardin et al., 2017; McKendrick et al., 2016; McKendrick et al., 2017; Pinti et al., 2015) 

with mobile participants.

To date, most of the studies were conducted in conventional laboratory settings, and 

involved the monitoring of PFC hemodynamics during a dual-task walking test (Table 2) 

with basic cognitive tasks (e.g., N-back task, digit span, verbal fluency task, serial 

subtractions, playing a game on a smartphone). Nevertheless, even though these studies 

adopted standard approaches for neuroimaging, they have contributed some major findings. 

First, they have demonstrated the feasibility of wearable fNIRS in assessing functional brain 

activity to tasks performed during walking. This sets the basis for future applications in real-

world contexts since we continuously carry out dual-task walking (DTW) actions in our 

everyday life. Second, the new class of fNIRS devices are well tolerated not only by healthy 

adults, but also by patients with neurological deficits and mild cognitive impairment. This 

opens the way to new applications in clinical settings such as for neurorehabilitation. Third, 

it was proven that the new class of fNIRS devices are able to investigate the interplay 

between gait and higher cognitive and cortical control mechanisms in case of clinical 

patients. For instance, this is particularly important in the case of Parkinson’s disease as the 
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monitoring of these patients during DTW tasks can help in explaining their difficulties in 

performing two tasks at the same time or gait failures in everyday life (Maidan et al., 2016).

The studies by Balardin et al. (2017), McKendrick et al. (2016, 2017), and Pinti et al. (2015) 

were conducted in outdoor environments and in situations mirroring everyday life contexts 

(Balardin et al., 2017; McKendrick et al., 2016, 2017; Pinti et al., 2015). Whilst some 

precautions related to the use of fNIRS in challenging situations need to be taken into 

account, these studies have demonstrated the feasibility of wearable fNIRS in effectively 

monitoring functional brain activity on people freely moving in outdoor settings while 

carrying out tasks as they would normally do in real life.

Below, we describe some of the possible applications in the field of cognitive neuroscience 

that we believe they would benefit the most from the use of wearable fNIRS.

The New Neuroscience of Two: Hyperscanning with fNIRS

One clear advantage for fNIRS as a technique for the study of human brain-cognition 

relationships is in the study of social interaction. This is because the typical environment of 

e.g. a MRI or PET scanner precludes naturalistic or normal social behaviour, limiting the 

questions that can be asked, and raising the question of the ecological validity of the results.

While current fNIRS hyperscanning studies all use tethered systems with seated participants 

(Scholkmann, Holper, Wolf, & Wolf, 2013), the extension of hyperscanning to wearable 

fNIRS would allow us to monitor brain activity during a much wider range of social 

activities including dance, teaching, large scale collaborative tasks, even sports. For 

example, a recent study used wireless EEG to track brain-to-brain synchrony in classrooms 

(Dikker et al., 2017); similar studies with fNIRS might provide more detailed information on 

the engagement of different brain systems during teaching and learning interactions.

The investigation of dynamic social interactions between two individuals extends the 

fundamental unit of behaviour from a single brain to a two-brain unit, the dyad, and the 

focus is on communication protocols within the unit. Further to this, rapidly fluctuating 

facial expressions and subtle interaction-related movements that are transmitted and received 

during natural social interactions are poorly resolved by conventional experimental methods, 

thereby highlighting the significant advantages to hyperscanning (Schilbach, 2014). This 

advantage is illustrated in several recent studies. For example, although the salience of eyes 

in communication is well acknowledged, the evidence is primarily based on single brain 

studies and viewing static pictures often with direct vs indirect gaze (Allison, Puce, & 

McCarthy, 2000; Ethofer, Gschwind, & Vuilleumier, 2011). However, a recent 

hyperscanning study of live eye-to-eye contact with fNIRS confirms a previously 

unappreciated critical role for real interaction via eye contact in natural interpersonal 

interactions (Hirsch et al., 2017).

These foundational findings and the forward trajectories are early entry points toward a new 

neuroscience of two that emerges from hyperscanning based on fNIRS.
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fNIRS and Virtual Reality (VR)

A further benefit of fNIRS is that it can potentially be combined with virtual reality (VR) or 

augmented reality to give full experimental control of a participant’s experience in a 

dynamic environment. Common VR headsets (e.g., Oculus Rift) can be modified to combine 

with an fNIRS frontal cortex recording system, or fNIRS can be used in conjunction with a 

CAVE VR system in which the virtual environment is present on all the walls surrounding 

the participant and is seen in 3D with 3D glasses. Studies in fMRI examined how 

participants in VR respond to threat stimuli (McCall, Hildebrandt, Bornemann & Singer, 

2015) and if they show prosocial behaviour in an emergency (Pan & Slater, 2011). If these 

VR scenarios were combined with fNIRS, we could understand the neural mechanisms 

underlying these behaviours.

fNIRS as a Tool of Driving Research

The potential of fNIRS is also particularly striking for everyday behaviours that simply 

cannot be investigated in the laboratory, such as driving a car. Liu, Pelowski, Pang, Zhou, 

and Cai (2016) reviewed fNIRS as a tool for driving research, evaluating different models of 

fNIRS devices, paradigms employed and key findings, as well as comparing to fMRI/EEG 

research. While various studies used fNIRS in driving simulators, others used fNIRS in real 

cars (see Liu et al. (2016) for a review (Liu, Pelowski, Pang, Zhou, & Cai, 2016)). fNIRS 

allowed the investigation of various risk factors in driving such as fatigue, distraction, ageing 

(for further details see Liu et al., 2016). The authors are convinced that fNIRS proved itself 

as a useful method in driving research. Further research can address changes in brain 

activations in other regions than PFC, such as temporal cortex, parietal and pre-motor areas. 

Moreover, other risk factors can be explored, such as inexperience, unexpected events, 

distractions, alcohol and with passengers. Lastly, the authors highlight the recent 

introduction of time-course measurements, which will allow exploring real-time, dynamic 

activation changes during driving.

fNIRS for Neuroeconomics and Neuroergonomics Research

Other applications could involve multimodal monitoring in everyday life contexts. Kopton 

and Kenning (2014) evaluated the potential of fNIRS in neuroeconomics research. They 

argue that the interdisciplinary research field of ‘neuroeconomics’ was the result of 

investigating neurophysiological processes of economic decision making using methods 

such as fMRI, EEG, electrodermal activity (EDA) and eye-tracking. However, recent 

challenges in neuroeconomics necessitate measuring situational factors outside the 

laboratory and in the ‘real-world’. These methodological demands can only be met with 

flexible and mobile technologies such as wearable fNIRS. The review describes not only 

lab-based experiments using wireless fNIRS with high ecological validity, but also evaluate 

the reliability of wireless fNIRS in field experiments (Kopton & Kenning, 2014).

Additionally, neuroergonomics would massively benefit from the use of wearable fNIRS on 

mobile participants. In fact, it is different from conventional neuroscience as it investigates 

cognition in response to work, and requires the possibility to measure brain activity in 

naturalistic environments such as in the workplace (Mehta & Parasuraman, 2013). 

Therefore, conventional neuroimaging techniques such as fMRI and PET are not well suited 
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for neuroergonomics research. The potential of fNIRS in neuroergonomics has been 

reviewed by Ayaz et al. (2013) (Ayaz et al., 2013).

fNIRS for the Study of Prefrontal Cortex Function

There is another sizeable subfield of cognitive neuroscience where the necessity for 

wearable neuroimaging devices is just as great but perhaps less immediately obvious. This is 

the study of prefrontal cortex (PFC) function. PFC supports a wide range of high-level 

mental processes and some subregions of PFC (especially rostral PFC) are specifically 

involved in dealing with ‘open-ended’ situations, i.e. problems where there are many 

possible solutions and one has to decide for oneself which one to take. These situations are 

very hard to recreate in a typical neuroimaging setting where an experimenter asks a person 

to lie down in a scanner, concentrate on what they are about to be shown, and then are shown 

a series of near-identical stimuli to which a very limited number of responses are instructed 

to be made. In addition, previous studies demonstrated how cognitive tasks that mimic ‘real-

world’ situations are more sensitive in detecting frontal lobe dysfunction in neurological 

patients than those that are administered in the clinic and are quite confrontational in their 

format (see Burgess et al., (2006) and Burgess and Stuss (in press) for review (Burgess et al., 

2006; Burgess & Stuss (in press)).

The new developments with fNIRS offer the possibility of following an analogous path in 

moving from measurement in the clinic or laboratory, to measurement in “real life”, thus 

permitting much more accurate measurement of the processes of interest, with the attendant 

promise of new discoveries about the functions that the frontal lobes support.

Conclusion

Over recent years, the focus of cognitive neuroscientists shifted significantly towards the 

monitoring of brain activity in ‘real life’, especially when investigating those cognitive 

functions that might be difficult to study in a highly artificial experimental environment. We 

now have the possibility to do this thanks to the availability of new instruments such as 

wearable fNIRS systems.

In summary, the reviewed studies laid the foundations to future neuroscientific investigations 

with wearable fNIRS devices in more ecologically-valid contexts and in outdoor 

environments, starting from the basics and demonstrating the feasibility of the new 

generation of wearable fNIRS with a series of proof-of-principle experiments. Having 

demonstrated the strengths and the limitations of this new technology, we believe that 

wearable fNIRS can find application in many different fields, addressing questions that 

cannot be investigated with previous technologies. It seems possible now with recent 

technological and conceptual developments in fNIRS that neuroimaging for cognitive 

neuroscience can now move ‘from lab to life’.
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Figure 1. 
Examples of wireless and wearable fNIRS devices in unrestrained situations. Panel A shows 

a fibreless system (WOT-100, Hitachi, Japan) monitoring the prefrontal cortex outside the 

lab. A black cap is used to prevent detectors saturation. In panel B, a wearable device 

equipped with fibres (LIGHTNIRS, Shimadzu, Japan) measuring over the motor cortices is 

presented, where wires are connected to the control unit carried through a backpack (Photo 

courtesy of Shimadzu, Japan).
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Figure 2. 
Example of motion artifacts in raw fNIRS signals (A) as shifts from baseline values (green 

shaded areas) and fast spikes (yellow shaded areas), where HbO2 and HbR are correlated. 

Panel B shows the effect of the application of the tPCA approach for the correction of 

motion errors. HbO2 and HbR become anti-correlated after being properly corrected. Data 

refer to the study by Pinti et al., 2015.
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Figure 3. 
Example ΔHbO2 and ΔHbR in absence of a good coupling between the optodes and the head 

(A). This is reflected by the presence of only white noise, with a constant PSD. Data were 

in-house collected on the visual cortex using the Hitachi ETG-4000 during the presentation 

of a flashing checkerboard. In panel B, examples of channels corrupted by sunlight are 

shown, with consequent detector saturation. Data refer to the study by Pinti et al., 2015. The 

quality of fNIRS data can be assessed evaluating the presence of heart beat oscillations (C), 

visible both in the time- and in the frequency-domain. Data correspond to resting-state 

signals in-house recorded over the PFC using the Hitachi WOT-system.
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Figure 4. 
Heart rate (A), breathing rate (B), and acceleration (C) data referring to one participant 

undertaking the experiment described in Pinti et al. (2015). Yellow shaded areas indicate the 

conditions involving walking (W), while blue shaded areas represent the phases in which the 

participant was standing (S).
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Figure 5. 
Breathing rate and unpre-processed concentration changes in oxy- and deoxy- haemoglobin 

referring to one participant undertaking the experiment described in Pinti et al. (2015). 

Yellow shaded areas indicate the conditions involving walking (W), while blue shaded areas 

represent the phases in which the participant was standing (S).
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Figure 6. 
Example of ΔHbO2 and ΔHbR signals referring to one participant undertaking the 

experiment described in Pinti et al. (2015) (A). Magenta lines represent the time point in 

which the participant fist bumped two targets in the experimental area. Panel B shows the 

resulting activation model resulting from the application of AIDE (black line; Pinti et al., 

2017), corresponding to the best fit with the activation signal (red line). The corresponding 

boxcar (black line) and the identified event onsets (orange asterisks) are illustrated in panel 

C. The estimated functional events occur ~20 s before the participant reached the targets 

(magenta lines).
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Table 2

Summary of the populations investigated in the reviewed articles and overview of the experimental protocols.

First author
Population (n= number of 
participants; age in years 
± SD)

Experimental protocol

Behavioural task Conditions
Study design
Number of blocks; block 
duration

Atsumori et al. 
2010

- Healthy young adults 
(n=6; 29.7 ± 3.3)

- NW
- DTW + attention
demanding task

- Rest
- Control (NW)
- Task

- 1 block; 20 s.
- 6 blocks; 10 s.
- 5 blocks; 10 s.

Balardin et al. 
2017

- Healthy young adults 
(n=1; 30)

- Playing
table tennis

- Rest
- Forehand
- Predictable
- Unpredictable

- 10 blocks; 30 s.
- 10 blocks; 20 s.
- 10 blocks; 20 s.
- 10 blocks; 20 s.

- Healthy young adults 
(n=1; 26)

- Continuous monitoring in 
everyday life

- Everyday life 
activities - Continuous; 4 h.

Doi et al. 2013 - MCI old adults (n=16; 
75.4 ± 7.2)

- NW
- DTW + verbal letter
fluency task

- Pre-task rest
- Task
- Rest

- 3 blocks; 10 s.
- 3 blocks; 20 s.
- 3 blocks; 30 s.

Maidan et al. 
2016

- Old adults with 
Parkinson’s Disease (n=68; 
71.6 ± 0.9); - Healthy old 
adults (n=28; 70.4 ± 0.9)

- NW
- DTW + serial
subtraction
- DTW + negotiating
obstacles

- Rest
- Task

- 5 blocks; 20 s.
- 5 blocks; 30 s.

McKendrick et al. 
2016

- Healthy young adults 
(n=20; 18-29)

- DTW + auditory 1
-back task
- DTW + scenery
probe

- Rest
- Task

- 47 blocks;
minimum 15 s.
- 37 blocks; 60 s.
- 10 blocks; 30 s.

McKendrick et al. 
2017

- Healthy young adults 
(n=13; mean=22; range 
19-31)

- Sitting + auditory 1-
back task
- DTW indoor +
auditory 1-back task
- DTW outdoor +
auditory 1-back task

- Task
- 4 blocks; 120 s.
- 2 blocks: 120 s.
- 2 blocks, 120 s.

Mirelaman et al. 
2014

- Healthy young adults 
(n=23; 30.9 ± 3.7)

- NW
- DTW + counting forward
- DTW + serial subtraction
- Standing + serial subtraction

- Rest
- Task

- 6 blocks; 20 s.
- 5 blocks; 30 s/30 m.

Nieuwhof et al. 
2016

- Old adults with 
Parkinson’s Disease (n=12; 
70.1 ± 5.4)

- DTW + counting forward
- DTW + serial subtraction
- DTW + reciting
digit span

- Rest
- Task

- 6 blocks; 20 s.
- 5 blocks; 40 s.

Pinti et al. 2015 - Healthy young adults 
(n=1; 24)

- DTW +
ongoing task
- DTW + PM

- Rest
- Ongoing task
- Non-social PM 
task
- Social PM task

- 2 blocks; 60 s.
- 2 blocks; ~5 min.
- 1 block; ~5 min.
- 1 block; ~5 min.

Takeuchi et al. 
2016

- Healthy young adults 
(n=16; 25.9 ± 4.4) - 
Healthy old adults (n=15; 
71.7 ± 3.3)

- DTW + playing Touch the 
numbers

- Rest
- Task

- 6 blocks; 30 s.
- 15 blocks; 10 s.

Note. Abbreviations: NW = Normal walking; DTW = Dual-task walking; MCI = Mild cognitive impairment; PM = Prospective memory.
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Table 4

Summary of the steps adopted for the fNIRS data pre-processing.

First author
fNIRS data pre-processing

DPF Motion artifact correction Filtering Additional steps

Atsumori et al. 2010 - N/A - Not performed - Not performed - Baseline correction

Balardin et al., 2017 - Not reported - Not performed - BP filter [0.01 0.2] Hz - Down-sampling to 1 Hz

Doi et al. 2013 - Not reported - Not performed - LP filter 0.05 Hz - Baseline correction

Maidan et al. 2016 - Not reported - Wavelet-based - BP filter [0.01 0.14] Hz - CBSI; Baseline correction

McKendrick et al. 2016 - Not reported - Not performed - LP FIR filter, 20th order, 0.1 Hz - Baseline correction

McKendrick et al. 2017 - Not reported - Not performed - LP FIR filter, 20th order, 0.1 Hz - Baseline correction

Mirelaman et al. 2014 - Not reported - Not performed - LP FIR filter, 0.14 Hz - Baseline correction

Nieuwhof et al. 2016 - Constant (6.0) - MARA - LP Butterworth filter, 0.1 Hz - Baseline correction

Pinti et al. 2015 - N/A - Wavelet-based - BP Butterworth filter, 3rd order, 
[0.008 0.2] Hz

- Down-sampling to 1 Hz; 
CBSI

Takeuchi et al. 2016 - N/A - Not performed - Moving average
- BP filter [0.01 0.5] Hz - Baseline correction

Note. Abbreviations: DPF = differential path length factor; BP = Band-pass; LP = low-pass; CBSI = correlation-based signal improvement; FIR = 
finite impulse response; MARA = movement artifact reduction algorithm.
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Table 5

Overview of the analysis of fNIRS data.

First author
fNIRS analysis

Method Activation parameter Time used for the analysis

Atsumori et al. 2010 - Averaging + t-test - HbO2 and HbR - 6 – 32 s after the start of the task

Balardin et al. 2017 - GLM + t-test
- CWT

- HbO2
- Entire task block
- 1 min

Doi et al. 2013 - Averaging + t-test - HbO2 - Entire task block

Maidan et al. 2016 - Averaging + Linear mixed model - HbO2 - Entire task block

McKendrick et al. 2016 - Averaging + Generalized and linear mixed model - HbO2 and HbR - Entire task block

McKendrick et al. 2017 - Averaging + Generalized and linear mixed model - HbO2 and HbR - Entire task block

Mirelaman et al. 2014 - Averaging + RM ANOVA
- CWT

- HbO2 - Entire task block

Nieuwhof et al. 2016 - Averaging + Wilcoxon signed-rank test - HbO2 and HbR - Entire task block

Pinti et al. 2015 - N/A - HbO2 and HbR - Entire task period

Takeuchi et al. 2016 - Averaging + ANOVA - HbO2 - Entire task block

Note. Abbreviations: GLM = General linear model; CWT = Continuous wavelet transform; RM ANOVA = Repeated measures analysis of variance 
analysis.
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Table 6

Summary of the challenges associated with using fNIRS in naturalistic settings and recommended solutions.

Challenge Solution

Body movements
Motion artifacts

Correct through:
- Wavelet-based filtering
- tPCA

Optical decoupling - Properly secure the fNIRS probes to the head

Sunlight/Detector saturation - Protecting caps
- Device with ambient light detector

Signals’ quality deterioration/Channels inclusion criteria

- Visual inspection of signals
- Exclude channels without heart rate oscillations
- Exclude channels with CV>15%
- Exclude non-measuring channels (e.g. flat lines)

Systemic changes

- Include longer rest periods (e.g., 2 min)
- Band-pass filtering (NOTE: this removes some of the physiological noises, e.g. 
heart rate and respiration, but it is not effective in removing task-evoked systemic 
changes)
- Measure additional physiological signals
- Monitor participants’ movements (accelerometer or GPS)
- Report results of ΔHbO2 and ΔHbR

Statistical inference/Unstructured protocols - Apply AIDE

Note. Abbreviations: tPCA = targeted principal component analysis; SNR = Signal-to-noise ration; CV = coefficient of variation.
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