
1SCIENTIfIC RePOrTS |            (2019) 9:67  | DOI:10.1038/s41598-018-37177-3

www.nature.com/scientificreports

The Metabolic Response to a Low 
Amino Acid Diet is Independent 
of Diet-Induced Shifts in the 
Composition of the Gut Microbiome
Heidi H. Pak1,2,3, Nicole E. Cummings1,2,4, Cara L. Green1,2, Jacqueline A. Brinkman1,2, 
Deyang Yu1,2,5, Jay L. Tomasiewicz1, Shany E. Yang1,2, Colin Boyle1,2, Elizabeth N. Konon1,2, 
Irene M. Ong6,7,8 & Dudley W. Lamming   1,2,3,4,5,8

Obesity and type 2 diabetes are increasing in prevalence around the world, and there is a clear need for 
new and effective strategies to promote metabolic health. A low protein (LP) diet improves metabolic 
health in both rodents and humans, but the mechanisms that underlie this effect remain unknown. 
The gut microbiome has recently emerged as a potent regulator of host metabolism and the response 
to diet. Here, we demonstrate that a LP diet significantly alters the taxonomic composition of the gut 
microbiome at the phylum level, altering the relative abundance of Actinobacteria, Bacteroidetes, and 
Firmicutes. Transcriptional profiling suggested that any impact of the microbiome on liver metabolism 
was likely independent of the microbiome-farnesoid X receptor (FXR) axis. We therefore tested the 
ability of a LP diet to improve metabolic health following antibiotic ablation of the gut microbiota. We 
found that a LP diet promotes leanness, increases energy expenditure, and improves glycemic control 
equally well in mice treated with antibiotics as in untreated control animals. Our results demonstrate 
that the beneficial effects of a LP diet on glucose homeostasis, energy balance, and body composition 
are unlikely to be mediated by diet-induced changes in the taxonomic composition of the gut 
microbiome.

Around the world, approximately 425 million people have diabetes, and that number is expected to grow by 50% 
over the next three decades1. Beyond the direct effects of diabetes on mortality, its impact is amplified by its asso-
ciation with other causes of morbidity and mortality, such as cardiovascular disease2, cancer3, and Alzheimer’s 
disease4. Type 2 diabetes, which is associated with diet and obesity, accounts for the vast majority of diabetes 
cases, and the epidemic rise in obesity has fueled the development of this health crisis.

Dietary interventions to control or prevent type 2 diabetes could be highly effective and affordable, but 
long-term reduced calorie diets have not proven to be sustainable for most people. Diets that alter the level of 
specific macronutrients without a decrease in caloric consumption may be more sustainable5; one variety of such 
diets are high protein, low carbohydrate diets such as the Atkins diet, which promise rapid weight loss without 
restricting calories6. Some clinical trials have observed that high protein diets can promote weight loss7–9, at least 
in highly compliant subjects10. However, long-term prospective cohort studies have observed that high protein 
consumption is associated with increased insulin resistance, diabetes, cancer, and cardiovascular disease, and an 
overall increase in mortality11–13.
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In agreement with these findings, recent long-term studies in Drosophila and mice, as well as a short-term ran-
domized control trial conducted in humans, find that low protein (LP) diets are associated with improvements in 
health, survival, and insulin sensitivity13–18. Reducing dietary protein largely blocks the effect of a high-fat diet on 
glucose tolerance18, and we recently showed that in a mouse model of pre-existing diet-induced obesity, reducing 
dietary protein rapidly restored metabolic health, dramatically reduced adiposity, and improved glucose tolerance 
and insulin sensitivity19. While some of these phenotypes are mediated in part by the insulin-sensitizing and 
energy expenditure promoting hormone fibroblast growth factor 21 (FGF21), it is likely that other mechanisms 
are also involved18–24.

Over the last decade, numerous studies have found that the composition of the gut microbiome plays an 
important role in regulating the metabolic health of both rodents and humans25,26 by mediating the response 
to drugs, diet, and aging27–33. One major pathway by which the gut microbiota regulates glycemic control is by 
altering bile acid metabolism and activating the farnesoid X receptor (FXR) – FGF15 signaling axis34,35. Recent 
work suggests that at least in rodents, the major dietary factors that regulate the taxonomic composition of the gut 
microbiome are protein and carbohydrate intake36. However, the source of dietary protein – e.g. red meat, white 
meat, dairy, or plant protein – also has an important effect on the taxonomic composition of the gut microbi-
ome37. It remains unknown if the effect of a LP diet on the composition and function of the gut microbiome plays 
a role in its beneficial metabolic effects.

In this study, we determined that an amino acid defined LP diet, which has similar metabolic benefits to a 
LP diet containing natural protein22, alters the taxonomic and functional composition of the gut microbiome. 
We found that a LP diet significantly alters the hepatic transcriptome, possibly reducing FXR-FGF15 signaling. 
Finally, we found that ablation of the gut microbiome with antibiotics does not significantly alter the metabolic 
response to a LP diet. Our data suggests that while dietary protein plays an important role in shaping the taxo-
nomic and functional composition of the gut microbiome, these diet-induced changes do not mediate the bene-
ficial metabolic effects of a LP diet in young, lean mice.

Materials and Methods
Animals and Treatments.  For all experiments, male C57BL/6J mice were purchased from The Jackson 
Laboratory and group housed in static microisolator cages in a specific-pathogen free animal facility. For exper-
iments investigating the composition of the gut microbiome and transcriptional profiling of the liver, mice were 
purchased at 8 weeks of age, and diet changes occurred at 9 weeks of age. Approximately 4 months later, cecal con-
tents and livers were collected from mice sacrificed in the morning following an overnight, approximately ~16 hr 
fast. For experiments in which the gut microbiome was ablated with antibiotics, mice were purchased at 5 weeks 
of age; starting at 6 weeks of age, mice were randomized at the cage level to receive water or water containing anti-
biotics as described below. Diet changes occurred at 9 weeks of age, and antibiotic treatment was continued for 
the duration of the experiment. All procedures involving animals were approved by the Institutional Animal Care 
and Use Committee of the William S. Middleton Memorial Veterans Hospital (Madison, WI), and all experiments 
were performed in accordance with relevant guidelines and regulations.

Diets.  Prior to 9 weeks of age, animals were fed the standard facility chow (Purina 5001; Purina Mills, 
Richmond, IN, USA). Amino acid defined animal diets (non-irradiated) were obtained from Envigo (formerly 
Harlan Laboratories). At 9 weeks of age, animals were switched to either a Control amino acid defined diet 
(TD.140711; 22.0% of calories derived from amino acids; 59.4% from carbohydrate; 18.6% from fat) or a Low 
Protein amino acid defined diet (TD.140712; 7.1% of calories derived from amino acids; 74.4% from carbohy-
drates; 18.5% from fat). The complete composition of these diets has been previously described22.

Antibiotic Treatment.  The gut microbiome was ablated using an antibiotic treatment protocol previously 
described to efficiently ablate the gut microbiome of mice38. Briefly, mice were provided with free access to auto-
claved water containing 1 g/L ampicillin, 500 mg/L vancomycin, and 1 g/L neomycin; however, in contrast to 
the protocol followed in38, aspartame was omitted due to its negative effects on glucose homeostasis and body 
composition in mice39. The mice and the water bottles were weighed and changed biweekly to monitor water 
intake. Control mice were provided with autoclaved water not containing antibiotics. To verify the efficacy 
of the antibiotic treatment, fecal pellets were collected and total DNA was extracted using a modification of 
a previously described protocol40. Briefly, fecal pellets (~30–50 mg) were resuspended in a solution containing 
500 µL of extraction buffer [200 mM Tris (pH 8.0), 200 mM NaCl, 20 mM EDTA], 210 µL of 20% SDS, 500 µL phe-
nol:chloroform:isoamyl alcohol (pH 7.9, 25:24:1) and 500 µL of Fisher Scientific 1.4 mm diameter ceramic beads 
(Cat# 15340159). Following mechanical disruption using a FastPrep 24 (M.P. Biomedicals), the solution was cen-
trifuged at 8,000 rpm at 4 °C for three minutes. The aqueous layer was then sequentially precipitated using sodium 
acetate/isopropanol and sodium acetate/ethanol. DNA samples were then quantified using a Nanodrop 2000c.

Mouse metabolic phenotyping.  Glucose and alanine tolerance tests (GTT and ATT) were performed by 
fasting the mice overnight for 16 hr and then injecting either glucose (1 g/kg) or alanine (2 g/kg) intraperitoneally 
as previously described41,42. Glucose measurements were taken using a Bayer Contour blood glucose meter and 
test strips. Mouse body composition was determined using an EchoMRI 3-in-1 Body Composition Analyzer. For 
assay of multiple metabolic parameters (O2, CO2, food consumption) and activity tracking, mice were acclimated 
to housing in a Columbus Instruments Oxymax/CLAMS metabolic chamber system for ~24 hr, and data from a 
continuous 24-hr period was then recorded and analyzed.

Gut microbial community DNA preparation.  Approximately 20–50 mg of cecal matter was added 
to an autoclaved Sarstedt 2 m micro screw-cap tube (Ref# 72.693.005) containing approximately 500 μL of 
BioSpec Zirconia/Silica beads (Cat# 11079101z) and one large Bio Spec bead (Cat# 11079132ss). To this, 500 μL 
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of 200 mM Tris-HCl, pH 8.0/200 mM NaCl/20 mM EDTA was added, as well as 210 μL 20% SDS. 500 μL of 
Phenol/Chloroform/isoamyl alcohol, pH 7.9, 25:24:1, was added before bead beating using a FastPrep 24 (M.P. 
Biomedicals) until sample was fully homogenized in solution. Tubes were centrifuged at 8,000 rpm at 4 °C for 
three minutes. The aqueous layer, approximately 500 µL, was transferred to a new microcentrifuge tube (Axygen). 
60 μL of 3 M NaAcetate was added, then 600 μL of isopropanol, then inverted to mix. The samples were placed on 
ice for one hour before centrifuging at 13,000 rpm at 4 °C for 20 minutes. Samples were decanted, and pellet was 
rinsed with 200 μL of 100% EtOH, then decanted and briefly dried. The pellet was dissolved in 100–200 μL of TE 
buffer. 100 μL of DNA was cleaned using the Macherey-Nagel PCR Clean-up kit, using 2 NT3 washes and eluting 
with 50–100 μL of elution buffer.

Construction and Sequencing of v3-v4 16S Metagenomic libraries.  Purified genomic 
DNA was submitted to the University of Wisconsin-Madison Biotechnology Center. DNA concentra-
tion was verified fluorometrically using either the Qubit® dsDNA HS Assay Kit or Quant-iT™ PicoGreen® 
dsDNA Assay Kit (ThermoFisher Scientific, Waltham, MA, USA). Samples were prepared in a simi-
lar process to the one described in Illumina’s 16 S Metagenomic Sequencing Library Preparation Protocol, 
Part # 15044223 Rev. B (Illumina Inc., San Diego, California, USA) with the following modifications: 
The 16 S rRNA gene V3/V4 variable region was amplified with fusion primers (forward primer 341 f: 
5′-ACACTCTTTCCCTACACGACGCTCTTCCGATCT(N)3/6CCTACGGGNGGCWGCAG-3′, reverse primer 
805r: 5′-GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT(N)3/6GACTACHVGGGTATCTAATCC-3′). 
Region specific primers were previously described (43; underlined sequences above), and were modified to add 3–6 
random nucleotides ((N)3/6) and Illumina adapter overhang nucleotide sequences 5′ of the gene‐specific sequences. 
Following initial amplification, reactions were cleaned using a 0.7x volume of AxyPrep Mag PCR clean-up beads 
(Axygen Biosciences, Union City, CA). In a subsequent PCR, Illumina dual indexes and Sequencing adapters 
were added using the following primers (Forward primer: 5′-AATGATACGGCGACCACCGAGATCTACA
C [ 5 5 5 5 5 5 5 5 ] A C A C T C T T T C C C TA C A C G A C G C T C T T C C G AT C T- 3 ′ ,  R e v e r s e  P r i m e r : 
5′-CAAGCAGAAGACGGCATACGAGAT[77777777]GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT
-3′, where bracketed sequences are equivalent to the Illumina Dual Index adapters D501-D508 and D701-D71
2,N716,N718-N724,N726-N729). Following PCR, reactions were cleaned using a 0.7x volume of AxyPrep Mag 
PCR clean-up beads (Axygen Biosciences). Quality and quantity of the finished libraries were assessed using an 
Agilent DNA 1000 kit (Agilent Technologies, Santa Clara, CA) and Qubit® dsDNA HS Assay Kit (ThermoFisher 
Scientific), respectively. Libraries were pooled in an equimolar fashion and appropriately diluted prior to sequenc-
ing. Paired end, 300 bp sequencing was performed using the Illumina MiSeq Sequencer and a MiSeq. 600 bp (v3) 
sequencing cartridge. Images were analyzed using the standard Illumina Pipeline, version 1.8.2. OTU assign-
ments and diversity plots were created using QIIME analysis pipeline44.

Microbiota analysis using QIIME.  Microbiota analysis to obtain OTU assignments and diversity plots 
were performed using Quantitative Insights Into Microbial Ecology (QIIME)44 version 1.9.1. Illumina sequenc-
ing reads were adapter and quality trimmed using the Skewer45 trimming program to remove low quality 
(<Q25) bases and sequencing adapters. Reads shorter than 100 nucleotides after trimming were discarded. 
Flash46 was used to merge paired end reads into amplicon sequences using a minimum overlap of 10 nucleotides. 
Amplicons were then PCR primer trimmed and quality filtered. Sequences were then clustered in OTUs using an 
open-reference OTU picking protocol based on 97% identity using UCLUST46 against the Greengenes reference 
database47. Representative sequences (most abundant sequence in OTUs) were picked, aligned to GreenGenes47 
Core reference alignment using PyNAST48. Taxonomic assignments were associated with OTUs based on the 
taxonomy associated with the Greengenes reference sequence defining each OTU. UniFrac distances between 
samples were calculated using the Greengenes reference tree (ftp://greengenes.microbio.me/greengenes_release/
gg_13_5/gg_13_8_otus.tar.gz). The resulting biom-formatted OTU table was filtered to remove singletons and 
OTUs that could not be aligned using PyNAST. Alpha rarefaction curves were calculated for all samples with a 
rarefaction upper limit of (median depth/sample count). Samples were removed from further characterization if 
they did not contain sufficient reads at a depth where the Good’s coverage value for most samples was greater than 
0.9. Beta diversity was calculated using weighted and unweighted unifrac on OTU data leveled according to the 
lowest sample depth. An alternative normalization by CSS49 is also provided for additional downstream analysis.

Liver mRNA preparation and transcriptional profiling.  Total liver RNA was extracted with Trireagent 
(Sigma) as previously described19. Concentration and purity of RNA was initially determined using a Nanodrop 
2000c, and then submitted to the University of Wisconsin- Madison Biotechnology Center Gene Expression 
Center & DNA Sequencing Facility. RNA quality was then assayed using an Agilent RNA NanoChip, and 
stranded mRNA libraries with polyA enrichment were prepared as described in the Illumina TruSeq Stranded 
mRNA Sample Preparation Guide Rev. E. DNA sequencing was performed using an Illumina HiSeq. 2500 1 × 100 
(TruSeq v3) full flowcell. Pathway enrichment was performed using the “edgeR”50 and “org.Mm.eg.db”51 packages 
in R version 3.4.452.

Gene expression (qPCR).  Total RNA was isolated from liver with Tri-Reagent, and cDNA was 
generated as previously described24. Oligo dT primers and primers for real-time PCR were obtained 
from Integrated DNA Technologies (Coralville, IA,USA). Primer sequences used for qPCR were as fol-
lows: Cyp8b1: F: GTTTCTGGGTCCTCTTATTCCTG, R: TGGGAGTGAAAGTGAACGAC; Zfp36l1: 
F: CACACCAGATCCTAGTCCTTG, R: CTGGGAGTGCTGTAGTTGAG; Cyp7a1: F: AACGATAC 
ACTCTCCACCTTT, R: CTGCTTTCATTGCTTCAGGG; Ppp2cb: F: ATGGAAGGATATAACTGGTGCC, 
R: AGGTGCTGGGTCAAACTG; Map2k1: F: CGTACATCGTGGGCTTCTAC, R: CAGAACTTGATCCAA 
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GGACCC; Shp: F: CTACCCTCAAGAACATTCCAGG, R: CACCAGACTCCATTCCACG; Abcb11: F: 
CCTCATACGGAAACCCAAGATC, R: CTGACTGTTGATAGGCGATGG; Actb: F: ACCTTCTACAATGA 
GCTGCG, R: CTGGATGGCTACGTACATGG. Reactions were run on an Applied Biosystems StepOnePlus 
Real-Time PCR System (Thermo Fisher Scientific) with Invitrogen SYBR Green PCR Master Mix (ThermoFisher 
Scientific). Actin (Actb) was used to normalize the results from gene-specific reactions.

Statistics.  Statistics were carried out in Prism 7 (Graphpad Prism). For each measured parameter, we con-
ducted a two‐factor ANOVA which included an effect of drug treatment (vehicle or antibiotics), an effect of diet 
(Control or Low AA), and an interaction between diet and treatment. A Sidak’s post-test was performed to deter-
mine the significance of factors identified as significant in the two-factor ANOVA. PCA analysis was performed 
using Clustvis53.

Results
A Low Amino Acid Diet Alters the Taxonomic Composition of the Gut Microbiome.  To determine 
if the taxonomic composition of the microbiome is altered by consuming reduced dietary protein, we fed mice 
amino acid (AA) defined diets modeled on the AA profiles of naturally sourced control and low protein diets. 
The Control diet is modeled on a naturally sourced 21% protein diet, while the Low AA diet is based on a natu-
rally sourced 7% protein diet, and we have previously shown that low protein and Low AA diets are comparable 
in their effect on glycemic control and body composition22. As shown in Fig. 1, mice fed a Low AA diet for four 
months have improved glucose tolerance (Fig. 1A) and reduced weight and fat mass gain relative to mice fed the 
Control diet (Fig. 1B).

We sacrificed mice fed the Control and Low AA diets after four months, collecting cecal contents and the liver. 
We prepared DNA from the contents of the cecum, and performed 16 S ribosomal RNA (rRNA) sequencing in 
order to identify alterations in the microbial composition of the gut microbiome. We utilized QIIME to determine 
relative taxonomic composition of each sample at the phylum and family levels (Figs 1C and S1A). While the 
alpha diversity did not significantly differ between Control and Low AA diet-fed mice (Fig. S1B), we observed 
a major shift in the taxonomic composition of the gut microbiome. Utilizing principal component analysis, we 
determined that the first two principle components explained a majority of the variability in the taxonomic com-
position of the gut microbiome, and individuals clustered by diet (Fig. 1D). We observed major differences at 
the phylum level, with an increase in the relative abundance of Firmicutes (Fig. 1E), and a decrease in the rel-
ative abundance of Bacteroidetes and Actinobacteria (Fig. 1F). At the family level, we found that the increased 
relative abundance of Firmicutes was primarily driven by an increase in the order Clostridiales (Fig. S1c); we 
also observed a decrease in the abundance of the Bacteroidetes families S24–7 and Odoribacteraceae, and the 
Actinobacteria families Bifidobacteriaceae and Coriobacteriaceae (Fig. S1D).

A Low Amino Acid Diet Alters the Hepatic Transcriptome, but does not activate FXR-FGF15 
signaling.  A low protein diet improves glucose tolerance in part by improving hepatic insulin sensitivity22,54. 
While induction of the insulin-sensitizing hormone FGF21 has been shown to play a role in this response20,21, 
possibly via inhibition of hepatic mTORC1 (mechanistic Target Of Rapamycin Complex 1)55, we recently 
observed that dietary methionine restriction, which mimics many of the effects of a low protein diet, can improve 
glucose tolerance independently of changes in FGF21 and hepatic mTORC124.

Over the past decade, it has become clear that the composition and function of the gut microbiome can regu-
late host metabolism, including glycemic control56,57. One recently characterized pathway by which the microbi-
ome can regulate host glucose metabolism is through bile acids; alterations in the amount and type of secondary 
bile acids can regulate glycemic control by activating or repressing the FXR – FGF15 signaling axis34,35.

We used RNA-Seq to identify gene expression changes induced by a low protein diet. We identified several 
differentially expressed metabolic pathways when mice were fed a Low AA diet (Fig. 2A,B). In particular, we 
observed altered expression of many genes involved in xenobiotic or drug metabolism as well as steroid hor-
mone biosynthesis. However, our analysis did not identify bile acid signaling as significantly altered, and we 
did not observe significantly altered expression of Shp, Cyp7a1, or several other genes that have been shown to 
be regulated by the FXR-FGF15 signaling axis (Fig. 2C)58–60. Targeted qPCR analysis of mRNA from a larger, 
additional cohort of mice confirmed that a Low AA diet did not significantly alter the expression of any of one 
of these genes (Fig. S2). However, we observed an overall effect of diet consistent with reduced FXR-FGF15 
signaling (Fig. S2).

The metabolic effects of protein restriction are not mediated by the gut microbiota.  In order 
to directly assess if the altered taxonomic composition of the gut microbiome contributes to the metabolic effects 
of a low protein diets, we pretreated mice with either vehicle or antibiotics (ABX) for three weeks; mice were then 
randomized to either Control or Low AA diets. Antibiotic-treated mice continued to receive antibiotics through-
out the course of the experiment (Fig. 3A). As expected, mice treated with antibiotics had significantly reduced 
fecal DNA content (Fig. 3B). Over the course of the experiment, we tracked weight and body composition of 
mice in each group (Fig. 3C–F). As expected based on our previous studies, mice fed the Low AA diet gained less 
weight, less fat mass, and less lean mass than mice fed a Control diet. While antibiotic administration increased 
weight gain and lean mass gain compared to vehicle treated mice, the Low AA diet had similar effects on weight 
and body composition in the presence and absence of antibiotics.

As we determined previously, mice fed a Low AA diet had improved glucose tolerance compared to mice fed 
a Control diet (Fig. 4A). We also specifically assessed gluconeogenesis in the liver by performing an alanine toler-
ance test; as in our previous studies utilizing pyruvate, we observed a decrease in the area under the curve (AUC) 
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in mice fed a Low AA diet, indicating improved suppression of gluconeogenesis (Fig. 4B). We saw equivalent 
reductions in AUC in response to a Low AA diet in both vehicle and antibiotic fed mice; and we did not observe 
any differences in AUC resulting from antibiotic treatment.

Rodents fed a low protein diet have increased food consumption and increased energy expenditure15,18,20–22,61. 
We examined the effect of antibiotics on these phenotypes by placing mice in metabolic chambers and assessing 
food consumption, spontaneous activity, respiratory exchange ratio (RER), and energy expenditure (Fig. 5A–F). 
In agreement with our previous results, we observed increased food consumption (Fig. 5A,B) and energy expend-
iture (Fig. 5E,F) in mice fed a Low AA diet, with equivalent effects in both vehicle and antibiotic treated mice. 
Surprisingly, while a Low AA diet increased both the daytime and nighttime RER of vehicle-treated mice, mice 
treated with antibiotics did not have increased daytime RER when fed a Low AA diet, and had a reduced increase 
in nighttime RER (Fig. 5C). The effects of diet on spontaneous activity were relatively small, with increased activ-
ity in Low AA fed mice during the day (Fig. 5D).
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Figure 1.  A low protein diet promotes metabolic health and alters the taxonomic composition of the cecal 
microbiome. (A) Glucose tolerance test on male C57BL/6J mice fed a Control (22% of calories from amino 
acids) or Low AA (7% of calories from amino acids) diet for 4 months (n = 8–10/group; *p < 0.05, t-test). (B) 
Weight and body composition were measured immediately prior to diet start and after 10 weeks on the indicated 
diets (n = 8–10/group; *p < 0.05, = t-test). (C) Bar plot of average relative abundance at the phylum taxonomic 
level. Top 6 phyla are shown. (D) Principle component analysis of demonstrating the effect of diet on taxonomic 
composition. (E,F) Bacterial phyla differentially represented in cecal contents from mice fed the specified diets for 
4 months (n = 7–12/group; Sidak’s test following ANOVA, *p < 0.05). Error bars represent SEM.
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Discussion
Understanding the mechanisms by which dietary choices impact metabolic health is an area of significant 
research interest due to the increasing prevalence of diabetes and obesity in the population. Recently, we and 
others have shown that reducing dietary protein can promote metabolic health in both humans and rodents, but 
the molecular mechanisms that mediate these effects are unclear.

Here, we examine the effect of a low protein diet on the gut microbiome. In general agreement with the results 
of Holmes and colleagues36, we find that reducing dietary amino acid levels (and increasing dietary carbohy-
drates) results in an increased Firmicutes-to-Bacteroidetes ratio. These findings demonstrate the robustness of 
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livers of Control and Low AA fed mice (q < 0.05, FDR). Genes in more than one significantly enriched KEGG 
pathway are listed only once, and assigned to the most significantly affected pathway. (B) Pathway enrichment 
analysis was performed using g:Profiler (g:GOSt)73, and the p-values of KEGG pathways significantly up- and 
downregulated by Low AA diet feeding were determined. Colors are matched to that of pathways in (A). 
(C) Heatmap representing the relative expression of liver genes known to be altered by FXR-FGF15 bile acid 
signaling.
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this intervention on the gut microbiome, as the same effect can be observed in two different laboratories on dif-
ferent continents, using either naturally sourced or defined diets. These results are somewhat surprising, as some 
previous studies have suggested a link between obesity and an increased prevalence of Firmicutes62. However, 
they are consistent with the model of Holmes and colleagues that increased caloric intake promotes Firmicutes 
abundance36.

Since the gut microbiome has proven to be a potent regulator of metabolic health, obesity, and glycemic 
control, we tested the hypothesis that diet-induced changes in the gut microbiome mediate the beneficial effects 
of a low protein diet on metabolism. We first used a targeted approach, examining the response of the liver, 
which is responsive to microbiome-mediated alterations in the amount and type of secondary bile acids via the 
FXR-FGF15 signaling axis34,35, at the transcriptional level. While we observed altered expression of many genes 
in response to reduced dietary protein, we found no evidence of altered bile acid signaling and no evidence of 
increased signaling by the FXR-FGF15 signaling axis. However, a follow-up qPCR analysis of a targeted panel 
of genes regulated by FXR-FGF15 signaling in a second cohort of mice suggested that a low protein diet might 
reduce hepatic FXR-FGF15 signaling.

To directly test the role of gut microbiome, we then took an unbiased approach, testing the requirement for an 
intact gut microbiome in the metabolic response to reduced dietary protein. Following three weeks of high-dose 
antibiotic treatment, a regimen previously shown to ablate the gut microbiome and dramatically reduce fecal 
DNA content, we placed mice on either Control or Low AA diets. As anticipated based on previous studies in 
mice and many other mammals63–66, antibiotics had an overall positive effect on growth and lean mass. However, 
we observed that protein restriction had very similar effects on weight, body composition, glucose tolerance, and 
energy expenditure in both the presence and absence of antibiotics. The one major difference we observed was 
that antibiotic treated, Low AA-fed mice had a lower RER relative to their vehicle treated counterparts, suggesting 
increased utilization of lipids and decreased utilization of carbohydrates as a fuel source.
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Figure 3.  A low protein diet alters body composition similarly in vehicle and antibiotic-treated mice. (A) 
Schematic representation of the experimental plan; mice were pretreated with antibiotics or vehicle for three 
weeks, and then randomized to either a Control or Low AA diet. (B) Fecal DNA content was determined 
following 3 weeks of antibiotic treatment (n = 8/group; *p < 0.05, t-test). (C) Weight of the mice in each group 
was tracked following randomization to each diet. (D–F) Weight and body composition were determined 
immediately prior to diet start and after 6 weeks on the indicated diets, and the change in (D) weight, (E) fat 
mass, and (F) lean mass was determined (n = 12/group; statistics for the overall effects of diet, antibiotic (ABX) 
treatment, and the interaction represent the p-value from a two-way ANOVA; *p < 0.05 from a Sidak’s post-test 
examining the effect of parameters identified as significant in the two-way ANOVA). Error bars represent SEM.
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A significant caveat of our studies is that they were conducted in young, lean C57BL/6 J mice, which have 
relatively low intestinal permeability; this may limit the ability of the gut microbiome composition to affect host 
metabolism. The microbiome could play a larger role in the metabolic response of obese or older animals, which 
have increased gut permeability67,68; therefore, investigating the role of the gut microbiome in response to reduced 
dietary protein in aged or obese animals might be an important area for future study. In addition, we did not 
examine the taxonomic composition of the gut microbiome of antibiotic treated mice, which could help clarify 
if there are any antibiotic-resistant microbes which might mediate the metabolic effects of a low protein diet. 
Finally, we did not examine the metabolic effects of protein restriction in germ-free mice; examination in these 
animals, which completely lack all bacteria, could conceivably reveal subtle effects of the gut microbiome on the 
response to dietary protein that were not detectable using our antibiotic-ablation model.

Our study also examined only a limited number of metabolic phenotypes associated with a low protein diet, 
over a relatively short period of time; other phenotypes associated with reduced protein consumption, including 
increased longevity and healthspan69, may be more directly linked to composition of the gut microbiota. A more 
detailed investigation of the transcriptional response to protein restriction in antibiotic-treated or germ-free mice 
may provide valuable clues to identify specific phenotypes that are dependent upon changes in the gut microbi-
ome. There is also growing understanding that the specific amino acid composition of the diet mediates metabolic 
health70–72, and there may be a role for the microbiome in the metabolic response to other diets with unusual 
amino acid profiles or from particular dietary sources.

Our findings highlight that dietary macronutrient composition plays an important role in determining the 
taxonomic composition of the gut microbiome. Yet, while the effects of a low protein diet on the gut microbiome 
are dramatic, at least in the short term, an intact gut microbiome is not required to realize the metabolic benefits 
of a low protein diet on glucose homeostasis, body composition, or energy balance. Identifying the physiological 
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Figure 4.  A low protein diet improves glucose homeostasis similarly in vehicle and antibiotic-treated mice. 
(A) Glucose and (B) alanine tolerance tests were conducted in mice fed the indicated diets for 8 weeks and 4 
weeks, respectively (n = 12/group; statistics for the overall effects of diet, antibiotic (ABX) treatment, and the 
interaction represent the p-value from a two-way ANOVA; *p < 0.05 from a Sidak’s post-test examining the 
effect of parameters identified as significant in the two-way ANOVA). Error bars represent SEM.
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and molecular mechanisms by which reducing dietary protein can promote metabolic health remains critical to 
developing drugs which can take advantage of these pathways to combat obesity and diabetes.

Data Availability
Liver transcriptional profiling data has been deposited at GEO, accession number GSE115683. All other datasets 
generated during the current study are available from the corresponding author on reasonable request.
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