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Competition between biological species in marine environments is
affected by the motion of the surrounding fluid. An effective 2D
compressibility can arise, for example, from the convergence and
divergence of water masses at the depth at which passively trav-
eling photosynthetic organisms are restricted to live. In this report,
we seek to quantitatively study genetics under flow. To this end, we
couple an off-lattice agent-based simulation of two populations in
1D to a weakly compressible velocity field—first a sine wave and
then a shell model of turbulence. We find for both cases that even
in a regime where the overall population structure is approximately
unaltered, the flow can significantly diminish the effect of a selec-
tive advantage on fixation probabilities. We understand this effect
in terms of the enhanced survival of organisms born at sources in
the flow and the influence of Fisher genetic waves.

population genetics | turbulence | Fisher waves | stochastic processes |
selective advantage

Oceanic flows can affect competition between marine species
in important ways, particularly at the submeso- and

mesoscales where the characteristic timescales of fluid motion
are comparable to the generation time (inverse growth rate) of
phytoplankton (1–3). Recent observational and computational
work on marine fronts, such as boundary currents and upwelling
regions, has noted the likely importance of strong vertical veloc-
ities and turbulent eddies to the high productivity and genetic
diversity of these regions (4–7).

However, few quantitative connections have been made
between the observational and numerical data on fronts and the
literature of population genetics, which often relies on simpli-
fying assumptions such as a constant carrying capacity, discrete
subpopulations, no vertical mixing, and/or fixed migration pat-
terns (8–13). Bringing these mature fields closer together via
simplified models could provide a clearer understanding of bio-
logical processes in marine environments, as well as the effect of
global climate change on our oceans and atmosphere (14).

Consider a population of passive organisms that are restricted
to live at a specific depth. When parcels of incompressible water
carrying organisms come together in a convergence zone, or
water from deeper ocean layers rises toward the surface in
an upwelling zone, organisms experience an effectively com-
pressible velocity field. Other possible sources of effective com-
pressibility include large Stokes numbers and gyrotaxis (15).

We report here results from a 1D agent-based stochastic
model of two-species competition that allows for nonuniform
occupation in continuous space, coupled to a compressible flow.
Although fundamentally a 3D problem, a 1D approach has
proved fruitful in the past. The analysis and computational over-
head are significantly simplified, and trends observed in 1D often
hold in higher dimensions as well (15, 16). We first study a
sinusoidal velocity field to understand the effect of a station-
ary source (positive slope zero crossing) and sink (negative slope
zero crossing) pair and then apply this understanding to a shell
model of turbulence.

We find that Kimura’s famous formula for the fixation prob-
ability in well-mixed systems (17) and spatially extended sys-
tems with only diffusive motion (18) breaks down for even
weakly compressible flows, dramatically increasing the influence
of organisms born near source regions and lowering the overall
probability of fixation for a given selective advantage, initial frac-
tion, and system size. We explore this deviation and are able to
predict the scaling behaviors observed in simulations with sim-
ple theoretical models. We believe that the source-oriented view
presented here provides a promising framework for predicting
ecosystem outcomes in the presence of species mutation and
invasion. Our results suggest that the effect of vertical velocities
must be treated with care, even in simple models.

Model for Spatial Population Genetics with Compressible
Advection
The coarse-grained dynamics in the deterministic limit of our
two-species stochastic model in 1D are described by two coupled
partial differential equations (ref. 15 and SI Appendix, sections A
and B),

∂c

∂t
+ ∂x (uc) =D∂2

x c +µc(1− c), [1]

∂f

∂t
+ u∂x f =D∂2

x f +
2D

c
∂x f ∂xc + scµf (1− f ), [2]
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where c(x ) is the fraction of the no-flow carrying capacity at posi-
tion x , f (x ) is the fraction of organisms of a given species at
x , u(x ) is a compressible velocity field, D is the diffusion con-
stant, µ is the growth rate when either species is dilute, and s
is the selective advantage of one species over the other when
the system is near its no-flow carrying capacity, as defined by the
microscopic rates given in SI Appendix, section A.

In the limit of incompressible flow (i.e., when u(x ) = const.,
as must be the case in 1D), Eq. 1 is the Fisher equation
and admits traveling-wave solutions with speed vp = 2

√
Dµ+ u .

Eq. 2, describing the more complicated genetic dynamics, also
reduces to a similar form in the limit c(x )→ 1, with a genetic
wavefront speed of vg = 2

√
Dµs + u . We assume the selective

advantage is small (s << 1), allowing us to define three param-
eter regimes, which will also be important in the compressible
case, using the local value of u(x ):

i) |u|> 2
√
Dµ: An opposing flow can arrest a Fisher popula-

tion wave. Compressible flows of this magnitude can localize
the population, for example, near a sink. Population dynam-
ics in this localized regime have been studied in 1D and 2D
(16, 19, 20).

ii) 2
√
Dµs < |u|< 2

√
Dµ: An opposing flow can arrest fragile

Fisher genetic waves, but can only slow down the more robust
Fisher population waves. A compressible flow near a 1D
sink is not able to create a localized steady-state population
structure, but can nevertheless localize genetic boundaries.

iii) |u|< 2
√
Dµs: An opposing flow is so weak that it can arrest

neither genetic nor population waves.

Here, we examine regimes ii and iii, which, to our knowl-
edge, have not yet been systematically explored and have clear
biological relevance. While some vertical velocities at strong
upwellings certainly satisfy condition i [for example, we can esti-
mate D ≈ 10−13m2/s by assuming unflagellated microorganisms
with a Stokes–Einstein diffusivity D = kBT/6πηR, R≈ 1 µm,
and assume µ to be 1 d−1, giving us 2

√
Dµ≈ 2× 10−4 m/d,

whereas vertical velocities contribute roughly |u|max ≈ 5 m/d
(21–24)], strongly localized structures at upwellings/convergence
zones are not the only interesting situation. Conditions ii and iii
describe weaker upwelling/convergence events, other sources of
compressibility, and/or a strong upwelling event in a population
that has a greater effective diffusivity due to active flagella (15).
In these cases, the steady-state concentration profile is almost
identical to the no-flow case, making them more theoretically
tractable. Note that the presence of noise will change the loca-
tion of the boundaries between the behaviors. For a detailed
treatment of noisy Fisher waves, see refs. 25 and 26.

We further focus our investigation on fixation probabilities,
a central topic in population genetics describing the stochastic
process by which one species outcompetes another. The fixation
probability for a species with selective advantage s in a popula-
tion of size N that makes up an initial fraction f of all organisms
in the absence of advection and mutation is given by Kimura’s
formula, which neglects terms of order s/N (17):

Pfix =
1− exp(−sNf )

1− exp(−sN )
. [3]

This formula was first derived for the well-mixed case. However,
it can be extended to 1D systems with diffusive motion using an
argument inspired by Maruyama (18) (SI Appendix, section C)
and is confirmed by our simulations. This insensitivity to spatial
dimension makes the fixation probability an interesting object of
study in the presence of fluid flows, because it allows us to isolate
the effect of advection from that of diffusion. In contrast, fixation
times, studied in the presence of advection by Pigolotti et al. (15),
depend sensitively on the spatial structure of the system, and the

well-mixed result for fixation times does not hold in the presence
of diffusion.

In this paper, we study the behavior of fixation probabilities
for weakly compressible flows. As is often the case in population
genetics (27), we characterize the altered fixation probabilities by
an effective population size. For small s , the derivative of Eq. 3,
with respect to s , is

dPfix

ds
=

1

2
Nf (1− f ) +O(s). [4]

The slope at s = 0 in the well-mixed case is proportional to the
probability of a competitive encounter between the two different
species. With advection, we can interpret the slope as measuring
only encounters that have an impact on the future of the system,
occurring for an effective population size such that N →Neff in
Eq. 4. By avoiding spatially localized structures associated with
strong flows, where |u|> 2

√
Dµ, we can approximate the overall

density of organisms as constant. This assumption greatly simpli-
fies the determination of the effective population size, reducing
it to an effective length scale. As we shall see, the result is to
replace N by Neff in the small-s limit appropriate to Eq. 4 and
to replace N by Ng(s) in the large-s limit, where the population
genetics are dominated by Fisher genetic waves.

Sine Wave Flows
To better understand the impact of sources (positive slope zero
crossings) and sinks (negative slope zero crossings) on fixa-
tion before tackling time-dependent turbulence, we first study a
steady sine wave flow given by

u(x ) =A0 sin(x −π/2), [5]

in a domain of size 2π with periodic boundary conditions. The
source and sink associated with this velocity profile have a char-
acteristic time, given by τs = 1/A0, the inverse gradient of the
velocity field at the zero crossings. Organisms are more likely
to die near the sink at 3π/2, where there is a constant influx of
organisms, and more likely to flourish near the source at π/2.
These effects violate the conditions necessary for Kimura’s for-
mula to hold in 1D (SI Appendix, section C) (18) and give an
advantage to the source population relative to the sink pop-
ulation, even if there is no microscopic selective advantage
involved. To determine the effective population size, we need to
characterize the width of the advantageous source region.

Quasi-Neutral Competitions with Sine Wave Flows. For the case
of zero selective advantage, we can analytically compute an
approximate fixation probability as a function of position, using
a random-walk model. As shown in Fig. 1, simulations are initial-
ized so that only a small, localized window (length π/16 or ≈3%
of the interval [0, 2π] in Fig. 1) contains all of one species. The
fixation probability is then measured as a function of the location
of this window. By treating these genetic boundaries as random
walkers biased by the flow, we find in the limit of small ∆,

Pfix (x , ∆,A0)≈∆ · N (x |π/2,D/A0), [6]

where ∆ is the width of the spatial window, x is the leftmost
genetic boundary, and N (x |π/2,D/A0) is the normalized prob-
ability density function at x , given by a Gaussian with mean
π/2 and variance D/A0. Details are presented in SI Appendix,
section D.

This function defines a length scale for our source, ls =√
D/A0, given by the balance between diffusion and the advect-

ing velocity field. Any organism that can diffuse to the source
in a time faster than the source time τs = l2s /D is relevant to
the genetic future of this sine wave system. The farther away
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an organism is from the source, the stronger the outward veloc-
ity field it experiences. Any organism that moves significantly
farther than ls from the source is unlikely to be able to return
and has a negligible chance of fixation as it is drawn into
the sink.

We hypothesize that for zero or small selective advantage the
effective population size scales as the source length scale, times
the density of organisms, ρ0, which is a constant well approx-
imated by the no-flow limit since we are not in the regime of
spatial localization. Based on these considerations, we conclude
that

Neff =B1ρ0

√
D

A0
, [7]

where B1 is a constant of order unity. We see from Fig. 2 that
the fixation probability is dramatically different from the case
without an external velocity field and is well described by these
considerations for small s , with B1 = 3.5. The large difference
between Neff (Neff = 71) and the total number of organisms in
the system (Ntot = 394) is striking, considering that the presence
of the flow cannot be easily detected in the snapshots of the
organismic density alone without observing genetic interfaces.

Although a stochastic model was the key to predicting the
magnitude of the fixation probability given by Eq. 6, the Gaus-
sian enhancement of the source region is also evident in a purely
deterministic model. Deterministic simulations of the neutral
case, which directly solve Eqs. 1 and 2 for s = 0 without num-
ber fluctuations, are shown in Fig. 3. Although these simulations,
which are equivalent to the agent-based model in the limit N →
∞, cannot directly observe fixation, we nevertheless see that a
small population of one species initially localized close to the
source (Fig. 3, Inset A) grows in size until it reaches a steady-state
population (Fig. 3, Inset B) more than five times its original size.
In contrast, a population starting near the sink shrinks to values
that are less than 1/N , approximating extinction in a simulation
with discrete organisms. A Gaussian with SD ls centered on the
source provides a good fit for Fig. 3, just as in Fig. 1.

A

B

Fig. 1. The fixation probability of an initially localized purple species in
a background of green, obtained from 1,000 independent realizations of
an agent-based simulation of two neutral populations, as a function of the
initial position of the purple distribution. Arrows indicate the locations of
the source (So) and sink (Si). Populations that begin near the source in the
sine wave flow are more likely to fix. The dotted line shows agreement with
the random-walk model, Eq. 6, with no fitting parameter. The flow for this
plot is u(x) = 0.05 sin(x−π/2). (Inset A) One possible initial condition, with
1/32 of the domain holding only purple organisms and the rest filled with
green organisms. (Inset B) One realization of a fixation event corresponding
to the initial condition in Inset A. The dashed line shows the source at π/2
and the solid line shows the sink at 3π/2.
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Fig. 2. The fixation probability (red circles) for an initial condition with
a random 10/90 mixture of two species with u(x) = 0.05 sin(x−π/2), vary-
ing the selective advantage (Pfix(s = 0) = 0.1, since all organisms are equally
likely to take over the population in this limit). The purple line (short dashes)
shows Eq. 3, the Kimura no-flow result, for the measured number of organ-
isms in the simulation, Ntot = 394. The green line (short and long dashes)
gives the prediction of Eq. 7, valid in the limit of small s with Neff = 71.
The blue line (solid) gives the prediction of Eq. 9 for the large s case,
with a selective advantage-dependent effective population size. Error bars
inferred from 2,000 independent simulations are too small to be visible.
(Inset) A single realization for a 50/50 mixture of two neutral species (thus,
Pfix(s = 0) = 0.5). The dashed line marks the position of the source, So, and
the solid line marks the position of the sink, Si. Note that the genetic inter-
faces between purple and green tend to annihilate in the sink at 3π/2. The
total concentration of organisms remains approximately uniform.

Strong Selective Advantage with Sine Wave Flows. When the selec-
tive advantage is sufficiently high (although still small compared
to 1), it becomes a significant term in Eq. 2 and plays a role in
setting the source length. We must now balance the effects of
selection, diffusion, and the velocity.

We can do this using the framework of Fisher genetic waves.
Consider a species with a significant selective advantage that is
sharply localized within a background population, in a system
with a sine wave flow with an amplitude that nevertheless sat-
isfies A0> 2

√
Dµs . This initial condition will typically produce

two Fisher genetic wavefronts traveling in opposite directions.
If the initial population starts on a source, both wavefronts will
be supported by the external flow as they move across the sys-
tem. However, if the initial population starts on a sink, both
wavefronts will face an opposing flow.

There is a window of initial conditions around the source
at x = xs =π/2, defined by u(x ) =A0 sin(x −π/2) =±2

√
Dµs ,

where an initial population can produce Fisher genetic waves
that deterministically travel across the entire system. Within this
window, the flow velocity is small enough that wavefronts can
reach the source even if they do not start there. Outside of this
window, Fisher genetic waves cannot reach the favorable source
region.

Upon treating Fisher waves crossing the system as a proxy
for fixation, this argument suggests another way to define an
effective population size in the Kimura formula: the number
of organisms around the source within the spatial window with
boundaries given by u(x ) =±2

√
Dµs .

When we solve for this window, we include a fitting parame-
ter, B2, because the traveling-wavefront solution occurs only for
special initial conditions. The window is then given by half-width
δ(s) such that

A0 sin(δ) =B2(2
√

Dµs). [8]
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Fig. 3. The final fraction of the initially localized species, f∞ = lim
t→∞

f(t),

divided by its initial fraction, as a function of its initial location. Populations
that begin near the source, So (x =π/2), grow relative to their initial condi-
tion, and populations that begin far from the source shrink. Fit is given by
a Gaussian of variance l2s = D/A0. Here u(x) = 0.05 sin(x−π/2), as in Fig. 1.
(Inset A) The gray line shows the approximately uniform steady-state total
concentration of organisms [the sum of the concentrations of both species,
c(x, t)]. The colored boxes show the initial spatial distribution of one of the
species for three different simulations, relative to the source (dashed line)
and the sink (solid line). (Inset B) The total fraction of the initially local-
ized species in time, with the colors corresponding to the initial conditions
in Inset A. The leftmost initial population prospers, while the middle and
rightmost initial populations fall off rapidly.

After solving for δ(s), we can use the approximation of constant
density to write the number of organisms in our genetic wave-
defined source population as

Ng = 2ρ0δ(s). [9]

Note that our effective population size Ng now has s depen-
dence. We find that B2 = 0.5 provides good agreement in Fig. 2.
At even higher values of selective advantage, where A0 is
no longer greater than 2

√
Dµs , we observe a crossover to

well-mixed behavior as expected.
Upon combining these two arguments by using the largest

effective population size, max(Neff ,Ng), in the original Kimura
formula, Eq. 3, we can explain the fixation probability for a weak
steady sine wave, as shown in Fig. 4.

Turbulent Advection
To generate a 1D chaotic signal with multiscale correlations
similar to turbulent flow, we use a well-established set of ordi-
nary differential equations called a shell model (28). For specific
details, see ref. 16 and SI Appendix, section E. For the steady
sine wave flows studied in the previous section, we saw that
the presence of a source can dominate fixation events. It seems
reasonable to conjecture that transient, time-dependent sources
have a similarly important effect in chaotic turbulent flows and
that we can still characterize the system with an effective source
dimension and an associated effective population size. Remark-
ably, we can understand much of the fixation probability with
generalizations of the simple theoretical arguments we applied
to the stationary sine wave case.

Quasi-Neutral Competitions with Turbulent Advection. Even in the
absence of selection, turbulent dynamics provide new factors to
consider when determining the source length scale. The (multi-
ple) sources in the flow can have long or short lifetimes. Their
locations move intermittently, and their slopes vary with time.

Depending on how the source times compare with the other
timescales dictating organism motion, the source-enhanced pop-
ulation at a given time may or may not be able to move with
the source and retain its competitive advantage. An example
of competitive turbulent dynamics for the neutral case and
some further discussion are given in SI Appendix, section F.
Although it is clear that understanding the details of fixation
probabilities in turbulence is complicated, we can nevertheless
apply lessons from the sine wave case to determine scaling
behavior.

We assume that our effective population size is the sum of the
effective population sizes corresponding to each source, aver-
aged over time. Longer-lived sources thus contribute more to
the average and have a greater effect on the effective popula-
tion size. As in the case of the weakly compressible sine wave,
a source’s effective population size should be able to be repre-
sented as the density of organisms times a characteristic length.
It is not obvious how to define a length for an arbitrary source
i , but we can easily define a characteristic source time, τi , by
taking the reciprocal of the slope of the positive zero crossing
( du(x)

dx
|−1
x=xi

). Then, we construct a length by assuming the exis-
tence of a constant with units of velocity, vC , that can depend on
the diffusion constant and some details of the dynamics, but does
not depend on the root mean-square velocity. We can think of vC

as related to the speed with which domain boundaries explore the
system.

Therefore, our estimate for Neff in turbulence is

Neff = ρ0vC

∑
i

τi . [10]

Here, the sum is over all sources present at a given time, and the
overbar indicates a time average.

Since the density of organisms, ρ0, is approximately constant,
it is proportional to µ, the growth rate. Therefore, we can also
understand Eq. 10 as a balance between the organism generation
time, µ−1, and the source time, τi . If µτi is large, the generation
time is short relative to the source time, and organisms can repro-
duce many times during the source time. These organisms and

Fig. 4. When we plot the measured fixation probabilities against s times
the larger effective population size of our two approximations, Eqs. 7 and
9, our data collapse to a master curve. The agreement with our sine wave
simulations suggests that we have identified how the fixation varies with
A0,µ, and s for this parameter regime. Error bars associated with 2,000
independent realizations are shown. A0 > 2

√
Dµs for all data points shown,

avoiding the crossover to well-mixed behavior seen at high s in Fig. 2. (Inset)
When plotted as a function of the quasi-neutral theory only, Eq. 7, we see
a departure from the theory at high values of s, which motivates the high s
approximation given by Eq. 9.
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their offspring thus experience an enhanced fixation probability,
and such sources will give a large contribution to Neff . However,
if µτi is small, few organisms are affected, and the contribution
to Neff will be small.

We now make the approximation∑
i

τi ≈nsτs , [11]

where ns is the number of sources and τs =
〈(

∂u(x ,t)
∂x

)
−2
〉1/2

is

the root mean-square reciprocal velocity gradient.
We expect that, for a given value of the root mean-square

velocity, urms , the total number of zero crossings, 2ns , scales
with its gradient. As the root mean-square velocity increases,
we expect the number of zero crossings to decrease. These
considerations lead to the conjecture

ns ∼
L

urms

〈(
∂u(x , t)

∂x

)
2

〉1/2

. [12]

This is known to be true for Gaussian processes in 1D (29),
and we have checked it explicitly via simulations with our shell
model. A similar relation has been found experimentally in mea-
surements of turbulent flows, where the number of nodes is
proportional to the inverse of the Taylor microscale (30).

We note that ns and τs are instantaneously strongly fluctuat-
ing quantities, and we calculate the dependence of their product
on Reynolds number in SI Appendix, section G as nsτs ∼Re0.08.
Since this dependence is very weak, we neglect it and make a
mean-field approximation to find nsτs ≈L/urms , where urms is
now time averaged using the harmonic mean.

Upon combining these arguments, and absorbing vC into the
constant B3, we obtain

Neff =B3ρ0nsτs =
B3ρ0L

urms
. [13]
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Fig. 5. The fixation probability (red circles) for an initial condition with
a random 10/90 mixture of two species advected by a shell model with
amplitude A0 = 0.3 and growth rate µ= 2, for variable selective advantage
(Pfix(s = 0) = 0.1). The purple line (short dashes) shows Eq. 3, the no-flow
result, for the measured number of organisms in the simulation, Ntot = 382.
The green line (short and long dashes) gives the prediction of Eq. 7, valid in
the limit of small s with Neff = 147. The blue line (solid) gives the prediction
of Eq. 9 for the large s case, with a selective advantage-dependent popu-
lation size. Error bars inferred from 2,000 independent simulations are too
small to be visible. (Inset) A single realization for a 50/50 mixture of two
neutral species (Pfix(s = 0) = 0.5).

Fig. 6. When we plot the measured fixation probabilities against s times
the larger effective population size of our two approximations, Eqs. 13 and
15, our data collapse to a master curve. The agreement with our shell model
simulations suggests that we have identified how the fixation varies with
A0,µ, and s for this parameter regime. Error bars associated with 2,000
independent realizations are shown. Ntot ≈N0 for all data points shown,
avoiding the crossover to localized behavior. These parameters ensure that
approximate spatial uniformity is maintained. (Inset) When plotted as a
function of the quasi-neutral theory only, Eq. 13, we see a departure from
the theory at high values of s, which motivates the high s approximation
given by Eq. 15.

Our simulations support this form of Neff as shown in Figs. 5 and
6 with the constant (units of velocity to account for unknown vC

factor) B3 = 0.031.

Strong Selective Advantage with Turbulent Advection. As in the
sine wave case, we expect a critical value of s beyond which selec-
tion must be taken into account in the source size calculation.
Unlike the quasi-neutral competitions in turbulence, however,
we now have an obvious choice for a velocity that can be used
to form a length scale—the Fisher genetic wavefront speed. As
before, we include a dimensionless fitting parameter, B4. Our
estimate for Ng , the effective population size associated with
genetic waves, is

Ng =B4ρ0(2
√

Dµs)
∑

i

τi , [14]

where τi is the characteristic time of source i and the overbar
indicates a time average.

Eq. 14 is also the simplest generalization of Eq. 9, obtained
by expanding the sine function to linear order in a Taylor series
close to each source.

Upon estimating
∑

i τi as before, we obtain

Ng =B4ρ0L
2
√
Dµs

urms
. [15]

This estimate, when N →Ng in the Kimura formula, Eq. 3, shows
good agreement with Figs. 5 and 6, with B4 = 0.747. As before,
we combine the arguments behind Eqs. 13 and 15 by taking the
largest effective population size, max(Neff ,Ng), in Fig. 6.

Discussion
For both simple (i.e., sine wave) and turbulent compressible
flows for which the population density is approximately uni-
form, we have shown that fixation probabilities are controlled
by an effective population size smaller than the total number
of organisms in the system in a previously undescribed and
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biologically relevant region of parameter space. This reduction
in the effective population size creates a significant reduction
in the fixation probability as a function of selective advantage
overall, but a greatly enhanced fixation probability for organisms
fortunate enough to be born near sources, even those that are
very weak. In the ocean, source regions can be associated with
upwellings, if we assume organisms are restricted to live at a
certain depth, for example. Our results suggest that the genetic
compositions of these regions may have a controlling effect on
the genetics of a much greater domain.

Furthermore, we have shown the reduced fixation probabili-
ties can be explained by simple theoretical arguments and can

be explored with both agent-based and relatively inexpensive
deterministic simulations.

Deviations of Kimura’s formula in the case of strongly com-
pressible turbulence in 1D (i.e., flows that produce spatial
localization) have also been observed in simulations, a problem
closely related to gene surfing (31).
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