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Brazil has become a global leader in the production of commodity
row crops such as soybean, sugarcane, cotton, and corn. Here, we
report an increase in Brazilian cropland extent from 26.0 Mha in
2000 to 46.1 Mha in 2014. The states of Maranhão, Tocantins,
Piauí, Bahia (collectively MATOPIBA), Mato Grosso, Mato Grosso
do Sul, and Pará all more than doubled in cropland extent. The
states of Goiás, Minas Gerais, and São Paulo each experienced
>50% increases. The vast majority of expansion, 79%, occurred
on repurposed pasture lands, and 20% was from the conversion
of natural vegetation. Area of converted Cerrado savannas was
nearly 2.5 times that of Amazon forests, and accounted for more
than half of new cropland in MATOPIBA. Spatiotemporal dynamics
of cropland expansion reflect market conditions, land use policies,
and other factors. Continued extensification of cropland across
Brazil is possible and may be likely under current conditions, with
attendant benefits for and challenges to development.
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Growing demands in national and international markets for
commodity crops drives increasing production through more

intensive management practices, extensification through land
conversion, or both. China’s soybean imports, for example, in-
creased from just less than $2 billion in 2000 to $35 billion in
2014 (1). This demand has led to dramatic production increases
in countries such as Brazil (2–4), which has become a global
leader in the cultivation of soybeans, as well as sugarcane, corn,
and cotton (1). Intensification of existing agricultural land uses,
such as the conversion of pasture to cropland, and extensification
of agroindustrial cropping systems through the conversion of
natural vegetation result in numerous externalities, including
increased runoff of fertilizers and pesticides, overutilization of
freshwater resources, greenhouse gas emissions, and biodiversity
loss (5, 6). Knowing where croplands are expanding, their rate of
expansion, and the land covers that they are replacing is essential
to quantify current and model future environmental impacts.
Improved information on cropland extensification also facilitates
the study of supply chains and their respective economic and
institutional contexts (7).
In Brazil, the topic of cropland expansion is particularly salient.

Advances in technology, market liberalization policies, govern-
ment subsidies, and favorable international prices accelerated the
development of the cropland frontier. As production methods
matured and soybean proved more profitable than cattle, soybean
expansion was accelerated by increasing economies of scale (8–
11). Research on land use and land cover change associated with
cropland expansion in Brazil is extensive in the literature, but
often limited in geographic or thematic scope. The main research
focus has been on answering the question of whether crop ex-
pansion is a proximate driver of deforestation. Accordingly, there
is a strong bias in the research literature toward the Amazon bi-
ome and the state of Mato Grosso (2, 12–16), where the dominant
theme is deforestation driven by soybean expansion. The Cerrado

biome, a biodiversity hotspot (17, 18), has recently become the
focus of attention as a result of the rapid expansion of cropland in
the region of MATOPIBA (an acronym for the names of the four
states that compose this region, Maranhão, Tocantins, Piauí, and
Bahia) (19–22). A number of studies have focused on São Paulo
and Goiás, two states in the south-central region of Brazil that
have been the site of dramatic expansion of sugarcane for biofuel
production (23–25). However, few studies quantify changes in
crop area at the national scale. Furthermore, most of the spatially
explicit studies have employed coarse spatial resolution Moderate
Resolution Imaging Spectroradiometer (MODIS) data (2, 12, 15,
16, 21, 22), limiting accurate cropland area estimation, particularly
in the south of the country, where relatively smaller field sizes are
predominant. A few studies have used census data provided by the
Brazilian Institute of Geography and Statistics (IBGE) to char-
acterize changes in cropland area at the national scale, but the last
agricultural census was carried out in 2006. Another common data
source used (13, 26) is the Sistema IBGE de Recuperação
Automática (SIDRA) database, which provides crop areas esti-
mated by experts, which, as such, are subject to inconsistencies
through time. Products such as TerraClass (27, 28), TerraClass
Cerrado (29) or Canasat (23, 30) at medium spatial resolution are
also limited in temporal and geographic scale. A new project fo-
cusing on mapping at biome scale for the entire record of Landsat,
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called MapBiomas (31), holds promise. However, no published
area-change studies have followed good practice guidance (32–38)
in which a sample of reference data are used to provide an unbiased
area estimate of cropland cover expansion accompanied by an SE
that quantifies the uncertainty of the area estimate. As a result, a
comprehensive and definitive national-scale record of yearly land
cover changes related to cropland expansion in Brazil is lacking.
Remote sensing data provide a unique resource for measuring

such changes consistently over space and through time, facili-
tating a common understanding among policymakers, civil soci-
ety, scientists, and private industry. For the present study,
cropland is defined as the land area under intensively managed,
agroindustrial row crops consisting of commodity crops such as
soybean, sugarcane, cotton, corn, rice, and wheat. We employ 30-
m spatial resolution Landsat data to estimate cropland extent in
the year 2000 and its subsequent expansion through 2014. A
probability sample of reference data allows us to report unbiased
estimates of national-, biome-, and state-scale area of crop expansion
with associated uncertainties. Through our sample assessment, we
disaggregate crop expansion by year and by previous land cover type
to produce estimates of temporal trends of area of crop expansion by
repurposing of pastures (defined as lands dominated by herbaceous
cover used for grazing livestock) and by conversion of natural vege-
tation cover. These results represent definitive, precise, and unbiased
estimates of national-scale cropland expansion in Brazil.

Results
Cropland extent in the year 2000 in Brazil was 26.0 ± 1.1 Mha
(the uncertainty is expressed as ±1 SE of the estimate). In the
subsequent 14-y period, cropland expanded by 20.5 ± 1.6 Mha,
representing a 79% increase relative to the year 2000 cropland
area. We define the states that more than doubled their re-
spective cropland area since 2000 as constituting the cropland fron-
tier: Mato Grosso, Mato Grosso do Sul, Pará, Bahia, Maranhão,
Piauí, and Tocantins (Fig. 1A). Cropland loss was limited to 0.7 ± 0.1
Mha for the entire country during the study period. SI Appendix,
Table S1 provides accuracy assessment results, and SI Appendix, Fig.
S1 shows classification results. Methods provides detailed in-
formation on reference data interpretation.
The state with the largest area of new cropland was Mato

Grosso, with 4.4 ± 0.5 Mha of cropland in 2000 and 5.3 ± 0.8
Mha of cropland gain through 2014. Cropland expansion in
Mato Grosso represents 26% of the total cropland expansion
area in the country. The biome with the greatest area of new
cropland was the Cerrado, with 10.5 ± 1.0 Mha of additional
crop area by the end of the study period (81% increase vs. 2000).
Cerrado cropland expansion represents 52% of the total ex-
pansion in the country (Fig. 1B).

Brazilian cropland expanded rapidly and peaked during the
2004/2005 growing season, followed immediately by a sudden
and pronounced decrease in annual expansion area (Fig. 2).
After a low in 2006/2007, the rate of cropland expansion by 2013/
2014 approached that of the 2004/2005 peak. The rapid increase
through 2004/2005 and subsequent rapid decrease of cropland
expansion area was most pronounced in the states of Mato
Grosso and MATOPIBA and the Amazon and Cerrado biomes
(SI Appendix, Figs. S4 and S5). Nearly every state and biome for
which we have data available experienced a decrease in cropland
expansion in 2004 (SI Appendix, Figs. S4 and S5). Since the de-
crease in the 2004/2005 growing season, the rate of crop ex-
pansion has steadily increased in most states, with Mato Grosso
do Sul, Minas Gerais, Goiás, and Piauí having the most rapid
increase in cropland area after 2005 (SI Appendix, Fig. S4). Every
state and biome exhibited a peak in cropland expansion between
2011 and 2014 except for Maranhão and the Caatinga biome (SI
Appendix, Figs. S4 and S5).
Pasture conversion was the source of nearly 79% of new

cropland area in Brazil, and 20% was the result of conversion of
natural vegetation, including Amazon humid tropical forests and
Cerrado dry tropical woodlands and savannas. Only 1% of the
total expansion area was created through the conversion of tree
plantations. The overall proportion of cropland expansion within
natural vegetation remained relatively constant at ∼20% throughout
the study period, albeit with substantial regional variation. The
MATOPIBA region had the largest proportion of natural veg-
etation conversion to cropland (57 ± 15%), consisting largely of
Cerrado conversion (Fig. 3 and SI Appendix, Fig. S3). In the
Amazon biome, 30 ± 2% of new cropland resulted from natural
vegetation conversion, primarily of dense humid tropical forests
(Fig. 3). The southern states of Mato Grosso do Sul, Paraná, Rio
Grande do Sul, and São Paulo expanded their cropland area
mostly through the conversion of pastures (99%, 99%, 88%, and
93%, respectively). Note that the areal increase of one crop, e.g.,
sugarcane (39), at the expense of other row crops would not
meet our definition of cropland gain. Summary statistics and
time-series graphs of cropland gain for all states and biomes
having at least 10 sample pixels in the “cropland expansion” class
are shown in Dataset S1 and SI Appendix, Figs. S4 and S5 and
Table S2. SI Appendix, Fig. S2 provides a list of states and biomes
for which we estimate cropland expansion areas.

Discussion
Comparison with Existing Datasets. Our results differ from existing
estimates on cropland area and cropland area expansion in
several ways. SI Appendix, Table S3 provides a comparison of the
technical characteristics of our results and other available studies
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Fig. 1. Estimated area of cropland extent in 2000 and area of cropland expansion from 2001 to 2014: Brazilian states (A) and biomes (B). SI Appendix, Fig. S2
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and data sources. Our study advances current knowledge on
Brazilian cropland extensification as a result of its spatial extent
(we present results at the national level but also disaggregate by
states and biomes), its temporal extent (comparable to Map-
Biomas), and, most importantly, because it adheres to good
practice recommendations (32–38) on area estimation and ac-
curacy assessment. Unlike previous research, our study uses a
probability sample of reference data for area estimation and
provides uncertainty estimates (i.e., SEs) for the area estimates.
Finally, our results provide information on pasture conversion to
cropland, which is largely lacking in the literature.
Official estimates of cropland area available through the

SIDRA database are widely used in the literature to study land
use changes in Brazil (3, 13, 40, 41). These data are not directly
comparable with our results because IBGE’s area numbers
double-count the area of a field if it is double-cropped. Dias et al.
(3) use these numbers in their study and therefore significantly
overestimate cropland land use area in Brazil (SI Appendix, Fig.
S9). Barona et al. (13) also cite double-cropping as a possible
source of overestimation of cropland area in their analysis.
To compare our results vs. data from the SIDRA database, we

tried to approximate an estimate of cropland cover area based on
their “planted area” metric by removing the area of secondary
crops as well as areas of crops that do not fit our cropland def-
inition (i.e., intensive row crop agriculture). To do this, we
started out by adding together the areas of Brazil’s most im-
portant crops: soy, corn, sugarcane, beans, rice, wheat, manioc,
and cotton. These eight crops make up 95% of the total crop
planted area in Brazil. We then removed the area of second-crop
corn as well as second and third crops of beans. Although cotton
is also used a secondary crop in crop rotations, data on cotton as
a second crop are not available through the SIDRA database, so
we included all of the cotton planted area in our area estimate.
We also subtracted wheat area because wheat is a winter crop
that is almost exclusively double-cropped. Finally, we removed
the area of planted manioc because manioc production in Brazil
is mostly small-scale and nonintensive, which excludes it from
our cropland class definition (it is not produced as an intensive
row crop). The result, which we refer to as the IBGE Land Cover
(LC) estimate, corresponds to 35.7 Mha in 2000 and 52.5 Mha in
2014 (SI Appendix, Fig. S9).
These estimates are higher than the ones we present in our

study. There are many possible reasons why IBGE LC estimates
may differ from ours. Area estimates provided by IBGE are the
result of expert surveys and, as such, they are, to some degree,
inherently inconsistent across space and time. Additionally,
IBGE does not provide any indication of the accuracy or the
uncertainty of their statistics. As a result, IBGE statistics may not
always be the most appropriate data source for land cover
change studies related to changes in cropland area in Brazil.

Indeed, several authors have pointed to the limitations of IBGE
statistics and called for the need for higher-quality cropland
maps for Brazil (3, 13, 40).
Another important dataset that holds promise for cropland

extent and expansion monitoring is MapBiomas (31). MapBio-
mas provides Landsat-based maps of land cover disaggregated
into 5 broad categories (and as many as 15 detailed categories)
for every year from 1985 to 2017. One of these categories is
“farming,” which they disaggregate into “pasture,” “agriculture,”
and “agriculture or pasture” for areas of confusion between the
two. We compared their results from the agriculture category
with our results and found that their results approach ours. At
the national level, we report lower area estimates than they do;
in Mato Grosso, their results are similar to ours; and in the
Cerrado biome, we report higher area estimates (SI Appendix,
Fig. S9). Their results for cropland expansion diverge sub-
stantially from our results (SI Appendix, Fig. S8). The main
limitation of the MapBiomas product is that they do not follow
current good practice guidance (32–38), which recommends es-
timating area from the reference sample observations and
assessing accuracy of the mapped land cover change. The latest
version of the MapBiomas project (Collection 3.0) does not yet
have an accuracy assessment of any type.
Additionally, the TerraClass Amazon and TerraClass Cerrado

products provide data on land cover at Landsat resolution for the
Amazon and Cerrado biomes, respectively. The limitations of
these products compared with the results obtained through the
present study are that (i) maps are available only for certain
years, (ii) they do not provide accuracy assessment of change
classes, and (iii) they do not employ good practice recommen-
dations (32–38) for area estimation and associated uncertainties.
IBGE also provides data on cropland area through their Sys-
tematic Monitoring of Land Use project (42), which maps land
use and land cover change in Brazil for the years 2000, 2010,
2012, and 2014. This product has the same limitations as the ones
listed for the TerraClass products, among others (an additional
limitation of this product is its minimum mapping unit of 62.5 ha;
SI Appendix, Table S3).
Comparisons of cropland expansion, total cropland area, and

conversion of natural vegetation to cropland between the present
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Fig. 3. Soybean terms of trade in Mato Grosso. Mato Grosso cropland ex-
pansion from this study is compared with soybean price and cost of pro-
duction. Soybean price is the nominal producer price, obtained from the
Food and Agriculture Organization Corporate Statistical Database (FAOSTAT)
(49). Soybean cost is from Companhia Nacional de Abastecimento (CONAB)
(50). Mato Grosso cropland expansion is derived from the sample-based area
estimate for the “cropland 2000” and the “cropland expansion” strata
(Dataset S1 shows tabular data). Year of expansion corresponds to year of
planting (e.g., 2001 corresponds to the 2001/2002 growing season).
FAOSTAT and CONAB data display is adapted from Arvor et al. (40).
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Fig. 2. Estimated annual cropland expansion area in Brazil from 2001 to
2014. Yearly trends are based on “cropland 2000” and “cropland expansion”
strata. Year of expansion corresponds to year of planting (e.g., 2001 corre-
sponds to the 2001/2002 growing season). Sample pixels from the “no
cropland” strata add 4.7 ± 1.6 Mha to the total cropland expansion area
shown here; this area is not displayed in the figure because it is not repre-
sentative of yearly trends. Dataset S1 shows tabular data for all strata.
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study and other studies and datasets (2, 3, 12, 21, 22, 31, 42–45)
are provided in SI Appendix, Figs. S8–S10.

Trends in Cropland Expansion.National-scale dynamics of cropland
expansion in Brazil from 2000 through 2014 reflect an early peak
in the 2004/2005 growing season, followed by a sharp decrease
and subsequent gradual recovery to near 2004/2005 levels by
2013/2014 (Fig. 2). Here, we discuss a number of policy, man-
agement, and economic factors that may have played a role in
shaping trends of cropland expansion in the region. Establishing
cause-and-effect relationships between these factors and the land
cover changes discussed requires further research, which would
be enabled by accurate cropland expansion area estimates such
as presented in this study.
The 2005/2006 decrease in crop expansion in Brazil coincides

with a period of unfavorable market conditions (2, 46–49). A
decrease in soybean prices, the appreciation of the Brazilian real
relative to the US dollar, and an increase in costs of production
linked to high oil prices caused soy profits to decrease dramat-
ically from 2004 to 2005. As a result, farmers in Mato Grosso
were faced with negative profit margins for soybean production
in 2005 and 2006, which might have disincentivized expansion
(Fig. 3). Added to these economic factors was a severe drought
during the 2004/2005 growing season (49, 50). Our estimates of
annual cropland expansion in Mato Grosso closely mirror data
on annual soybean profit (Fig. 3). The largest residual is related
to the period of greatest expansion in 2004, with dramatic de-
creases in profits and expansion the following year. Peak crop-
land expansion post-2004 is observed in the 2013/2014 growing
season, the year of greatest soybean profit during the study pe-
riod for Mato Grosso. Morton et al. (12) and Macedo et al. (2)
have cited soy profitability as a potential influencing factor on
trends of forest conversion to cropland (SI Appendix, Fig. S10
shows a comparison of their results vs. results from the present
study). Our results support this hypothesis.
Humid tropical forests in the Brazilian Amazon have experi-

enced the highest rates of deforestation globally in recent de-
cades (51, 52). Drivers of deforestation include pasture land use
for beef production and cropland land use for soybean pro-
duction. Because of the extraordinary ecological significance of
the Amazon biome, international attention and national policies
have focused on slowing deforestation, with unprecedented suc-
cess (22, 26, 40, 46). A number of policy initiatives and supply-
chain interventions have contributed to the reduction of defor-
estation in the Brazilian Amazon. These include an increased
capacity for enforcement of the forest code by the government
through the implementation of the Detection of Deforestation in
Real Time program in 2004 (53), the implementation of an Action
Plan allowing coordination among agencies and ministries at the
federal level to combat deforestation in 2004 (40), the rapid ex-
pansion of the protected area network starting in 2002 (54), and a
successfully implemented multistakeholder moratorium on sourcing
soybeans from newly deforested lands starting in 2006 (22, 46, 55).
We find that cropland expansion into forests in the Amazon

began to slow in 2004/2005, reflecting a possible response of land
owners to policies (and the anticipation of pending policies),
market conditions, or both (Fig. 4). After 2006, conversion of
forests to cropland in the Amazon remained consistently low.
This result supports existing findings on the decrease of cropland
expansion into deforested areas during this time period (2, 12)
and has been linked to the Soy Moratorium (22, 46). At the same
time, conversion of pastures to cropland began to increase. The
primary target area for the Soy Moratorium, the state of Mato
Grosso, experienced decreased clearing of natural vegetation
for cropland after 2004 (Fig. 4). Cropland expansion within
natural vegetation in MATOPIBA, a region that is outside the
reach of the Soy Moratorium, did not experience a similar
sustained decrease, and increased slightly over the study period

(Fig. 4). The trends in converting pastureland to cropland also
differ, with Mato Grosso experiencing a dramatic increase over
time following a minimum expansion area within pastureland
in 2006/2007.
Two possible impacts of the regulatory measures implemented in

the Amazon (e.g., Soy Moratorium and other public policy initia-
tives) are shown in Fig. 4. First, the ratio of new cropland converted
from pastureland vs. converted from natural vegetation for Mato
Grosso increases from 1.1:1 from 2001 to 2004 to 4.3:1 from 2011 to
2014, reflecting the strategy of adding soybean area within already
deforested lands. Second, the same ratios for MATOPIBA change
from 1.3:1 to 0.7:1, possibly reflecting leakage of cropland expansion
pressure to a region that is largely unconstrained by regulatory
limits. The potential for leakage of cropland expansion from the
Amazon to the Cerrado’s MATOPIBA states has been discussed in
the literature (21, 22), but there has been limited evidence until now
because of the paucity of spatiotemporally consistent cropland
datasets for both regions. Determining whether there is a cause-and-
effect relationship between policies aimed at slowing humid tropical
deforestation and increased clearing in MATOPIBA requires ad-
ditional study. It is indeed possible that the conversion of natural
vegetation areas in MATOPIBA would have occurred regardless of
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Fig. 4. Trends in cropland expansion disaggregated by conversion from
pasture and natural vegetation for Mato Grosso, MATOPIBA, the Amazon
biome, and the Cerrado biome. Bars on the right represent cumulative share
of pasture and natural vegetation as source of new cropland for 2001–2014.
Trends shown reflect sample-based area estimates of cropland expansion for
“cropland 2000” and “cropland expansion” strata. Year of expansion cor-
responds to year of planting (e.g., 2001 corresponds to the 2001/2002
growing season). Sample pixels from the “no cropland” strata are not dis-
played. Dataset S1 shows tabular data for all strata.
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policies in the Amazon as a result of favorable market conditions,
infrastructure development, or land suitability.
By combining the Global Forest Change (GFC) maps (52)

with the cropland expansion map, we are able to observe regional
patterns of forest conversion to cropland during the study period
(Fig. 5). The resulting map illustrates the decrease in the conversion
of tree cover (defined as ≥5 m trees and ≥30% tree canopy cover)
to intensive cropland within the Amazon after 2005 and a corre-
sponding increase in the conversion of tree cover to cropland within
the Cerrado starting in 2006. The spatial pattern and temporal
dynamics are confirmed through our probability sample assessment
in estimating natural vegetation cover conversion (Fig. 6). The
conversion of low/no tree cover Cerrado vegetation in Mato Grosso
andMATOPIBA is substantial and not captured in the global forest
loss data (SI Appendix, Fig. S2). This result highlights the need for
spatially explicit maps of natural shrublands and nonwoody vege-
tation cover types in addition to tree cover in assessing the impacts
of cropland expansion on natural ecosystems such as the Cerrado.
Another factor probably impacting cropland dynamics has

been the advent and spread of soybean rust. At the beginning of
the study period, Brazilian farmers were “unaware of the pres-
ence” (50) of the fungus, which left them unprepared to manage
its effects. Year-on-year increases in lost production reached a
peak in 2004 with 4.6 million tons of grain lost (50). Formal in-
terventions to limit soy rust included new planting strategies such
as the implementation of an annual 90-d soybean-free period
starting in 2007 and 2008. Fungicide treatments in combination
with double-cropping practices and the introduction of new soy-

bean varieties have further reduced soybean rust losses (50). The
role of soybean rust in mediating investment in new croplands
during the study period must be considered along with other factors.
Cropland expansion is not limited to the cropland frontier

states where cropland area more than doubled. Even historically
established agricultural states experienced substantial increases in
crop area. In absolute terms, São Paulo, Goiás, Paraná, and Mato
Grosso do Sul each followed Mato Grosso and MATOPIBA in
area of new cropland. The Mata Atlântica biome, with 5.4 ± 1
Mha of new cropland, was second to the Cerrado in total area of
cropland area increase, reflecting a dramatic repurposing of pas-
ture land uses. Just more than 1% of Mata Atlântica cropland
expansion consisted of conversion of natural vegetation. However,
cropland expansion in Brazil’s southern states has been linked to
deforestation in the Amazon through the displacement of cattle-
ranching activities (56, 57), which would indirectly increase the
environmental costs of this type of land cover change. Results for
the Mata Atlântica and Pampas reveal that, despite substantial
intensification in recent years (3, 4), cropland extensification
remained a potential pathway for increased crop production
across Brazil during 2000–2014. States experiencing nascent ag-
ricultural investment, such as Roraima and Amapá (58), repre-
sent the next potential frontier of Brazilian cropland expansion
(we do not have cropland area estimates for these regions be-
cause they did not have substantial enough cropland areas during
our study period).
As Brazil’s agricultural sector grows in response to internal

and global market demands, accurate and transparent geospatial
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data depicting this dynamic are needed. In this study, we have
presented unbiased and precise estimates of Brazilian cropland
expansion area nationally and at the scale of major production
states and biomes. These methodologically consistent estimates,
along with our corresponding spatiotemporal data (i.e., maps of
2000 cropland and 2000–20014 cropland expansion), contribute
to enhanced understanding of the economic, policy, social, and
environmental drivers and outcomes of the rapid and large-scale
expansion of agroindustrial land uses. Our results for the dy-
namic time period of 2000–2014 reflect the dramatic growth of
commodity crop land use in Brazil driven primarily by repurposing
pasture land and converting natural vegetation. Extending these
analyses to the beginning of the Landsat record (circa 1984) and
forward in time will provide estimates and data that can be used to
gain further insight regarding the response of cropland expansion
to market conditions, disease, and other factors, as well as the
impact of land-use policies in redistributing expansion pressures.

Methods
Landsat time-series data were used to map Brazil into the following cate-
gories: 2000 cropland, 2000–2014 cropland gain, and no cropland. The
mapped classes were used as an input to a stratified random sample of
reference data consisting of MODIS, Landsat, and Google Earth imagery to
estimate the area of year 2000 cropland and 2000–2014 cropland expansion.

Landsat Data. Two sets of Landsat data were used to create the maps: all
available Landsat 7 Enhanced Thematic Mapper Plus (ETM+) data for 1999–
2001 and all available Landsat 7 ETM+ and Landsat 8 Operational Land
Imager (OLI) for 2011–2014. All the images were downloaded from the
United States Geological Survey Earth Resources Observation and Science
Center in the L1T terrain-corrected format. Inputs for the land cover classi-
fication were derived from spectral bands that are not as sensitive to at-
mospheric contamination and scattering (59): red (ETM+ 0.630–0.690 μm
and OLI 0.630–0.680 μm), near-IR (ETM+ 0.775–0.900 μm and OLI 0.845–
0.885 μm), and two shortwave IR (SWIR), SWIR1 (ETM+ 1.550–1.750 μm and
OLI 1.560–1.660 μm) and SWIR2 (ETM+ 2.090–2.350 μm and OLI 2.100–
2.300 μm). Blue (ETM+ 0.45–0.52 μm and OLI 0.45–0.51 μm) and green (ETM+
0.525–0.605 μm and OLI 0.525–0.600 μm) bands were used only for quality
assessment (QA) of viable observations. The thermal band (ETM+ 10.40–
12.50 μm and Landsat 8 Thermal Infrared Sensor 10.60–11.19 μm) was used
for QA and for creating rank-based multitemporal metrics.

Topography Data.Ninety-meter-resolution Shuttle Radar TopographyMission
(60) digital elevation model (DEM) data were also used as an input for
classification. The elevation layer was reprojected via cubic spline to
0.00025° to match the Landsat resolution. Slope and aspect calculated from
this elevation layer were used as additional inputs.

Auxiliary Data for Image Interpretation. Time series of 16-d MODIS Normal-
ized Difference Vegetation Index (NDVI) (61) composites and Google Earth
high-resolution imagery were used only for interpretation of training set
and reference samples. The high temporal frequency of MODIS reflecting
crop phenology helped to distinguish between crop and pasture pixels.

Landsat Data Processing. Landsat data processing was undertaken in-
dependently for both data sets (1999–2001 and 2011–2014) following
methods developed for global data processing (62). First, we converted raw
digital numbers to top-of-atmosphere (TOA) reflectance and brightness
temperature by using established methods (63). Second, we used a set of
existing quality-assessment models (existing sets of bagged decision trees) to
get a per-pixel QA flag for cloud, shadow, haze, and water detection. Third,
we applied a radiometric normalization by using a cloud-free surface re-
flectance MODIS composite as a normalization target. The mean bias per band
between the MODIS and Landsat TOA reflectance was calculated and succes-
sively applied to adjust Landsat reflectance. Finally, we corrected for cross-
track reflectance anisotropy by regressing the bias between Landsat TOA
and MODIS surface reflectance against the Landsat scan angle. The slope and
intercept of this regression were used to correct reflectance values per band,
per image. These steps are part of an established Landsat processing system
that has been successfully applied in a number of studies (52, 62, 64).

Metric Creation. Multitemporal metrics allow us to capture phenological
changes in vegetation within a consistent and standardized spatiotemporal
feature space (52, 65). They facilitate regional-scale mapping using Landsat
data despite variability in observation counts. Landsat processing steps are
performed at the image level, whereas metric creation is a per-pixel process.
Two sets of multitemporal metrics were created by using the data from each
time period (1999–2001 and 2011–2014). To create one of these sets, we
started by pooling together all cloud-free observations and ranking them
based on (i) band reflectance value, (ii) NDVI, (iii) Normalized Difference
Water Index (NDWI), and (iv) brightness temperature. We created two types
of metrics: rank-based metrics and average-based metrics. Rank-based
metrics represent the minimum, maximum, and 10th, 25th, 50th, 75th, and
90th percentiles of surface reflectance for the red, near-IR, and both
shortwave bands and for the NDVI and NDWI for each rank method.
Average-based metrics represent the averages for the following percentile
intervals for each rank method: minimum to 10th, 10th to 25th, 25th to
50th, 50th to 75th, 75th to 90th, 90th to maximum, minimum to maximum,
10th to 90th, and 25th to 75th. Additional metrics were derived by applying
a moving average filter to all existing metrics by using a 3 × 3 kernel. When
we had obtained a multitemporal metric set for each time period, a third
metric set was created by taking the difference of the corresponding
average-based metrics from both time periods. These metric sets, along with
the DEM and slope layers, were used as inputs for the classifications. In total,
approximately 650 metrics were used for the cropland 2000 classification,
and approximately 1,350 for the cropland expansion classification.

Classification. For this study, we created two separate map products: a map of
cropland extent in Brazil for the year 2000 and a map of cropland expansion
in Brazil from 2000 to 2014. We define the cropland land cover as areas of
intensive row crop agriculture. To create the cropland expansion map, we
targeted expansion between 2000 and 2014 as a class, as opposed to deriving
cropland change from postclassification of annual maps of cropland from
2001 to 2014. Postclassification comparisons can lead to significant inaccur-
acies because of the confusion between real land-cover change and apparent
change caused by misclassification errors. Both maps were created by using
supervised bagged classification tree models (66). Training data were man-
ually labeled by using Landsat cloud-free mosaics. Google Earth data and
MODIS NDVI time-series data were used as additional inputs to aid in-
terpretation. Classification trees work by recursively splitting the training
dataset into increasingly homogenous groups until a certain purity criterion
is met. Seven bagged classification trees were used per model, each derived
from a random sample of 20% of the total training data set to avoid
overfitting. The cropland extent map for the year 2000 was created by using
the 1999–2001 metric set as independent variables for the classification.
To create the cropland expansion map, we used all three metric sets de-
scribed above. Both classifications were done iteratively by checking the

Not cropland
Stable cropland (2000-2014)  
Expansion from natural vegetation

2001 2014

Expansion from pasture
2001 2014

Fig. 6. Geographic distribution of the 5,000 sampled pixels classified by
reference cropland type (stable/expansion/not cropland), previous land cover
type, and year of change.
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classification results and adding more training in areas where the results
were poor. Obtaining models that produced sufficiently accurate results
needed several iterations because of the large spectral differences between
different crop types, agricultural practices, and crop calendars, as well as
because of confusion with other land cover types such as pasture and
shrubland. SI Appendix includes further information on which metrics were
most important for classification.

Accuracy Assessment and Sample-Based Area Estimation. All maps contain
errors, which is why land cover area estimates should be based on a prob-
ability sample of reference data (32–38). Aside from producing unbiased area
estimates and associated uncertainties, sampling allows us to add value to
land cover change studies by including attributes regarding date and type of
change (51, 67, 68). Information in this study related to previous land cover
type and year of change was attributed through sample interpretation and
not by using auxiliary land cover maps. Other studies (12, 21, 22, 43) have
used maps of deforestation or land cover to determine previous land cover
type and derive areas of conversion from forest to cropland, but the results
from such studies are prone to bias of area estimates caused by map clas-
sification error (32–38).

For our study, a stratified random sample of 5,000 30 × 30-m pixels was
selected. Crop area in 2000, total crop expansion from 2000 to 2014, and
crop expansion per year from 2000 to 2014 were estimated from this sample.
The three strata used in the sampling design were cropland 2000, cropland
expansion, and no cropland (i.e., all pixels not included in the previous two
categories), whereby the stratum to which a pixel was assigned was de-
termined from the 2000 cropland and the 2000–2014 cropland expansion
maps. The cropland expansion stratum was allocated 2,000 sample pixels to
reduce the SEs of the area estimates of expansion by year and by previous land
cover type. The remaining 3,000 sample pixels were allocated evenly between
the cropland 2000 and no-cropland strata. Map accuracy and sample-based
area estimates were calculated from the confusion matrix (32, 33).

The reference class label for each sampled pixel was determined based on
expert interpretation of annual cloud-free Landsat image composites for
2000–2014, MODIS NDVI time series, and Google Earth high-resolution im-
agery time series, as available. A Web interface was built to aggregate the
different sources of data for each sample pixel (SI Appendix, Figs. S6 and S7).
Each sample pixel was labeled as one of four classes: stable cropland (i.e., the
pixel belonged to the cropland class every year from 2000 to 2014), cropland
expansion (i.e., the pixel was not cropland in the year 2000 but it became
cropland in any of the following years), cropland loss (i.e., the pixel was
cropland in the year 2000 but it changed to a different land cover in any of
the following years), or not cropland. We consider “cropland 2000” and
“stable cropland” to be equivalent classes because the amount of cropland
loss over the 14-y time period was found to be negligible. If the sample pixel

exhibited cropland expansion, we also recorded the year of expansion and
the previous land cover type (pasture, natural vegetation, or tree plantation).

Spectral, temporal, and spatial/contextual information domains of the
reference remote sensing data facilitated interpretation. For example, pas-
tures have a higher albedo than natural savanna vegetation as a result of the
effects of grazing pressure at the per-pixel scale. However, distinguishing
pasture from herbaceous Cerrado natural vegetation (such as Campo Limpo
grasslands) can be challenging when using only per-pixel spectral data. To
facilitate discrimination, we examined landscape context, such as the pres-
ence of paddock or pasture boundaries, roads, and watering holes (high
spatial resolution data provide more definitive evidence for more detailed
features such as watering holes). Landscape context was also the primary
information source used to discriminate forestry land use from natural for-
ests. For pixels that exhibited a land cover transition from forest to pasture to
cropland, we assigned forest as the previous land cover type if three or fewer
years passed between the pasture to cropland transition. Otherwise, those
pixels were labeled as conversion from pasture. All area estimates reported
throughout this paper are sample-based and have known uncertainties (i.e.,
SEs) following good practice recommendations for estimating area (32–38). SI
Appendix includes detailed results describing accuracy of the map used to
create the sampling strata, along with an assessment of our sample inter-
pretations against a dataset of field-verified samples.

GFC Map. To better understand the spatiotemporal patterns of cropland
expansion into previously forested areas, we combined our cropland ex-
pansion map with the GFC map from Hansen et al. (52) The GFC map shows
forest loss (defined as a stand-replacement disturbance) at 30-m resolution,
and is disaggregated by year of loss event from 2001 to 2014. As previously
mentioned, area estimates related to year of change and previous land
cover type were derived from sample interpretation alone and not from the
combination of our cropland maps with the GFC map. The combination of
our cropland maps with the GFC map does provide a spatial representation
of where cropland expansion was most likely to have occurred. This spatial
display augments the sample-based area estimates that quantify the crop-
land expansion area but do not indicate where this expansion is occurring.

Data Availability. All data from the study, including maps, sample reference
data, and tabular results, may be found at https://glad.geog.umd.edu/near-
doubling-brazil-cropland-area-2000.
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