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The conservation value of human-modified
landscapes for the world’s primates
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Land-use change pushes biodiversity into human-modified landscapes, where native eco-

systems are surrounded by anthropic land covers (ALCs). Yet, the ability of species to use

these emerging covers remains poorly understood. We quantified the use of ALCs by pri-

mates worldwide, and analyzed species’ attributes that predict such use. Most species use

secondary forests and tree plantations, while only few use human settlements. ALCs are used

for foraging by at least 86 species with an important conservation outcome: those that

tolerate heavily modified ALCs are 26% more likely to have stable or increasing populations

than the global average for all primates. There is no phylogenetic signal in ALCs use.

Compared to all primates on Earth, species using ALCs are less often threatened with

extinction, but more often diurnal, medium or large-bodied, not strictly arboreal, and habitat

generalists. These findings provide valuable quantitative information for improving man-

agement practices for primate conservation worldwide.
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W ith ~70% of all terrestrial ecosystems currently altered
by human activities1, the preservation of biodiversity
and ecosystem functions is challenging2, particularly

in the tropics3. As a consequence of land-use change, an
increasing number of species are being “forced” to inhabit
human-modified landscapes, which are constituted by a mosaic of
different land covers, both natural and anthropic. The ability of
organisms to use anthropic land covers (ALCs) is rapidly
becoming a key determinant of their persistence in human-
modified landscapes3,4. Therefore, a better understanding of how
and why some species use different types of ALCs is urgently
needed to better predict and manage biodiversity in the
Anthropocene5.

Traditionally, the ALCs surrounding remnants of natural
vegetation are referred to as the matrix4,6. However, rather than
being regarded as a homogeneous land cover of unsuitable
habitat, as assumed in early classical models7,8, the anthropic
matrix should be viewed as a collection of different ALCs, many
of which can be used by species for different purposes, including
foraging, dispersal, and reproduction6,9. In fact, there is evidence
for birds, frogs, small mammals, and ants showing that the higher
the ability of a species to use ALCs, the lower their probability of
becoming extinct in fragmented landscapes9–11. In other words,
patch-dependent species typically have higher extinction thresh-
olds12, meaning they require larger amounts of unmodified
habitat to avoid extinction13. Unfortunately, for many species,
studies mostly focus on their ecology within their primary habitat,
especially in protected areas14, thus limiting our understanding of
their use of and tolerance to ALCs. This information is urgently
needed to shed light on many theoretical debates about the main
drivers of biodiversity patterns in human-modified landscapes.

The predominance of the habitat–matrix paradigm (i.e., binary
landscapes comprised of either habitat or nonhabitat) in land-
scape ecology has been strongly criticized15,16 and is gradually
being replaced by approaches based on heterogeneous land-
scapes17,18. Emerging ecological approaches, such as “countryside
biogeography”19 and different theoretical models20,21 and debates
(e.g., land-sharing vs. land-sparing debate22,23) are based on the
premise that the matrix is in fact heterogeneous, and that each
ALC type may span a spectrum of species-specific ecological
value. To better understand species’ responses to landscape
changes we need to assess the ecological role of each land cover
(e.g., provision of food, refuge, and nesting sites) to be able to
design functional landscapes18. This information can be used to
improve management and conservation strategies. For instance, if
species are relatively resilient to changes in their habitat and able
to use resources in ALCs, they will fare better with a land-sharing
approach that limits land-use intensification at the potential cost
of increased habitat conversion24. Alternatively, if species are
highly sensitive to habitat changes and are unable to use ALCs, a
land-sparing approach will be more effective as it maximizes
natural habitat conservation while concentrating production
elsewhere22.

Nonhuman primates (primates, hereafter) are particularly
susceptible to land-use changes25, which threaten ~60% (n=
278 species) of the world’s 504 species with extinction26. As most
primate species are forest-specialists, particularly in the Neo-
tropics27 forest loss is considered a main threat to primate con-
servation28. There are, though, many local, and landscape
characteristics that may help reduce the impact of habitat loss on
primate survival in human-modified landscapes29. However,
most research has focused on assessing the effects of the char-
acteristics of natural vegetation remnants on primate diet, beha-
vior, and demography30. While primates are known to use some
types of ALCs31–33, the available evidence is widely scattered and
the global patterns of use remain unknown beyond a qualitative

level. Further, no comprehensive effort exists to link primates’
ecological traits to the extent of use of specific ALCs, greatly
limiting our ability to predict the impact of specific landscape-
management strategies on these mammals.

Here, we provide quantitative evidence regarding which types
of ALCs are most frequently used by primates and for what
activities. We also evaluate whether there are certain character-
istics of the species, such as conservation status, ecological traits,
and/or phylogenetic relationships that may help us predict their
use of ALCs. We address these questions by reviewing 468
records of ALC use by primates. We focus on the most common
ALC types in human-modified landscapes, including human
settlements, open areas (i.e., annual crops and cattle pastures),
tree plantations, connectors (i.e., isolated trees and linear land-
scape elements such as live fences and hedgerows), and secondary
forests (i.e., regenerating forests following the removal of
native vegetation). We compare the characteristics of species
using these ALCs with the expected values based on all of
the world’s primates. The primate characteristics considered were
conservation status (IUCN conservation category and population
trends), ecological traits (diel activity, locomotion, trophic guild,
body mass, and forest specialization), and phylogenetic
relationships.

Results and Discussion
Use of anthropic land covers by primates. We found positive
evidence that at least 147 primate species (~30% of 504 primate
species on Earth) use at least one of the five ALC types, with 60
genera (out of 82 genera in the world, ~75%) and all 15 families
represented. Use of ALCs was evident worldwide (Fig. 1a), but the
percentage of species was significantly higher than expected by
chance in mainland Africa, and lower than expected in Mada-
gascar (chi-squared test, χ2= 15.78, P= 0.001; Fig. 1b). Different
ALC types varied in the number of species using them (χ2=
20.64, P < 0.001; Fig. 1c): secondary vegetation was used by the
highest number of species (79) and human settlements were used
by the lowest (34). This is not surprising, as these two types of
ALC represent two extremes in a gradient of habitat modification.
This pattern was particularly evident in the Neotropics and in
Madagascar (Fig. 1d), where most species are strictly arboreal. On
the other hand, a higher proportion of primates from mainland
Africa were recorded using human settlements and open areas
and a higher proportion of primates from Asia used tree plan-
tations, human settlements, and open areas such as annual crops
and cattle pastures (Fig. 1d). This is probably because many
primate species in these two biogeographic realms have both
arboreal and terrestrial locomotion modes. In some regions of
these realms this pattern can also be caused by peoples’ percep-
tion of primates as sacred animals, which favors their persistence
in human-dominated environments34,35.

All ALC types were used for foraging, resting, and traveling
(Fig. 2). Human settlements and secondary forests were mostly
used for either foraging or all activities combined, suggesting that
these ALCs can be used as temporary or permanent habitats
under certain conditions. Although most studies did not report if
the species were using ALCs as habitat, at least 86 species (17% of
all primates on Earth) are actively obtaining food resources from
ALCs, highlighting their importance for primate conserva-
tion32,36. In the case of forest-specialist primates, which represent
70% of the studied species, these results suggest that they can
supplement their diet by foraging in ALCs—a process referred to
as landscape supplementation20. Connectors, such as living fences
and isolated trees, supported primate foraging for 24 species, but
almost half of the records were for travel alone, demonstrating the
important role of these ALCs in increasing landscape
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connectivity32,37,38. An important next step will be to assess
which species can maintain their populations solely in ALCs,
which species are strongly dependent on their natural habitats,
and which ones may survive in natural habitat patches with some
degree of landscape supplementation in ALCs.

Conservation signal in the use of anthropic covers. We found a
significant, positive relationship between the use of ALCs and
both conservation status and population trend (IUCN red list39;
IUCN 2017 Fig. 3). The proportion of species classified as least
concern was significantly higher in the group of primates recor-
ded using ALCs, compared to all primates, particularly in human
settlements (χ2= 18.95, P < 0.001). Nearly half of all species
recorded using ALCs were classified as vulnerable, endangered, or
critically endangered by the IUCN (Fig. 3a), suggesting that ALC
use alone does not necessarily prevent endangerment. Although
use of ALCs may favor primate persistence in human-modified
landscapes, it is important to recognize that their use also exposes
primates to important threats, such as hunting, road kills, pre-
dation, and infectious diseases40–42.

About 80% of all species using ALCs showed declining
population sizes (Fig. 3b). Nonetheless, ALC use seems to soften
this pattern, as we found a lower proportion of species with
decreasing populations using ALCs than would be expected based
on the world’s primates. The latter pattern was particularly strong
for primates using human settlements (χ2= 25.52, P < 0.001) and
open areas (χ2= 10.67, P= 0.005). These results suggest that
species able to use highly modified ALC types have a higher
probability of persisting in anthropogenic tropical landscapes.

Ecological traits that predict the use of anthropic covers. We
found significant associations between the ecological traits of
primates and their use of ALCs (Fig. 4). In particular, nocturn-
ality was less frequent among species using ALCs, especially
in open areas (χ2= 13.88, P < 0.001), secondary forest (χ2=
11.58, P= 0.003), connectors (χ2= 9.62, P= 0.008), and human
settlements (χ2= 8.52, P= 0.014; Fig. 4a). We would have
expected a higher (not lower) incidence of nocturnality among
species using ALCs because nocturnal primates are less likely to
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encounter humans, and thus, they could perceive ALCs as less
dangerous, compared to diurnal primates43. Yet, nocturnal pri-
mates are all forest-specialists, arboreal and with small-to-
medium body mass—ecological traits that together seem to
limit the use of ALCs (see below).

Strictly arboreal species were less frequent in the group of
primates using ALCs, particularly among those using human
settlements (χ2= 19.66, P < 0.001) and open areas (χ2= 13.95, P
< 0.001; Fig. 4b). Similarly, there was also a lower proportion of
small-bodied species using ALCs than expected by chance,
particularly, once again, among those using human settlements
(χ2= 12.43, P= 0.002) and open areas (χ2= 19.01, P < 0.001;
Fig. 4c). The latter result is not surprising as small-bodied species
are more likely to be arboreal, which limits their movement into
treeless areas. Also, small primates tend to have smaller home
ranges44, and thus, they can be able to inhabit smaller habitat
remnants without using resources from ALCs. This may lower the

probability of observing them in ALCs, especially in landscapes
with a relatively recent history of anthropic land use (e.g., <30 y).
Although this finding does not mean that small primates have
lower extinction risk in human-modified landscapes45, our results
point in this direction, as 57.3% of large ALC-tolerant species (n
= 21 species) are threatened with extinction, whereas 49.9% of
small-bodied species (n= 42) are threatened (Supplemntary
Table 1). In contrast, other studies suggest that those species
that avoid using ALCs can be more prone to extinction in these
emerging landscapes;10,46,47 thus, additional primate studies are
needed to accurately assess the effect of body weight on extinction
risk.

Forest-specialists were present in all land cover types, but they
were less frequent among ALC-tolerant species (χ2= 11.19, P=
0.003), particularly in human settlements (χ2= 31.53, P < 0.001)
and open areas (χ2= 11.76, P= 0.003) (Fig. 4d). Although
primate trophic guild was not significantly related to the use of
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ALCs, there was a trend toward a higher proportion of
omnivorous species in human settlements than expected
(Supplementary Fig. 1). These results, together with the fact that
strictly arboreal species were less frequent in ALCs, suggest that
the more generalist a species is, especially in terms of habitat and/
or locomotion, the more resilient it is to habitat disturbance; a
finding consistent with previous studies46–48.

Phylogenetic signal in ALC use. We found a very weak phylo-
genetic signal in the use of ALCs (Fig. 5), where it was neither
clustered nor randomly distributed across the phylogenetic tree
(D= 0.83; P [D= 0] < 0.001; P [D= 1]= 0.001). The sensitivity
analyses revealed that removing Cercopithecidae, the primate
family with the largest number of species analyzed, did not
influence the estimates of phylogenetic signal. However, the
removal of sportive lemurs (family Lepilemuridae) significantly
influenced our estimates of phylogenetic signal, despite having a
similar number of species to most other families (see Supple-
mentary Note 1). In particular, our results indicate that most
species in this primate family (Lepilemuridae) do not use ALCs,
i.e., nonuse of ALCs is a phylogenetically conserved characteristic
for this clade. The highly conserved morphology and shared
ecological traits (e.g., arboreal locomotion, nocturnal activity, and
forest specialization) within this family49 could explain this pat-
tern. In contrast, the behavioral and ecological traits that could
make a species tolerant to ALC conditions vary in their degree of
phylogenetic conservatism50. This, together with the widespread

alteration of primates’ habitats, leads to a pattern in which the use
of ALCs is unpredictable in relation to species’ evolutionary
relationships.

Conclusions. Given the ongoing loss and alteration of primates’
natural habitats, knowledge about how and why some species are
able to use ALCs is essential to propose effective conservation
strategies in human-modified landscapes. We provide a com-
prehensive quantification of the use of five dominant types of
ALCs by primates worldwide. We also provide a global assess-
ment of the relationships between primate use of ALCs and
primates’ ecological traits, conservation status and phylogenetic
relationships. Our findings highlight the fact that ALCs can play
important roles for the conservation of many primate species in
anthropogenic landscapes, providing food resources, refuge and
opportunities for dispersal. We note, however, that for 70% of the
primates on Earth, we found no evidence of ALC use, suggesting
that benefits associated with the use of ALCs are limited to some
species, in which case they are unlikely to prevent the current
extinction crisis of the world’s primates26. While some poorly
studied species might also be able to exploit ALCs, many other
species are likely to depend on remnants of their primary habitat
for their long-term conservation. Also, the use of ALCs can have
negative effects on primates’ populations, as it increases both
exposure to several threats and occurrence of conflicts with
humans due to crop raiding, aggression, or disease transmis-
sion40–42. Thus, although priority conservation actions should
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focus on the maintenance of primary habitats for primates and
other vertebrate taxa9, they can be complemented with other
land-management strategies, such as replacing highly modified
ALCs by more functional land covers that provide resources for
wildlife and/or facilitate their movement between habitat patches.
Such an integrative approach will enhance the conservation value
of increasingly modified landscapes for our closest relatives.

Methods
Evidence of ALC use by primates. We systematically searched for articles pub-
lished up to November 2, 2016, using the following search term sequence in ISI
Web of Knowledge (www.isiwebofknowledge.com), SciVerse SCOPUS (www.sco-
pus.com) and Google Scholar (https:// scholar.google.com.br/) databases: [(pri-
mate* OR monk*) AND (“plantation” OR “crop” OR “agroecosystem” OR
“cultivation” OR “agriculture” OR “regenerating forest” OR “regenerating vegeta-
tion” OR “secondary forest” OR “secondary vegetation” OR “second growth” OR
“clear cut” OR “life fence” OR “isolated trees” OR “scattered trees” OR “remnant
trees” OR “corridor” OR “fencerow” OR “corridor line” OR “bridge” OR “stepping
stones” OR “fence” OR “connectivity” OR “hedgerow” OR “strip” OR “city” OR
“urban” OR “human settlement” OR “village” OR “settlement” OR “pasture” OR
“grazing line” OR “ground” OR “cattle” OR “ground”) AND/OR (“fragmentation”
OR “landscape”)]. These keywords were searched across all reference topics, except
in Web of Knowledge where searches were restricted to title, abstract and keywords
of articles. We then conducted additional searches in Google Scholar using key-
words translated into Portuguese, Spanish and French, including the grey literature
(e.g., MSc and PhD theses and unpublished reports). We classified all hits obtained
into five groups, depending on the type of ALC used by primates: (i) human
settlements (i.e., any kind of urban environment such as cities, towns, or villages),
(ii) open areas (i.e., annual crops and cattle pastures), (iii) tree plantations
(including all types of agroforestry systems), (iv) connectors (i.e., isolated trees and
linear landscape elements, such as vegetation corridors, live fences and hedgerows),
and (v) secondary forests (i.e., regenerating forests following regrowth after an
acute disturbance event, such as logging and deforestation). We excluded review
articles and studies with captive or reintroduced animals. Because for some ALCs
the available literature is scarce, we selected the most recent 60 studies per each
ALC type. Nevertheless, as some studies included information about more than one
ALC type, the final database included 258 independent studies (Supplementary
Table 1) containing 468 records of 147 primate species using ALCs. Such records

span 44 countries from four biogeographic realms: mainland Africa (17 countries),
Madagascar, Asia (13 countries), and the Neotropics (13 countries).

From each study, we obtained, for each primate species, the scientific name and
family, geographic coordinates and country, and the activity recorded within the
ALC (i.e., traveling, resting, foraging, or all activities). Traveling refers to
movements within and between ALC types. Resting refers to short/long diurnal/
nocturnal rests, and foraging refers to the procurement, acquisition and/or
ingestion of food. We assumed that resting and foraging require travel to reach any
given destination. Therefore, the category of “all activities” included studies that
reported observations on all three main activities, or resting and foraging, in an
ALC. As most studies did not report extended information about the use of each
ALC, we cannot know if primates are using it as habitat. Information about the
surrounding landscape, such as distance to the nearest edge, proportion of
remaining primary habitat, were not reported in the vast majority of studies,
thereby precluding analyses related to these types of information. Furthermore,
although studies reported general coordinates of the study sites, most did not
report the coordinates where the individuals were recorded in an ALC, limiting our
capacity to assess the landscape context.

Conservation and ecological predictors. For each primate species we obtained
the conservation status, the population trend, and whether they are forest-
specialists or not, from the International Union for Conservation of Nature
(IUCN) database in the “letsR”52 package for R, version 3.0.153. Regarding eco-
logical traits, we considered: locomotion mode (i.e., arboreal, terrestrial or both),
diel activity (i.e., diurnal, nocturnal, or cathemeral), and body mass and trophic
guild. Although body mass is a morphological trait, we considered it as an eco-
logical trait because of its very high-ecological significance. For instance, it is
positively related to home range size, thus affecting the way species interact with
their environment44,54. Body mass was categorized into three classes: small (<2 kg),
medium (2–10 kg), and large (>10 kg). Trophic guilds included six general groups:
frugivorous (>60% of fruits in diet), folivorous (>60% leaves in diet),
folivorous–frugivorous (diet comprised of both fruits and leaves in similar pro-
portions), omnivorous (both plants and animals in diet), insectivorous (diet
dominated by arthropods), and gummivorous (diet dominated by plant exudates).
Ecological trait data was primarily extracted from Mittermeier et al.27. When some
of the ecological traits were not reported in this encyclopedia, we actively searched
for information in the literature. When the trait was reported in other scientific
articles or databases, we searched for 1–3 references (depending on availability)
and we used mean or modal values55. In total, we reviewed 370 studies, most of
them published in peer-reviewed scientific journals and books. For each specific
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datum we included the corresponding reference. The database was carefully
checked for possible errors. When a specific datum was considered nonreliable
(e.g., very extreme or contradictory values and values obtained with questionable
methodology) we did not include it in the database. To assess relationships between
primate characteristics and ALC use, we used goodness of fit chi-square tests. We
selected this analysis because it is particularly recommended to compare observed
vs. expected frequencies. In particular, we compared the number of species with
each trait between those species that were observed using ALCs and the expected
values based on all of the world’s primates. We excluded from analyses species for
which there was no available information.

Phylogenetic signal. To quantify phylogenetic signal in ALCs use, we used pub-
lished phylogenetic relationships and divergence times from a molecular timetree
built using 79 gene segments for 372 species (367 primates and 5 outgroup species)
and 8 fossil-calibrated nodes50, 51. Specifically, we used the timetree built con-
sidering autocorrelated rates of molecular evolution (identified by Bayesian model
selection as fitting the data better than a model with independent rates), and a
conservative interpretation of both the age and the placement of key fossils with the
living primate radiation. Of the 367 species included in this phylogeny, we retained
352 after standardizing synonyms and dropping infraspecific taxa.

To explore how phylogeny might capture species differences in ALCs use, we
calculated the D statistic56. Dmeasures phylogenetic signal strength in binary traits.
Values of D are scaled to set points of 0.0 (trait values phylogenetically conserved as
expected under a Brownian Motion threshold model) and 1.0 (trait values
distributed randomly across the phylogeny). For significance testing, the observed
distribution of trait values at the tips of the tree was compared to both randomly
shuffled values and the expected values from a Brownian Motion threshold model.
For all tests of phylogenetic signal, we used the phylo.d function in the R package
“caper”57. We used 9999 permutations to estimate the probability of the observed
value of D under null models of both no phylogenetic structure and Brownian
motion.

To investigate the nonrandom but weak result we found for the Order as a
whole, we tested whether certain clades were driving relatively large changes in
our estimates of phylogenetic signal. We adapted the framework provided in the
“sensiPhy”59 package to perform sensitivity analyses and tested how excluding
families (with ten or more species) from the analyses would influence the
estimates of phylogenetic signal. When the removal of a clade leads to a large
change in the estimate of D, it can be considered to be influential. To correct for
clade size, we used randomization tests to determine if the change in parameter
estimates is significantly different from a null distribution created by randomly
removing the same number of species as the focal clade (Supplementary Table 2,
Supplementary Fig. 2).

Reporting summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
All data generated or analyzed during this study are included in this published
article or its Supplementary Information Files.
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