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Half a degree and rapid socioeconomic
development matter for heatwave risk
Simone Russo1,2, Jana Sillmann3, Sebastian Sippel4, Monika J. Barcikowska5, Claudia Ghisetti1, Marek Smid6 &

Brian O’Neill7

While every society can be exposed to heatwaves, some people suffer far less harm and

recover more quickly than others from their occurrence. Here we project indicators of global

heatwave risk associated with global warming of 1.5 and 2 °C, specified by the Paris agree-

ment, for two future pathways of societal development representing low and high vulner-

ability conditions. Results suggest that at the 1.5 °C warming level, heatwave exposure in

2075 estimated for the population living in low development countries is expected to be

greater than exposure at the warming level of 2 °C for the population living in very high

development countries. A similar result holds for an illustrative heatwave risk index. However,

the projected difference in heatwave exposure and the illustrative risk index for the low and

very high development countries will be significantly reduced if global warming is stabilized

below 1.5 °C, and in the presence of rapid social development.
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The large socioeconomic costs of heatwaves make them a
crucial target for impact assessments of climate change
scenarios. Recent studies have focused on changes in the

frequency, intensity, and duration of extreme events that affect
their risk to human society1–6, in some cases differentiating the
occurrence of those hazards in low income versus high income
countries7,8. According to the Intergovernmental Panel on Cli-
mate Change9,10 climate change risks are determined not only by
climate extremes (the hazards) but also by the exposure and
vulnerability of society to these hazards10,11. Here, we analyze and
discuss changes in heatwave hazard, population exposure, and a
vulnerability proxy. Subsequently, we derive an illustrative heat-
wave risk index (IRI) as the product of the probability of its
occurrence (hazard) and normalized levels of exposure and a
proxy for vulnerability12 (see Eq. (1)).

We calculate the IRI at two different levels of warming (1.5 °C,
2 °C) and for two alternative scenarios of societal development
based on the Shared Socioeconomic Pathways (SSPs)13 designed
to explore a range of exposures, potential vulnerabilities and
potential capabilities to adapt to climate change. In particular,
SSP1 corresponds to a society with low population growth and
rapid social and economic development (low vulnerability),
whereas the SSP4 represents a future society with high population
growth in currently high fertility countries and a high degree of
inequality (high vulnerability)13.

As metric for heatwave hazard we use the decadal probability
of experiencing an extreme heatwave. A heatwave is defined using
the Heat Wave Magnitude Index daily14 (HWMId), which takes
into account both duration and temperature anomalies of
a heatwave into a single number. Extreme heatwaves are those
that occur on average every five hundred years under present
climate conditions (hereafter HW500Y; results for 100-year
return heatwaves are shown in Supplementary). The hazard is
estimated through extreme value analysis using a block maxima
approach1,15,16, based on multi-model ensemble simulations
(four models, each with 1000 years members or more) provided
by the Half A degree additional warming, Prognosis and Pro-
jected Impacts (HAPPI) project for the present climate and at
warming levels of 1.5 and 2 °C (see Methods).

Following recent studies8,17,18, we combine the projected
heatwave hazard with projections of spatially explicit population
density consistent with the SSPs13,19 to calculate exposure. Cal-
culations of risk usually combine exposure to a particular hazard
with dose-response relationships relating exposure to an outcome
of interest, such as mortality or morbidity due to heatwaves.
These relationships reflect the level of vulnerability of the exposed
population. Lacking such dose-response relationships for heat-
waves that are applicable globally, we instead adopt the Human
Development Index20 (HDI) as an indicator of broadly defined
vulnerabilility. The HDI is a composite indicator introduced by
the UNDP in 1990 to assess the socioeconomic development of
countries. Other studies have used Gross Domestic Product
(GDP) to account for vulnerability to climate change8,21–23; HDI
is a more comprehensive measure than GDP as it takes income,
health, and education into account. Low and very high-human-
development countries are defined by using the fixed cutoff points
based on quartiles of HDI values introduced by the 2014 Human
Development Report (HDI < 0.55 and HDI > 0.8, respectively (see
HDR_technical_notes.pdf and Methods). HDI has been shown to
outperform several more recent indices as a generic national-level
index of social vulnerability to climate change24. HDI also shows
high significant correlation with historical measures of country
vulnerability to climate change such as the Notre Dame-Global
Adaptation Initiative Country Index (ND-GAIN)25 (see 'HDI
versus other vulnerability indices' section). However, it is
important to emphasize that HDI can neither serve as a specific

(or causal) vulnerability measure to heatwaves or any other cli-
mate hazard, nor does it indicate adaptive capacities to specific
heatwaves per se. We use recent projections of HDI for all
countries through 2075, consistent with the demographic, eco-
nomic, and education assumptions in the SSPs26 in order to
calculate the IRI in a manner that illustrates how vulnerability can
affect risk, not to estimate actual heatwave risk outcomes.

Here, we derive IRI to illustrate relative composite spatial
patterns of hazard, exposure, and vulnerability at the global scale
rather than definitive or quantitative risk estimates. We calculate
normalized and non-normalized versions of IRI. In the normal-
ized IRI, present and projected HDI and population density
variables are transformed to the same range of variability before
aggregation by normalizing in (0, 1) using the Johnson Cumu-
lative Distribution Function27 (CDF) fitted to the present period
(see Methods). Normalized IRI thus represents the probability of
occurrence of an extreme heatwave (HW500y) scaled by nor-
malized population density and level of social development. An
IRI of zero indicates low or negligible risk relative to the other
locations, for instance due to very low population density and
thus low exposure, or very high HDI and thus low vulnerability.
In the normalized version, an IRI of 1.0 represents the highest
possible level of risk. In the present period, due to the con-
struction of normalized IRI, its values lie between zero and the
present-day hazard probability (i.e., a HW500y in a present
decade has a chance of 0.2%). In the future, risk can—in principle
—either increase or decrease as its components (hazard, popu-
lation, and HDI) increase or decrease, and these changes will be
reflected in the IRI. For example, if hazard probability and HDI
remain constant, but population density decreases, IRI would
decrease. In contrast, very large increase of IRI in a future period
might reflect increase in the hazard probability, or—rather the-
oretically—an increase in population by several orders of mag-
nitude. In summary, IRI explores relative effects of hazard
probability, exposure, and vulnerability. IRI values are not based
on or calibrated to a dose-response relationship, and hence, the
normalized IRI does not preserve physical units. Accordingly, due
to the lack of a physical relationship, the IRI (normalized)
approach implicitly assumes that relative changes in hazard
probabilities, exposure, and vulnerability of the respective nor-
malized distributions are equally important. Consequently, IRI
values cannot be interpreted in terms of physical or quantitative
risk estimates.

Results
Heatwave hazard. Figure 1b–i depicts the spatial distribution of
the HW500Y hazard, expressed in terms of probability of
occurrence and the corresponding return period at the 1.5 and
2 °C warming levels, occurring at least once every 100 years over
most of the land surface, and radically increasing across Africa,
Middle East, and and parts of Southeast Asia and Latin America
to at least once per decade (Fig. 1f–i). Substantial changes in
heatwave frequencies in these regions are related to lower year-to-
year temperature variability, and thus a higher warming-to-noise
ratio leading to larger relative changes28. Similar changes in fre-
quency are shown for heatwaves occurring every one hundred
year in the present period (see Supplementary Fig. 1). Under the
1.5 °C scenario, the frequency of HW500Y events is substantially
reduced (relative to 2 °C warming), with maximum frequencies
reduced to once every several decades.

Heatwave exposure. Population exposure to the heatwave hazard
is affected not only by these changes in frequency but also by
projected population changes. By the end of the century, the
global population is expected to reach approximately 120 and
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Fig. 1 Probability of occurrence of extreme heatwave. a Extreme value analysis GEV-fit for decadal-maximum HWMId at a location in Central Africa
Republic (18.75°E, 4.69°N) as a function of return period (bottom x-axis) and hazard (upper x-axis expressed as decreasing probability) at present climate
(black curves), 1.5 °C (blue curves) and 2 °C (red curves) warming levels. The colored dashed curves give the 95%-confidence interval, based on a
likelihood estimates (see method), and the open colored circles are the simulated decadal-maximum HWMId values. The open squares represent the 500-
year return level heatwave (HW500y) in present climate (black) and at 1.5 and 2 °C level of warming, blue and red, respectively. b–i Spatial distribution of
the probability and return level of a heatwave with five-hundred years return period under 1.5 °C (b–e) and 2.0 °C (f–i) warming for multiple models
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140% of the present population in SSPs 1 and 4, respectively. In
addition, in both SSPs more population growth occurs in coun-
tries currently at lower levels of development, and, as we have
already noted, increase in the heatwave hazard are larger in those
countries as well. As a consequence, exposure (the product of the
hazard and population exposed to it) increases most in countries
at lower levels of development. In fact, we find that at the 1.5 °C
level the population in the low-human-development countries
(defined as HDI < 0.55) will be exposed to equal or greater levels
of heatwave hazard than the population in very high-human-
development countries (defined as HDI > 0.8) under the 2 °C
scenario (see Fig. 2). A list of low and very high-human-
development countries, a grouping introduced by the UN
Development Program and assigned here, according to the 2015
HDI values, is reported in Supplementary Table 1. Exposure is
higher not only because of the difference in hazard, but also
because the population exposed at the end of the century is larger
in low-human-development countries, equivalent to 25 and 39%
of present global population in SSPs 1 and 4, respectively, com-
pared to 20 and 18% in the very high-development-countries.

Heatwave risk. The IRI goes beyond exposure to illustrate how
accounting for vulnerability could potentially change the outlook
for future risk. HDI increases over time in all countries, but at
different rates, and therefore vulnerability generally decreases,
ameliorating changes in future risk at different rates across
countries and scenarios. Projections of the spatial distribution of
non-normalized IRI based on one representative climate model
(Fig. 3a–d), when compared to projections of the hazard alone
using the same model (Fig. 1, panel for ECHAM model), show

that the consideration of population density and an index of
vulnerability substantially changes the outlook for potential risk.
The IRI in North America, most of Latin America, Australia, and
much of Europe is substantially muted, relative to the rest of the
world, to a degree that is not evident in the projection of the
heatwave hazard. In contrast, the IRI in South and East Asia is on
par with the relatively high values in Sub-Saharan Africa, despite
having a relatively lower heatwave hazard in those areas.

Given the fact that population density can range much more
widely than the value of HDI, the scale of the non-normalized IRI
is influenced mainly by variability in population density. The
normalized IRI transforms the three variables into standard
uniform units (see Methods). It produces a similar spatial pattern
of the IRI to the non-normalized version (Fig. 3e–h), but with a
smaller index value in South and East Asia relative to other
locations due to the more limited effect of population density on
IRI after normalization (normalizing only HDI, and not
population, does not produce this effect, see Supplementary
Fig. 2). Because the probability of HW500y is likely to increase
substantially in 1.5 or 2 °C worlds (see example in Fig. 1), while
projected changes in exposure or vulnerability are not as large in
relative terms, changes in the normalized IRI will be to a large
extent driven by changes in the hazard component.

Other analyzed HAPPI models show similar patterns in the
spatial distribution of normalized IRI (Supplementary Figs. 3
and 4).

The value of IRI is highest in the SSP4 scenario with 2 °C
warming (Fig. 4). Under these circumstances, a population
equivalent to 77% of the current global population will experience
an illustrative heat risk value greater than 20% (Fig. 4d). In low
developement countries a population equivalent to 27% of the
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Fig. 2 Population exposure to heatwave hazard. a Bar plots show the ensemble model median, with associated range represented by black lines, of the
global population in 2075 exposed to different probabilities of HW500Y events occurring in a given decade at 1.5 °C(gray bars) and 2 °C(red bars)
warming and under the SSP1 pathway. Population in 2075 is expressed as a percentage of the current global population. The bar plots are calculated for all
the grid points of the global domain with population density greater than 0. b, c as for a, but for very high and low-human-development countries with HDI
> 0.8 and HDI < 0.55, respectively. d–f as a–c, respectively, but for the SPP4 scenario
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current global population, the IRI value will be greater than 50%
(see Fig. 4f). Values of IRI are lowest in the SSP1 scenario with
1.5 °C warming. In that case, IRI nowhere reaches values above
50%, and in low-development-countries a population equivalent
to only 5% of the present global population experiences IRI values
greater than 20% (Fig. 4c).

It follows then that the greatest reductions in IRI are achieved
by both limiting warming to 1.5 °C and fostering rapid social
development (SSP1), particularly across sub-Saharan Africa
(Figs. 3a, e and 5f) where most of the present low-human-
development countries are located (Supplementary Fig. 5d).
Differences between the normalized IRI values across other
scenario combinations show that the risk index increases in all
inhabited regions if global warming reaches 2 °C rather than
being limited to 1.5 °C, and if the degree of exposure and the
vulnerability proxy (HDI) of future society follows SSP4 instead
of SPP1 (Fig. 5, see Supplementary Figs. 5–7 for other models).
The effect of differences in climate and development also interact.

For example the impact of the additional half a degree warming
on the illustrative risk index is substantially amplified under SSP4
compared to SSP1 (see Fig. 5a, d). In addition, different effects on
IRI of climate and societal factors implies that in this illustrative
calculation, the consequences of 2 °C warming in SSP1 are similar
to those of 1.5 °C warming in a more vulnerable society (SSP4)
(see Fig. 5c). The comparison of Fig. 4b, c, e, f, suggests also a
prominent contrast between the impact of global warming on the
very high and low-human-development countries. For example,
the IRI levels in very high human-development-countries remain
low (values less than 20% almost for all population) even with
2 °C warming in SSP4 (Fig. 4e). In contrast, in low-human-
development countries under the same inequality scenario
(SSP4), the IRI level is almost always above 10% even at a
warming level of 1.5 °C (Fig. 5f). More generally, the illustrative
heatwave risk index for the population living in low-human-
development countries at the 1.5 °C warming level is typically
larger than the values for the very high-human-development
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countries, even with 2 °C warming. Amplified patterns in heat
extremes, i.e., the hazard component, for countries with low
human development, had been pointed out earlier28, and thus our
results appear consistent with previous literature. The analysis
repeated for the heatwaves defined with one hundred years return
levels, i.e., HW100Y, shows similar results (see Supplementary
Fig. 8), as does an analysis without using normalized HDI values
(see Supplementary Fig. 9).

Discussion
In this study, we have quantified heatwave hazard, exposure and a
vulnerability proxy, associated with a global warming stabilized at
1.5 and 2 °C levels compared to preindustrial climate conditions.
In addition, we have presented and discussed the aggregation of
the three dimensions as an illustrative risk index (IRI). The results
were also differentiated between two socioeconomic pathways,
which represent either rapid social and economic development
(SSP1) or high inequality (SSP4) by the end of the century, and
which strongly contrast in exposure and vulnerability.

The analysis highlights a stark contrast in the aggregated risk
metric between low and very high-human-development coun-
tries, quantified for different combinations of warming levels and
socioeconomic pathways.

Even under the 1.5 °C warming level, the low-human-
development countries (representing future populations equal
to 25 or 39% of the present global population in the SSP1 and
SSP4, respectively) experience exposure levels equal to or greater
than the levels for the very high-human-development countries
with 2 °C warming. We also find that, in agreement with a recent
study8, holding the temperature below 1.5 °C warming yields a
large potential to reduce the levels of the heatwave exposure.

Results for the IRI suggest that the same could be true for
heatwave-related risks to society, especially for low-human-
development countries. In addition, we show that the IRI values
can be reduced, not only by limiting global temperature increase
to 1.5 °C, but also with rapid socioeconomic development.

The role of the latter might be crucial, considering that some
studies estimate the likelihood of reaching the Paris agreement
targets, i.e., stabilizing warming at the 1.5 or 2 °C, to be low
(approximately 5% and 10%, respectively)29.

This work represents an initial attempt to quantify differences
in heatwave hazard, exposure and illustrative risk between dif-
ferent warming levels and socioeconomic pathways that is global
in scope. An important caveat to the study is that our illustrative
risk index does not use a dose-response relationship relating
exposure to a specific heatwave-related impact. Rather, it uses a
proxy for vulnerability, the HDI, which is a general measure of
vulnerability to a wide variety of climate impacts, is not resolved
below the level of individual countries, and is not tailored spe-
cifically to risks from heatwaves, nor calibrated to specific out-
comes such as mortality30, morbidity, or reduced labor
productivity. Relative changes in any of its components would
equally contribute to changes in IRI. Hence, the IRI cannot be
interpreted in terms of a physical risk estimate (such as prob-
ability of a specific harmful consequence). Relative changes in IRI
values across countries, or across scenarios, would be different if a
different proxy for vulnerability were used, or a different
approach taken to the calculation of the index. Furthermore, a
very small hazard probability in the present period leads to large
relative changes in the hazard component, which likely dominate
changes in IRI. Projections presented here of the heatwave hazard
and exposure to it can be interpreted more directly as the dis-
tribution of population by the likelihood of experiencing the

80
Global

Very high development countries
(HDI > 0.8)

Low development countries
(HDI < 0.55)

Illustrative Risk Index (%)

Low development countries
(HDI < 0.55)

Very high development countries
(HDI > 0.8)

Globala

b

c

e

f

d
SSP1(1.5°, 2°) SSP4(1.5°, 2°)

60

40

20

P
op

ul
at

io
n 

(p
er

ce
nt

 o
f c

ur
re

nt
 g

lo
ba

l p
op

ul
at

io
n)

0

16

12

8

4

0

16

12

8

4

0
0 1 10 20 30 40 50 60 70 80 90 10 20 30 40 50 60 70 80 900 1

Fig. 4 Population as function of IRI. a Bar plots show the ensemble model median, with associated range represented by black lines, of the population in
2075 (measured as percent of current global population) that experiences different IRI levels at 1.5 °C(gray bars) and 2 °C(red bars) warming, and under
the SSP1 pathway. The bar plots are calculated for all the grid points of the global domain with population density greater than 0. b, c as for a, but for
population in countries with HDI > 0.8 and HDI < 0.55, corresponding to very high and low-human-development countries, respectively. d–f as for a–c,
respectively, but for the SPP4 pathway

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-018-08070-4

6 NATURE COMMUNICATIONS |          (2019) 10:136 | https://doi.org/10.1038/s41467-018-08070-4 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


hazard, but have the shortcoming of not accounting for the dif-
ferential levels of vulnerability across populations. The IRI illus-
trates how the incorporation of vulnerability-related information
could change outcomes. Future work could also improve on this
analysis by accounting for the large heterogeneity in vulnerability
within countries. Nonetheless, the incorporation of projections of
population exposure and a proxy of human vulnerability to
climate-related hazards, such as heatwaves, provides relevant
information for global-scale impacts and risk assessments, and
points toward ways in which analyses of a wide range of climate
risks could be strengthened.

Methods
Data. Heatwave magnitude is estimated by means of the Heat Wave Magnitude
Index daily14,31 (HWMId). Results are tested by comparing the HWMId values
with the the annual maximum of 5-day average of daily maximum temperature
(TX5x). The HWMId and the TX5x are calculated for the present climate and at
1.5 and 2 °C warming from daily maximum temperature from the HAPPI (Half A
degree additional warming, Prognosis and Projected Impacts) project, based on the
atmospheric components of the CMIP5 models forced by prescribed Sea Surface
Temperature (SST) and sea ice concentrations32,33. A recent study34 has shown
that, particularly over the tropics and Australia, estimates of the changes in the
odds of annual temperature extremes can be up to more than a factor of 5 to 10
larger using prescribed SSTs than when using a fully coupled model configuration.
This is because the variability of the distribution of annual maximum temperatures,
simulated by using prescribed SST, is underestimated with respect to the one
simulated by fully coupled model configuration. While this issue can be alleviated

to a certain degree by using metrics that are standardized relative to its variability
(interquartile range) such as HWMId, findings should still be interpreted as con-
ditional on the period in which sea surface temperatures were prescribed34.

Hence, extreme events obtained from these simulations can be seen as
conditional on a certain decade, but it is important not to interpret 500-year return
periods at multi-decadal scale, precisely because of long-term variability34.
However, heatwave magnitudes corresponding to this long return period should be
representative of extreme heatwaves such as the one in Central Europe in 2003 and
in Russia in 201014,35, if a sea surface state corresponding to such an event occurred
in the respective decade used to run the ensemble simulations. As prescribed by the
HAPPI protocol, the 1.5 and 2 °C simulations use the same aerosol forcing. It is
important to emphasize that aerosol emission for the stabilization scenarios are
reduced from present days1,36. This could produce some differences between
heatwave return levels in the stabilized scenarios and present day. However, this
does not affect our results that focus on the differences between the two stabilized
scenarios. We use four out of the five available simulations that have at least one
thousand year runs: Model-1 is the Canadian Fourth Generation Atmospheric
Global Climate Model (CanAM4) contributed by the Canadian Centre for Climate
Modeling and Analysis37. Model-2 is the NCAR-DOE Community Atmosphere
Model version 4 (CAM4) coupled to the Community Land Model version 4
(CLM4) with simulations contributed by ETH Zurich38,39. Model-3 is
ECHAM6.340,contributed by the Max Planck Institute of Meteorology, Hamburg,
Germany (global 1.875 °C grid). Model-4 is a high resolution (global 0.5 °C grid)
model, contributed by the National Institute for Environmental Studies, Tsukuba,
Japan and denoted as MIROC541,42.

Statistical distribution of heatwaves. According to many studies4,6,14,43 a
heatwave is defined as at least three consecutive days with daily temperature above
the local 90th percentile threshold. Since heatwaves are extreme events, on average,
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they are not expected to occur every year. Supplementary Fig. 10 shows the number
of years that do not show any heatwave in a decade of the present climate. We
model the statistical distribution of heatwaves by applying a block maxima
approach (see Coles 2002, Wehner 2018, Sterl 2008) with a block of 10-years. At
each grid point, our set of data is composed by the maximum heatwave magnitude
in 10-years. By fitting the maximum HWMId values in 10-year block with L-
moments based estimators, we show that the decadal maxima of both HWMId and
TX5x follows a Generalized Extreme Values distribution with skewness greater
than or equal to zero16 (Freschet or Gumbel distribution, respectively. See Sup-
plementary Fig. 11e–h). By using an Anderson Darling statistical test, suitable for
extreme events because more weight is put on the tails (than in comparable tests
such as Kolmogorov-Smirnov for instance), with the null hypothesis that decadal
HWMId maxima are GEV, we demonstrate that the null hypothesis cannot be
rejected in any location (P-value > 0.1 everywhere, see Supplementary Fig. 11a–d).
This result is valid with all HAPPI models. By using the fitted GEV models we
estimate 500 year heatwaves return levels (HW500Y) in the present climate and
show the spatial distribution of the probability of occurrence of these values at 1.5
and 2 °C warming levels (Fig. 1). The same analysis is applied to the annual
maximum of 5-day average of daily maximum temperature index (TX5x see
Supplementary Fig. 12) for validation. The spatial distributions of HW500Y hazard
calculated for the HWMId and the TX5x indices compare very well both in terms
of pattern and probability values (Fig. 1 and Supplementary Fig. 12, respectively).
Uncertainties associated to the occurrence of HW500Y are calculated as the 95th

confidence level of the GEV model fitted to the data (see Fig. 1a, Supplementary
Figs. 13 and 14).

Population density. To consider the impact of changes in heatwaves in populated
regions of the world, we use a set of global, spatially explicit population projections
that are consistent with the new Shared Socioeconomic Pathways (SSPs)19. The
spatial population projections cover the period 2010–2100 in ten-year time steps.
We have used population datasets at two different periods (2015 and 2075, decade
2010–2019 and 2070–2079, respectively) and under two different SSPs (SSP1 and
SSP4). All population projections are remapped onto a regular grid of each HAPPI
model by using a second order conservative remapping approach. Supplementary
Fig. 15a shows population density in persons per km2 and normalized values (see
section on normalization below), remapped on the MIROC5 model for all time
periods and SSP pathways. All other models show the same maps.

Human development index. As a proxy for vulnerability as a component of an
illutstrative risk index (IRI) we use the Human Development Index (HDI), a
composite indicator introduced by the UNDP in 1990 to assess the development of
countries inspired by the concept of capabilities development by Amartya Sen44.
HDI is based on the geometric average of three dimensions, all within suitable
bounds: health (life expectancy at birth); education (expected and mean years of
schooling), and standard of living (mean gross national income per capita,
expressed in Purchasing Power Parity). In this study we define vulnerability as 1-
HDI so that countries with the lowest HDI levels are associated with the highest
vulnerability and vice-versa. As was done for the population data, we remap the
most recent Human Development Index data (for the year 2015, see HDR2016)
and projected HDI values under SSP1 and SSP4 pathways26 on the grid of each of
the four HAPPI simulations used here (see Supplementary Fig. 15b for MIROC5
model). Because HDI data and projections are for country averages only, the
approach taken here abstracts from the substantial heterogeneity in income, edu-
cation, and health within countries, but captures the heterogeneity in HDI across
countries.

HDI versus other vulnerability indices. To evaluate the robustness of the HDI in
accounting for vulnerability to climate we have estimated its correlation with the
Notre Dame-Global Adaptation Initiative Country Index25 (ND-GAIN), a national
index constructed from 45 indicators of vulnerability and readiness to respond to
climate change in six sectors: food, water, health, ecosystem, services, human
habitat, and infrastructure. In the present period, the HDI is significantly correlated
with the ND-GAIN (Pearson correlation equal to 0.95 with a p-value < 0.001, see
Supplementary Fig. 16) and this alternative index would thus produce a similar
ranking of Countries if looking at their Economic Vulnerability to climate in the
ND-GAIN. As ND-GAIN data projections are not available, we rely on HDI.

Normalized population and human development index. For deriving the nor-
malized version of IRI, and thus to illustrate composite spatial patterns of hazard,
exposure, and vulnerability at the global scale, rather than definitive or quantitative
risk estimates, the distribution of population density and HDI values are nor-
malized by means of Johnson’s transformation27 (see Supplementary Fig. 17).
Normalization is needed to guarantee the homogeneity of the variances45 of the
variables aggregated into the IRI. This illustrative approach implicitly assumes
equal relative weights of exposure and vulnerability of the respective normalized
distributions. Our normalization method consists of:

First: removing ties from population and (1-HDI) values for the present period
(2015). Ties are removed only for statistical purposes in order to find the best
statistical distribution fitting our data; they are not removed from risk maps. In

fact, two locations with the same population density (or 1-HDI values) will have
the same normalized score;

Second: fitting the present population density and (1-HDI) values with the
Johnson Family curves27

Third: using the Cumulative Density distribution function fitted to present data
to transform projected population and (1-HDI) values into a uniform probability
interval [0, 1] (see Supplementary Fig. 17). Note that, since present HDI spatial
data follow a bounded distribution, future HDI values that are out of the range of
the present HDI values would not have a corresponding normalized value. In order
to avoid this the Johnson fit is done by imposing the maximum HDI range that by
definition is equal to (0, 1)20. The same limitation does not apply to population
density data, since it follows a Log-Normal distribution with a domain in [0, + ∞].

The lowest entry in the population or 1-HDI data (population or HDI equal to
zero) takes a normalized value equal to zero. In contrast, the highest entry
(maximum population or 1-HDI values) takes a value equal to one or very close to
one. Maps of population and HDI values are reported in Supplementary Fig. 15.
The goodness of fit of the Johnson Family curves fitted to population and (1-HDI)
data have been tested by means of a Kolmogorov-Smirnov test of hypothesis. In
both cases we cannot reject the null hypothesis that population density and (1-
HDI) datasets follow a Log-Normal and a Bounded distribution, respectively.

Illustrative risk index at the global scale. At each location normalized IRI
(expressed in %) is calculated as the product of the probability of occurrence of
HW500Y multiplied by normalized population density and 1-HDI values:

IRI ¼ ðHWhazard ´ Populationexposure ´ ð1�HDIÞvulnerabilityÞ ´ 100 ð1Þ

with all components of the product above normalized in [0, 1].

Code availability. Codes and additional information can be provided by directly
contacting the authors.

Data availability
All data used in analysis available in public repositories or upon request. Daily
maximum temperature data are available at the following repository: http://portal.
nersc.gov/c20c/data/. Population density data are available at: http://sedac.ciesin.
columbia.edu/data/set/popdynamics-pop-projection-ssp-2010-2100. HDI data are
reported in Supplementary Table 1 and are available upon request or from the
repository reported in Crespo and Lutz26. The script used for calculating the
HWMId is publicly available as a function of an R package extRemes (see: https://
www.rdocumentation.org/packages/extRemes/versions/2.0-8/topics/hwmid).
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