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Metabolic perturbations of post-load hyperglycemia vs. fasting
hyperglycemia
Jing-yi Lu1, Jia-hui Peng1, Xiao-jing Ma1, Yi-nan Zhang2, Wei Zhu1, Xing-xing He1, Ling-wen Ying1, Yu-qian Bao1, Jian Zhou1 and
Wei-ping Jia1

There is evidence that post-load/post-meal hyperglycemia is a stronger risk factor for cardiovascular disease than fasting
hyperglycemia. The underlying mechanism remains to be elucidated. The current study aimed to compare the metabolic profiles of
post-load hyperglycemia and fasting hyperglycemia. All subjects received an oral glucose tolerance test (OGTT) and were stratified
into fasting hyperglycemia (FH) or post-load hyperglycemia (PH). Forty-six (FH, n= 23; PH, n= 23) and 40 patients (FH, n= 20; PH,
n= 20) were recruited as the exploratory and the validation set, respectively, and underwent metabolic profiling. Eighty-seven
subjects including normal controls (NC: n= 36; FH: n= 22; PH: n= 29) were additionally enrolled and assayed with enzyme-linked
immunosorbent assay (ELISA). In the exploratory set, 10 metabolites were selected as differential metabolites of PH (vs. FH). Of
them, mannose and 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) were confirmed in the validation set to be
significantly higher in FH than in PH. In the 87 subjects measured with ELISA, FH had numerically higher mannose (466.0 ± 179.3 vs.
390.1 ± 140.2 pg/ml) and AICAR (523.5 ± 164.8 vs. 512.1 ± 186.0 pg/ml) than did PH. In the pooled dataset comprising 173 subjects,
mannose was independently associated with FPG (β= 0.151, P= 0.035) and HOMA-IR (β= 0.160, P= 0.026), respectively. The
associations of AICAR with biochemical parameters did not reach statistical significance. FH and PH exhibited distinct metabolic
profiles. The perturbation of mannose may be involved in the pathophysiologic disturbances in diabetes.
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INTRODUCTION
Diabetes is associated with a high incidence of cardiovascular
disease (CVD) [1], and poor control of hyperglycemia plays a
significant role in the development of CVD in diabetes patients [2].
Accumulating evidence indicates that fasting and post-meal/post-
load hyperglycemia (PH) do not contribute equally to the
development of CVD, with the latter being a stronger risk factor.
Given the tight link between post-meal/post-load glucose and
diabetes complications including CVD, the International Diabetes
Federation (IDF) has specifically published a guideline for
management of post-meal glucose [3]. In the Diabetes Interven-
tion Study, which was a prospective population-based trial,
Hanefeld et al. [4] reported that post-meal but not fasting blood
glucose was significantly associated with myocardial infarction.
Cavalot et al. [5] followed 505 diabetes patients for 14 years and
observed that blood glucose 2 h after lunch, but not fasting blood
glucose, was a significant predictor of cardiovascular events.
Moreover, Coutinho et al. [6] performed a meta-analysis of
published data for 95,783 subjects, and found that the glucose
level at 2 h, post-oral glucose load was a more powerful predictor
of cardiovascular events than fasting glucose. Despite the different

associations of fasting and post-meal/PH with CVD, the mechan-
ism underlying this phenomenon remains incompletely
understood.
Metabolomics is a rapidly evolving technology by which an

entire spectrum of endogenous metabolites in cells, biofluids, or
tissues is measured quantitatively following genetic or environ-
mental interventions [7]. Research indicates that metabolomics
can provide important insight for biomarker discovery, toxicity
evaluation, and understanding the pathogenic nature of various
diseases [8–10]. For example, in 2009, Newgard et al. [8]
performed metabolomic profiling of obese vs. lean humans and
identified a branched-chain amino acid (BCAA)-related metabolic
signature that correlated with insulin resistance. Since then, BCAA
has garnered much research interest in the pathogenesis of type 2
diabetes and the BCAA–insulin resistance relationship has now
been well established.
In the current study, we conducted a metabolomic analysis of

serum samples from patients with fasting or PH in order to identify
differences in the metabolic features of the two groups and
achieve a better understanding of fasting and post-meal/PH.
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MATERIALS AND METHODS
Study population
Participants without a prior history of diabetes were enrolled
consecutively from the outpatient clinic of the Department of
Endocrinology and Metabolism of Shanghai Jiao Tong University
Affiliated to the Sixth People’s Hospital. Each participant received
a 75-g oral glucose tolerance test (OGTT). Subjects with both
fasting plasma glucose (FPG) ≥7.0 mmol/L and 2-h plasma glucose
(2-h PG) ≥11.1 mmol/L were excluded from the study. The
remaining individuals were further stratified into two groups: a
fasting hyperglycemia (FH) group and a PH group. FH was defined
as FPG ≥ 7.0 mmol/L but 2-h PG <11.1 mmol/L, whereas PH was
defined as FPG <7.0 mmol/L but 2-h PG ≥11.1 mmol/L. The two
groups were further matched by age, gender, body mass index
(BMI), and glycated hemoglobin (HbA1c). Finally, 46 patients (FH
group, n= 23; PH group, n= 23) were included in the exploratory
set for metabolic profiling.
Next, 40 individuals (FH group, n= 20; PH group, n= 20) were

enrolled as a validation set following the same inclusion,
exclusion, and matching criteria to validate the results obtained
from the exploratory set. Moreover, another 87 subjects were
recruited and were assayed with enzyme-linked immunosorbent
assay (ELISA). These included 22 with FH, 29 with PH, and 36
normal controls (NCs), which were defined as FPG <5.6 mmol/L
and 2-h PG <7.8 mmol/L during OGTT. In total, 173 subjects were
included in the study.
The Institutional Review Board of Shanghai Jiao Tong University

Affiliated to the Sixth People’s Hospital approved this study. The
study was conducted in accordance with the principles of the
Declaration of Helsinki II. Each participant provided written
informed consent.

Anthropometric and biochemical measurements
After a fasting venous blood sample was collected, each
participant received a 75-g OGTT. Plasma glucose levels were
measured using the glucose oxidase method. BMI was calculated
as weight divided by height squared (kg/m2). HbA1c was detected
by high-performance liquid chromatography (Variant II hemoglo-
bin analyzer; Bio-Rad, Hercules, CA, USA). Electrochemilumines-
cence immunoassay was used to quantify serum insulin levels on
a Cobas e 601 analyzer (Roche Diagnostics GmbH, Mannheim,
Germany).
The homeostasis model assessments for IR index (HOMA-IR) and

beta cell function (HOMA-B) were calculated using the following
formulae: HOMA-IR= fasting insulin (FINS) (in mU/L) × FPG (in
mmol/L)/22.5; and HOMA-B= 20 × FINS (in mU/L)/(FPG (in mmol/
L)− 3.5). Early-phase insulin secretion during OGTT was assessed
by△I30/△G30 and calculated as: (0.5-h INS (in mU/L)− FINS)/(0.5-
h PG (in mmol/L)− FPG). The insulin sensitivity index was
estimated with the Cederholm equation [11] shown below, where
Imean and Gmean represent the mean insulin and glucose
concentrations, respectively, during the OGTT.

Cederholm index ¼
75; 000þ ðGlucose0 � Glucose120Þ ´ 180 ´ 0:19 ´bodymass

120 ´Gmean ´ logðImeanÞ ;

Commercial ELISA kits were used for measuring mannose (TSZ,
HU8747, MA, USA) and 5-aminoimidazole-4-carboxamide ribonu-
cleotide (AICAR) (ImmunoClone, IC-AICAR-Hu, NY, USA). The assays
were performed according to manufacturers’ instructions. The
samples were then read at an absorbance of 450 nm and
compared against a standard curve of known concentrations.

Sample preparation and metabolomic analysis
A 100 μL aliquot of serum sample was extracted with 350 μL of
methanol and vortexed for 10 s. The samples were then
centrifuged at 13,000 r.p.m. (4 °C) for 10 min. An aliquot of the

300 μL supernatant was transferred to a glass sampling vial, and
was spiked with one internal standards (20 μL L-2-chlorophenyla-
lanine in water, 1 mg/ml) to vacuum dry at room temperature. The
residue was derivatized using a two-step procedure. First, 60 μL
methoxyamine (20 mg/ml in pyridine,) was added to the vial and
kept at 80 °C for 30 min, second, 80 μL N,O-Bis(trimethylsilyl)
trifluoroacetamide (BSTFA) (1% trimethylchlorosilane (TMCS)) was
added and kept at 70 °C for 120 min.
Quality control (QC) samples were prepared by mixing equal

amounts of serum from all subject samples and were run after
each five-test serum samples.
Gas chromatography time-of-flight mass spectrometry (GC-TOF-

MS) analysis was performed with an Agilent 7890 gas chromato-
graph system linked to a Pegasus HT time-of-flight mass spectro-
meter (LECO, St. Joseph, MI, USA). The system employed a DB-5
column with 5% diphenyl and 95% dimethyl polysiloxane (J&W
Scientifc, Folsom, CA, USA). A 1 μL aliquot of the analyte was
injected in splitless mode. Helium was used as the carrier gas, the
front inlet purge flow was 3ml/ml, and the gas flow rate through
the column was 1ml/ml. The initial temperature was kept at 50 °C
for 1 min, then raised to 310 °C at a rate of 20 °C per min, then kept
for 6 min at 310 °C. The injection, transfer line and ion source
temperature were 280, 270, and 220 °C, respectively. The energy
was −70 eV in electron impact mode. The mass spectrometry data
was acquired in full-scan mode with the m/z of 50–500 at a rate of
20 spectra per s after a solvent delay of 366 s. The dynamic range
of each metabolite identified in the study is shown in Supple-
mental Table 1.

Data analysis
Chroma TOF 4.3× software from the LECO Corporation and the
LECO-Fiehn Rtx5 database were used for raw peak extraction,
baseline filtering, calibration of the baseline, peak alignment,
deconvolution analysis, peak identification, and integration of the
peak area as described previously [12]. To combine the data from
the two batches (i.e., the exploratory set and the validation set),
the original values divided by the mean of QC samples in each
batch was calculated for each individual. The orthogonal partial
least squares-discriminant analysis (OPLS-DA) was performed
using the SIMCA-P 13.0 software package (Umetrics, Umea,
Sweden) to differentiate the FH group from the PH group. On
the basis of variable importance in the projection (VIP) threshold
of 1 from the OPLS-DA model, a number of metabolites
responsible for the differences in the metabolic profiles of FH
and PH could be obtained. In parallel, the metabolites identified
by the OPLS-DA model were confirmed at a univariate level using
the Wilcoxon–Mann–Whitney test (P < 0.05). The fold change in
metabolite concentrations was obtained by comparing the mean
peak intensities between two groups (PH vs. FH). To pool the data
from both metabolomics and ELISA measurements, the values
obtained by each method were transformed to unit SD: (individual
value−mean)/SD. The correlations of certain metabolites with
indices of insulin sensitivity/resistance and insulin secretion were
evaluated with Spearman’s correlation coefficient. Differences
between the three groups (NC, FH, and PH) were assessed by
analysis of variance for normally distributed continuous variables,
and by Kruskal–Wallis test for non-normally distributed continuous
variables. To adjust for confounding factors, multiple regression
analysis was performed. All univariate analyses were conducted
using SPSS Statistics 13 (SPSS, Chicago, IL, USA). A P value <0.05
was considered statistically significant.

RESULTS
The baseline characteristics of patients in the exploratory set are
shown in Table 1. Age, gender, BMI, HbA1c, and FINS were
comparable between the FH and PH groups (all P > 0.05). The PH
group had a lower FPG (P < 0.001) and Cederholm index (P <
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0.001) and a higher 2-h PG (P < 0.001), 2-h INS (P= 0.002)
and HOMA-B (P < 0.001) than did the FH group.
Among a total of 292 variables obtained from the GC-TOF-MS

spectra of serum samples, 138 metabolites were identified.
Discrimination of the FH group from the PH group according to
the OPLS-DA model (R2(X)= 0.644, R2(Y)= 0.950, Q2= 0.746)
using one predictive component and four orthogonal compo-
nents is illustrated in Fig. 1, and a clear separation between the
two groups could be observed. Metabolites with VIP >1 (obtained
from OPLS-DA analysis) and P < 0.05 (obtained from
Wilcoxon–Mann–Whitney test) were selected as candidate mar-
kers for the discrimination between FH and PH. These candidate
markers included 2-deoxytetronic acid, glucoheptonic acid,
mannose, tagatose, sophorose, phenyl beta-D-glucopyranoside,

uridine, 3,5-dihydroxyphenylglycine, palmitic acid, and 5-
aminoimidazole-4-carboxamide ribonucleotide (AICAR; Table 2).
Next, we performed the metabolic analysis in independent

samples (validation set: FH group, n= 20; PH group, n= 20)
(Supplemental Table 2) for validation. Of the 10 differential
metabolites mentioned above, eight metabolites did not differ
significantly between patients in the FH and PH groups, whereas
the levels of two metabolites (mannose and AICAR) differed
significantly between the PH and FH groups (Table 2). After
combining the two subsets of subjects (FH group, n= 43;
PH group, n= 43), the relative intensities for mannose (P= 0.009)
and AICAR (P < 0.001) were significantly lower for the PH group
than for the FH group (Fig. 2). Correlation analysis revealed that
mannose was significantly associated with HOMA-B (r=−0.262,
P= 0.022), whereas AICAR exhibited a positive correlation with
the Cederholm index (r= 0.352, P= 0.001; Fig. 3). Upon multiple

Table 1. The characteristics of subjects in the exploratory set

Variable FH PH P

n 23 23 /

Age (years) 52.8 ± 7.8 53.8 ± 8.6 0.500

Gender (male/female) 13/10 13/10 1.000

BMI (kg/m2) 23.5 ± 2.3 23.8 ± 2.1 0.506

FPG (mmol/L) 7.6 ± 0.5 6.2 ± 0.6 <0.001

2-h PG (mmol/L) 8.9 ± 1.6 13.4 ± 1.8 <0.001

HbA1c (%) 6.3 ± 0.5 6.3 ± 0.6 0.880

FINS (mU/L) 9.4 ± 4.3 9.6 ± 4.2 0.766

2-h INS (mU/L) 63.7 ± 42.6 97.0 ± 51.2 <0.001

HOMA-IR 0.6 ± 0.3 0.5 ± 0.2 0.069

Cederholm index 36.2 ± 6.7 26.0 ± 4.7 <0.001

HOMA-B 46.2 ± 22.9 75.5 ± 36.2 <0.001

△I30/△G30 9.1 ± 12.9 6.7 ± 5.2 0.260

FH fasting hyperglycemia, PH post-load hyperglycemia, BMI body mass
index, FPG fasting plasma glucose, 2-h PG 2-h plasma glucose, HbA1c
glycated hemoglobin, FINS fasting insulin, 2-h INS 2-h insulin, HOMA-IR the
homeostasis model assessment for insulin resistance, HOMA-B the home-
ostasis model assessment for beta cell function

Fig. 1 Scores plot for discriminating PH from FH in the OPLS-DA model. Data is from the exploratory set

Table 2. Differential metabolites between FH and PH in exploratory
and validation sets

Metabolites Exploratory set (n=
46)

Validation
set (n= 40)

VIP FC P FC P

2-Deoxytetronic acid 2.82 0.35 <0.001 1.02 0.829

Sophorose 2.45 0.51 0.001 1.03 0.626

Tagatose 2.39 0.46 <0.001 1.06 0.465

Glucoheptonic acid 2.34 0.48 0.001 0.89 0.822

Mannose 2.06 0.83 0.006 0.94 0.040

AICAR 2.05 0.86 0.022 0.68 0.003

Phenyl beta-D-glucopyranoside 1.90 0.50 0.001 0.98 0.822

Uridine 1.74 0.55 0.016 0.65 0.843

3,5-Dihydroxyphenylglycine 1.33 0.62 0.040 1.12 0.705

Palmitic acid 1.14 0.80 0.047 1.02 0.850

AICAR 5-aminoimidazole-4-carboxamide ribonucleotide, VIP variable impor-
tance projection value, FC fold change (the peak intensity of metabolite in
PH divided by that in FH)
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regression analysis, we observed that mannose and AICAR were
independently associated with HOMA-B (β=−0.316, P= 0.001)
and the Cederholm index (β= 0.215, P= 0.048), respectively, after
adjusting for age, BMI, and HbA1c (Supplemental Tables 3 and 4).
Eighty-seven individuals (NC: n= 36; FH: n= 65; PH: n= 72)

were additionally enrolled and assayed with ELISA, the character-
istics of which are depicted in Table 3. The mannose levels of FH
(466.0 ± 179.3 pg/ml) were numerically higher than those of NC
(409.2 ± 108.5 pg/ml) and PH (390.1 ± 140.2 pg/ml), respectively,
although the differences between the three groups did not reach
statistical significance (P= 0.130) (Table 3). Regarding AICAR, FH
(523.5 ± 164.8 pg/ml) and PH (512.1 ± 186.0 pg/ml) had signifi-
cantly higher AICAR than did NC (372.8 ± 90.9 pg/ml) (both P <
0.001 after Bonferroni correction), while FH and PH did not differ
significantly (P= 0.346). Finally, the data from metabolomics and
ELISA were transformed to unit SD as (individual value−mean)/
SD and pooled together (NC: n= 36; FH: n= 65; PH: n= 72). The
distributions of mannose and AICAR are illustrated in Supple-
mental Figs. 1A and 1B. Multiple regression analysis revealed that
mannose was significantly associated with FPG (β= 0.151, P=
0.035) after adjusting for age, BMI and HbA1c (Table 4). And
mannose was observed to be independently associated with

HOMA-IR (β= 0.160, P= 0.026) but not HOMA-B (β=−0.052, P=
0.453) (Table 4). We did not observe the significant associations of
AICAR with Cederholm index and other parameters (P > 0.05, data
not shown).

DISCUSSION
Using a non-targeted metabolomics approach, the present study
identified 10 differential metabolites between fasting and PH. Of
them, mannose was found to be independently associated with
FPG and HOMA-IR, suggesting distinct mechanisms of fasting and
PH.
In the current study, the analysis of metabolomic data revealed

significant link between mannose and HOMA-B, while mannose
was found to be independently associated with HOMA-IR in the
whole group of participants. In concert with these findings,
previous studies have reported that mannose was related with
both insulin secretion and insulin sensitivity in humans [13, 14].
Furthermore, an independent association of mannose with FPG
was observed, which is consistent with the study by Yoshimura
et al. [15] Since the HOMA mode is based on fasting glucose and
insulin values, together with the fact that the fasting glucose

Fig. 2 Relative concentrations of mannose and AICAR in the combined set of exploratory and validation sets. (a) The distribution of mannose
between FH and PH; (b) the distribution of AICAR between FH and PH

Fig. 3 Correlations of selected metabolites with indices of insulin secretion or insulin sensitivity. (a) Correlation between mannose and HOMA-
B; (b) correlation between AICAR and the Cederholm index. Data is from the combined set of exploratory set and validation set
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homeostasis is mainly determined by a feedback loop between
the liver and the beta cells [16], it is plausible to speculate that the
association of mannose with FPG and HOMA-B/HOMA-IR may, to
some extent, reflect the relationship between mannose and
hepatic insulin resistance. Mannose is a monosaccharide consti-
tuent of glycoproteins and glycolipids. The concentration of free
mannose in plasma ranges from 20 to 80 μM in healthy adults [17,
18]. It has been shown that the liver is the main site for mannose
metabolism [18, 19]. In obese subjects, Lee et al. [13] found
significantly lower expression of HK1 and HK2 in the liver, which
may lead to decreased utilization of mannose. HK1 and HK2
encode for hexokinase-1 and hexokinase-2, respectively.
Hexokinase-1 and hexokinase-2 mediate the conversion of
mannose to mannose-6-phosphate, which is subsequently
involved in the glycoprotein biosynthesis and glycosylation.
Abnormal glycosylation has been shown to contribute to insulin
resistance in the liver through its impact on insulin receptors [20].
On the other hand, the study in rats by Taguchi et al. [18] reported
that hepatic glycogen is a source of plasma mannose. They
suggested that stimulated glycogenolysis results in increased
mannose 6-phosphate, the hydrolysis of which subsequently leads
to increased production of mannose. Oral administration of

glucose decreased plasma mannose concentrations in fasted
normal rats. However, this effect was blunted in diabetic rats.
Intravenous administration of insulin to fed normal rats caused
more rapid decrease of mannose than to diabetic rats. In human
subjects, Yoshimura et al. [15] observed that the plasma mannose
decreased after glucose load in normal controls, but did not
decrease in diabetic patients. Collectively, these findings suggest
that the decreased utilization (via glycoprotein synthesis) and the
increased production (via glycogenolysis) of mannose in the liver
contribute to the increase in circulating mannose levels. And
mannose may serve as a surrogate marker of hepatic insulin
resistance, which merits further investigations.
We observed that, though FINS and △I30/△G30 did not differ

significantly between FH and PH. Patients with PH had higher 2 h
insulin than those with FH, indicating delayed hyper response of
insulin in PH. Consistent with this finding, a study using
euglycemic–hyperinsulinemic clamp have demonstrated that
subjects with isolated impaired glucose tolerance (IGT) had higher
late-phase insulin secretion as compared to those with isolated
impaired fasting glucose (IFG) [21]. This fact could be partially
accounted for by the notion that IGT is featured by extrahepatic
insulin resistance while IFG has nearly normal extrahepatic insulin
sensitivity [22, 23]. Patients with IGT need to secrete more insulin
to compensate for insulin resistance in the post-absorptive state.
Indeed, the insulin sensitivity as measured by Cederholm index
was significantly lower in PH vs. FH in the current study.
Interestingly, we found Cederholm index was significantly
associated with AICAR in the metabolomics study. AICAR is an
endogenous substance and an intermediate metabolite in the
purine de novo synthesis pathway [24]. It activates the AMP-
sensitive enzymes such as adenosine monophosphate (AMP)-
activated kinase (AMPK), glycogen phosphorylase, and fructose-
1,6-bisphosphatase, and thus contributes to oxidative metabolism
and mitochondrial biogenesis. It has been reported that treatment
with AICAR over an 8-week period can prevent diabetes in Zucker
diabetic fatty rats, and insulin sensitivity, as assessed by a
hyperinsulinemic-euglycemic clamp, was markedly increased after
treatment [25]. Furthermore, AICAR administration was shown to
enhance glucose transporter type 4 (GLUT4) protein expression
and to increase maximally insulin-stimulated glucose transport in
muscles of obese Zucker rats [26]. Additionally, chronic AICAR-
induced AMPK activation led to significantly reduced visceral and
subcutaneous adiposity, increased fat oxidation in white adipo-
cytes, and increased whole-body energy expenditure in Wistar
rats. Taken together, these results suggest a link between AICAR
and insulin sensitivity.
The present study has several limitations. First, the sample size

was relatively small. Although we matched FH with PH according
to gender, BMI and HbA1c in order to minimize confounding
factors to a great extent, our study may be underpowered for the
detection of certain markers specific to FH or PH. Therefore, this
should be regarded as a preliminary study to examine the
metabolic features of FH and PH, and the results should be
interpreted with caution. Second, given the cross-sectional nature
of the study design, cause and effect relationships could not be
established in our study. Finally, instead of using euglycemic
insulin clamp, whole-body insulin sensitivity was evaluated with
the Cederholm index derived from glucose and insulin concentra-
tions during OGTT. However, it has been demonstrated that OGTT-
based indexes correlate well with the results of euglycemic insulin
clamp [27], which is the gold standard for measuring insulin
sensitivity.
In conclusion, via non-targeted metabolic profiling, we identi-

fied that mannose was altered in the state of PH as compared with
FH. Because mannose was shown to be associated with insulin
secretion/insulin sensitivity, our findings provide further evidence
that distinct physiologic abnormalities characterize FH and PH. In
addition, the results of our study suggest that metabolites could

Table 3. The characteristics of the 87 subjects assayed with ELISA

Variable NC FH PH P

n (male/female) 15/21 15/7 16/13 0.139

Age (years) 49.6 ± 10.5 50.3 ± 8.6 51.9 ± 9.4 0.616

BMI (kg/m2) 25.0 ± 2.6 25.9 ± 3.6 25.5 ± 3.3 0.588

HbA1c (%) 5.7 ± 0.4 6.2 ± 0.5* 6.2 ± 0.6* <0.001

FPG (mmol/L) 5.5 ± 0.5 7.3 ± 0.5* 6.0 ± 0.6*† <0.001

2-h PG (mmol/L) 8.2 ± 1.8 8.7 ± 2.1 12.8 ± 1.3*† <0.001

FINS (mU/L) 9.9 ± 3.0 12.9 ± 7.7 10.4 ± 4.3 0.076

2-h INS (mU/L) 93.2 ± 41.9 95.6 ± 66.8 100.5 ± 57.3 0.863

HOMA-B 103.1 ± 40.0 69.2 ± 41.3* 89.6 ± 44.1 0.014

HOMA-IR 2.4 ± 0.8 4.2 ± 2.5* 2.8 ± 1.2† <0.001

Cederholm index 43.7 ± 11.3 40.1 ± 12.2 28.6 ± 5.0*† <0.001

Mannose (pg/ml) 409.2 ± 108.5 466.0 ± 179.3 390.1 ± 140.2 0.130

AICAR (pg/ml) 372.8 ± 90.9 523.5 ± 164.8* 512.1 ± 186.0* <0.001

NC normal control, FH fasting hyperglycemia, PH post-load hyperglycemia,
BMI body mass index, FPG fasting plasma glucose, 2-h PG 2-h plasma
glucose, HbA1c glycated hemoglobin, FINS fasting insulin, 2-h INS 2-h
insulin, HOMA-IR the homeostasis model assessment for insulin resistance,
HOMA-B the homeostasis model assessment for beta cell function
*P < 0.05 compared with NC after Bonferroni correction
†P < 0.05 compared with FH after Bonferroni correction

Table 4. Multiple regression analysis of the associations of mannose
and confounding factors with FPG and HOMA-IR in all subjects

Dependent variable

Independent variable FPG HOMA-IR

β P β P

Age −0.023 0.763 0.031 0.684

BMI −0.119 0.099 0.425 0.000

HbA1c 0.428 0.000 0.072 0.351

Mannose 0.151 0.035 0.160 0.026

BMI body mass index, HbA1c glycated hemoglobin, FPG fasting plasma
glucose, HOMA-IR the homeostasis model assessment for insulin resistance
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be used to stratify different subgroups of diabetes patients and
tailor therapeutic interventions accordingly.
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