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Myelodysplastic syndromes (MDS) and acute myeloid leukemia
(AML) are diseases of abnormal hematopoietic differentiation
with aberrant epigenetic alterations. Azacitidine (AZA) is a DNA
methyltransferase inhibitor widely used to treat MDS and AML,
yet the impact of AZA on the cell-surface proteome has not been
defined. To identify potential therapeutic targets for use in com-
bination with AZA in AML patients, we investigated the effects
of AZA treatment on four AML cell lines representing different
stages of differentiation. The effect of AZA treatment on these
cell lines was characterized at three levels: the DNA methylome,
the transcriptome, and the cell-surface proteome. Untreated AML
cell lines showed substantial overlap at all three omics levels;
however, while AZA treatment globally reduced DNA methyla-
tion in all cell lines, changes in the transcriptome and surface
proteome were subtle and differed among the cell lines. Tran-
scriptome analysis identified five commonly up-regulated coding
genes upon AZA treatment in all four cell lines, TRPM4 being
the only gene encoding a surface protein, and surface proteome
analysis found no commonly regulated proteins. Gene set enrich-
ment analysis of differentially regulated RNA and surface proteins
showed a decrease in metabolic pathways and an increase in
immune defense response pathways. As such, AZA treatment led
to diverse effects at the individual gene and protein levels but
converged to common responses at the pathway level. Given
the heterogeneous responses in the four cell lines, we discuss
potential therapeutic strategies for AML in combination with AZA.
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Myelodysplastic syndromes (MDS) and acute myeloid
leukemia (AML) are hematopoietic malignancies that are

genetically and epigenetically diverse in nature. As myeloid lin-
eage cells differentiate from their hematopoietic stem/progenitor
cells, aberrant epigenetic changes can occur at any differen-
tiation stage, driving cells into cancerous phenotypes (1). As
such, AML is routinely classified according to hematopoietic
lineages by cell morphology or by cytometry using sparse sur-
face markers (2, 3). Among many epigenetic changes that occur
in MDS and AML, the best-characterized change is the DNA
methylation of cytosine bases in CpG islands (4). In fact, a
hallmark of epigenetic changes in AML is the redistribution of
methylated CpG dinucleotides with loss of methylation across
intergenic regions, primarily transposable elements and repeats,
and gain of aberrant methylation near the promoters of a num-
ber of genes, including well-known tumor suppressors such as
p16INK4a (5). As such, it is believed that these diseases are more
sensitive to hypomethylating agents such as DNA methyltrans-
ferase inhibitors (DMNTi) (6, 7). One such DMNTi, azacitidine
(AZA), has been efficaciously used for over a decade to treat
MDS and AML (8, 9). At high doses, AZA induces rapid
DNA damage and is cytotoxic; at lower doses, AZA induces
DNA hypomethylation by covalent trapping and degradation

of DNA methyltransferases, leading to loss of methylation in
newly synthesized DNA (10, 11). It was recently shown that AZA
treatment of cervical (12, 13) and colorectal (14) cancer cells
can induce interferon responses through reactivation of endoge-
nous retroviruses. This phenomenon, termed viral mimicry, is
thought to induce antitumor effects by activating and engaging
the immune system.

Although AZA treatment has demonstrated clinical benefit in
AML patients, additional therapeutic options are needed (8, 9).
Our group has recently generated antibodies toward potential
targets in RAS-driven cancers, and there is significant interest
in identifying surface protein targets for antibody-derived thera-
peutic strategies in combination with AZA for the treatment of
AML (15). Currently, there are numerous antibody-based ther-
apeutics in development for AML patients, targeting about a
dozen cell-surface proteins, but it is not clear if AZA changes

Significance

Acute myeloid leukemia (AML) is a heterogeneous disease
commonly treated with azacitidine (AZA), but additional ther-
apeutic strategy is needed. We found that AZA treatment
in four AML cell lines had diverse effects at the individ-
ual gene and protein level, and these changes converged to
common responses at the pathway level. The most promi-
nent responses were the down-regulation of metabolism and
up-regulation of immune defense. Given the heterogeneous
responses in the four cell lines, we discuss serval potential
therapeutic strategies for AML in combinations with AZA. In
addition, the surface proteomics experiment has identified the
greatest number of surface proteins for these cell lines to date
and represents a valuable resource to others who use these
cell lines as AML models.

Author contributions: K.K.L., A.N., L.E., K.J.M., J.D., and J.A.W. designed research; K.K.L.
and A.N. performed research; K.K.L., T.S., L.T., and X.N. analyzed data; and K.K.L., A.N.,
T.S., L.T., and J.A.W. wrote the paper.y

Reviewers: R.G., Medical College of Wisconsin; N.L.K., Northwestern University; and B.W.,
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the expression levels of these proteins (16). Furthermore, over
15 ongoing clinical trials are investigating the combination of
AZA and checkpoint inhibitors in various leukemias and solid
tumors, since AZA induces checkpoint inhibitory molecules on
both tumor and immune cells (7, 17). To identify cell-surface
markers, cell-surface capture proteomics has recently emerged
as a highly sensitive target discovery technology and has been
used to define a large number of common and distinct mark-
ers in AML (18–20). Taken together, a broader understanding
of how AZA treatment remodels the cell-surface proteome in
AML cells could aid in identifying surface protein targets for
antibody-based therapy, leading to unique immunotherapies for
use in combination with AZA.

Using a multiomics approach, we characterized four AML
cell lines, representing different stages of differentiation, and
studied the changes in DNA methylation, RNA expression, and
surface proteome induced by AZA treatment. Across the four
cell lines, AZA reduced DNA methylation in nearly all of the
hypermethylated CpG sites probed, but surprisingly the changes
in gene expression and surface protein expression were few and
diverse. Transcriptome analysis identified only one gene encod-
ing a surface protein that is commonly up-regulated in all four
cell lines, and surface proteomics analysis did not identify any
commonly regulated proteins. Despite little overlap, functional
analysis revealed some common responses among the four cell
lines—down-regulation of genes and proteins in metabolism and
up-regulation of genes in immune response. Collectively, our
study detailed the distinct impact of AZA treatment in four AML
cell line at the individual gene level and illustrated that functional
networks are commonly regulated.

Results
Methylome in AML Cells and its Regulation by AZA. Four well-char-
acterized AML cell lines, KG1a, HL60, HNT34, and AML193,
were chosen to reflect a gradient of differentiation stages along
the myeloid lineage, according to the French–American–British
(FAB) classification system (SI Appendix, Rationale for Cell
Line). The four cell lines exhibited varied mutation profiles;
PHF6 (PHD Finger Protein 6) was the only gene mutated
among all four cell lines, while genes like TET1 (Tet Methylcy-
tosine Dioxygenase 1), DNMT3B (DNA Methyltransferase 3B),
and NRAS (NRAS Proto-Oncogene) showed distinct mutation
patterns in the four cell lines (Dataset S1).

We determined the DNA methylome of each cell line using
the Illumina Infinium EPIC array. The baseline DNA methyla-
tion profile for each cell line exhibited a bimodal distribution,
representing hypermethylated and hypomethylated CpG sites
(Fig. 1A). The number of hypermethylated sites (beta value
>0.8) was highest for AML193 and lowest for HL60, following
a general trend of increasing hypermethylation from the least
to most differentiated cell line (Fig. 1B). KG1a does not follow
this trend of increasing baseline hypermethylation, potentially
due to its differentiation from the KG1 parental cell line and
a deviation from the annotated early progenitor lineage. Com-
paring the methylation status across the four cell lines, 55%
(342,320/628,240) of loci were commonly hypermethylated (beta
value >0.8) and 39% (108,968/278,579) of loci were commonly
hypomethylated (beta value <0.2) (Fig. 1B). This indicates a
high degree of similarity in the methylomes among the four
cell lines.

To study the effects of AZA treatment on the regulation of
DNA methylation, each of the four cell lines was treated with
AZA (0.5 µM) for 3 d, followed by a 4-d drug holiday to max-
imally reduce DNA methylation (SI Appendix, Fig. S1A). With
this treatment regimen, AZA inhibited cell growth to varying
degrees in the AML cell lines, with ∼85% growth inhibition in
AML193 cells (most sensitive) and ∼30% inhibition in HL60
cells (least sensitive) (SI Appendix, Table S1). Remarkably, AZA
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Fig. 1. AZA treatment drives global DNA demethylation among all four
AML cell lines. (A) Vehicle-treated cell lines have a bimodal distribution of
genome-wide beta values (kernel density estimation). (B) Vehicle-treated
cells share a high proportion of hypermethylated and hypomethylated sites.
Overlapping hypermethylated sites (red, beta values >0.8) and hypomethy-
lated sites (blue, beta values <0.2) are indicated by upward and downward
bars, respectively, in the vertical bar graph. The specific overlapping groups
are indicated by the black solid points below the bar graph. Total hyperme-
thylated and hypomethylated sites found in each cell line are indicated in
the horizontal bar graph. (C) AZA-treated cells have decreased hypermethy-
lated beta values indicating DNA demethylation. (D) DNA demethylation
in AZA-treated cells is shown by median change in beta value for KG1a
(−0.097), HL60 (−0.28), HNT34 (−0.132), and AML193 (−0.099). (E) A high
proportion of demethylated sites are common among the four cell lines,
indicated by downward bars in the vertical bar graph (decrease in beta value
>0.1, false discovery rate adjusted P < 0.05).

treatment reduced methylation in nearly all of the hyperme-
thylated sites probed (Fig. 1 C and D and SI Appendix, Fig.
S2). The median change in methylation across all CpG sites
ranged from −0.097 for KG1a cells to −0.28 for HL60 cells
(Fig. 1D). The greater reduction of DNA methylation seen in
HL60 compared with the other three cell lines could be due to a
lower basal expression of the de novo DNA methyltransferases
(DNMT3A and DNMT3B) in the HL60 cells, as detected in the
transcriptome data (SI Appendix, Fig. S3). Comparing the effects
of AZA across all four cell lines, a large proportion of CpG
sites with reduced DNA methylation were shared by all four cell
lines (37% or 247,715 shared out of 657,868 total sites probed)
(Fig. 1E). The loci with reduced methylation induced by AZA
were uniformly distributed across the genome (SI Appendix, Fig.
S4). Further gene set enrichment analysis (GSEA) of the AZA-
regulated DNA methylation loci did not identify any functionally
enriched gene sets.

Transcriptome in AML Cell Lines and Its Regulation by AZA. As
DNA methylation at promoter CpG islands can be associated
with transcriptional silencing, we next assessed RNA expres-
sion profiles of the four cell lines. Using an approach similar to
comparing baseline DNA methylation status, highly and lowly
expressed genes were defined by the expression levels from the
highest and lowest tertiles in each cell line. At baseline, 53%
(10,971 out of 20,517 total) of all high- and low-expressing genes
were common to all four cell lines (Fig. 2A). Despite a shared
gene expression profile, functional analysis using GSVA with
a hallmark set of key pathways indicated that each AML cell
line had a distinct biological state. Specifically, cell-cycle-related
genes were highly expressed in AML193 and KG1a cells, MYC
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Fig. 2. AZA treatment induces unique and subtle transcriptome changes in the four AML cell lines. (A) Gene expression profiles are similar among the
four cell lines at baseline. Overlapping highly (top tertile) and lowly (bottom tertile) expressed genes are indicated by upward (red) and downward (blue)
bars, respectively, in the vertical bar graph (n = 20,517 unique genes mapped from >54,000 probesets). (B) Distinct biological states shown by gene set
variation analysis (GSVA) of the four cell lines at baseline levels using the MSigDB hallmark gene sets (variation score >0.2 in at least one cell line). (C)
Most differentially regulated genes induced by AZA are unique to each cell line, and only six genes are common among the four cell lines. Up-regulated
genes and down-regulated genes are indicated by the upward (red) and downward (blue) bars, respectively (fold change >2 and adjusted P value <0.05).
Total differentially regulated genes for each cell line are indicated in the horizontal bar graph. (D) Common biological processes are enriched upon AZA
treatment. Gene set enrichment analysis (GSEA) was performed using Hallmark (H), Reactome (R), and KEGG (K) pathways (GSEA normalized effect size >1
or <−1).

pathway genes in KG1a and HL60 cells, and TGF-β, WNT, and
Notch signaling genes in HNT34 cells (Fig. 2B). Similarly, GSVA
using an expanded gene set list of Gene Ontology (GO) term
analysis also revealed differences in differentiation and cell death
activation pathways (SI Appendix, Fig. S5).

Upon AZA treatment, only a small percentage (∼0.8 to 2.4%
of all genes) of the transcriptome was differentially regulated
in each AML cell line, despite the large changes observed in
the DNA methylome. Hierarchical clustering of the top variable
gene expression profiles showed clustering by cell line and not by
AZA treatment, suggesting that AZA did not have a dominant
effect on the transcriptome (SI Appendix, Fig. S6). The num-
ber of differentially regulated genes varied from ∼160 genes for
KG1a cells to ∼500 genes for HL60 and HNT34 cells (Fig. 2C).
The changes in gene expression in each cell line (∼0.8 to 2.4%)
were much lower compared with those observed for DNA methy-
lation (45 to 70% of all CpG sites were significantly demethy-
lated). The effects on gene expression were also much more
stochastic and appeared to be divergent among the cell lines, with
only five coding and one noncoding gene uniformly up-regulated
in all four cell lines (Fig. 2C). The commonly up-regulated cod-
ing genes were TRPM4 (Transient Receptor Potential Cation
Channel subfamily M member 4), PPBP (Pro-Platelet Basic Pro-
tein), MAGEB2 (MAGE family member B2), CREB5 (cAMP
Responsive Element Binding Protein 5), and GCNA (Germ
Cell Nuclear Acidic Peptidase). The noncoding gene LINC01088
found to be up-regulated in all four cell lines was recently
implicated as a tumor suppressor found in reduced levels in
ovarian tumors and acts by targeting miR-24-1-5p–mediated
regulation of PAK4 expression (21). Despite the unique gene
regulation in each cell line, functional-level analysis with GSEA
showed several common pathways regulated by AZA in all four
cell lines (Fig. 2D and SI Appendix, Fig. S7 A and B). The
enriched gene sets included increased expression of epithelial
mesenchymal transition, apoptosis, coagulation, complement,
interferon gamma response, hemostasis, platelet activation sig-
naling and aggregation, and decreased expression of tRNA
aminoacylation and amino acid synthesis. In general, these gene

sets represent activation of immune response and repression of
metabolism.

Unique Cell-Surface Proteome Regulation by AZA. In an effort to
identify novel therapeutic targets induced by AZA, we probed
the surface proteomes of the four cell lines using a modified
cell-surface capture of N-linked glycosylated proteins protocol
and quantified the changes induced by AZA treatment using sta-
ble isotope labeling by amino acids in cell culture (SILAC) (22,
23) (SI Appendix, Fig. S1B). Each experiment was performed
in both the forward and reverse SILAC mode, and pairwise
comparisons of the enrichment ratios for the biological repli-
cates showed good reproducibility (SI Appendix, Fig. S8 A and
B). To compare the baseline surface protein profiles among the
four cell lines, we extrapolated a subset of proteomics data from
heavy-labeled vehicle-treated cells (Dataset S2). At baseline, a
total of 875 unique surface membrane proteins were identified
among the four cell lines, and a common set of 232 proteins
were detected in all four cell lines (Fig. 3A). Historically, clas-
sification of cell lineage is dependent on staining of CD markers
on cells. Here, we detected an extensive number of CD markers
expressed on the four cell lines and reported an estimate of pro-
tein abundance for these markers (Fig. 3B). Among the common
CD markers identified were several therapeutic targets of AML,
such as CD33 (SIGLEC-3) and CD47 (integrin associated pro-
tein) (16). Comparison between our proteomics and transcrip-
tome data to known immunophenotyping CD markers of the
four cell lines also showed remarkable agreement (SI Appendix,
Table S2).

We next explored how AZA treatment affected the surface
expression of membrane proteins using SILAC quantification
(SI Appendix, Fig. S1A). The number of differentially regu-
lated proteins ranged from 22 to 47, or 5 to 10% across the
cell lines, and no protein was commonly regulated upon AZA
treatment (Fig. 3C). In fact, the majority of the changes were
unique to each cell line, and only 13 proteins were signifi-
cantly differentially regulated in at least two cell lines (Fig. 3D).
Some proteins, such as CR1 (Complement C3b/C4b Receptor 1),
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Fig. 3. Surface proteome changes induced by AZA treatment in the four AML cell lines. (A) Surface proteins identified in the four vehicle-treated AML
cell lines. Overlapping proteins identified are indicated in the vertical bar graph and the specific overlapping groups are indicated by the black solid points
below the bar graph. Total surface proteins identified in each cell line are indicated in the horizontal bar graph. (B) CD markers identified by surface
proteomics in vehicle-treated sample. The heat map is shaded from yellow to red to reflect estimated abundance (logarithmic sum of peptide intensities
for each protein). (C) AZA induced unique changes on the cell-surface proteome. Overlapping up-regulated and down-regulated proteins are indicated by
upward and downward bars, respectively, in the vertical bar graph [median stable isotope labeling by amino acids in cell culture (SILAC) ratio >2 or <2,
P value <0.05]. The specific overlapping groups are indicated by the black solid points below the bar graph. Total differentially regulated surface proteins
for each cell line are indicated in the horizontal bar graph showing variable surface proteome regulation by AZA. No commonly regulated protein was
identified among the AZA-treated cell lines. (D) Proteins with significant changes in at least two cell lines are shown to illustrate distinct regulation of
surface proteins by AZA (n = 13). (E) Comparison of surface proteomics data between AZA treatment and all-trans retinoic acid (ATRA) treatment in HL60
cells. Pearson correlation between the two datasets is 0.44. Data for ATRA treatment in HL60 was obtained from Hofmann et al. (18).

ITGAM (Integrin Subunit Alpha M), and MPO (Myeloperoxi-
dase), appeared to be generally up-regulated by AZA treatment,
but this was statistical significance in only two or three cell lines.
Western blot of the regulation of ITGAM (CD11b), a common
marker of neutrophil/monocyte differentiation, was consistent
with SILAC quantification (SI Appendix, Fig. S9). Specifically,
expression of ITGAM was up-regulated in HL60 and AML193
cells, did not change in KG1a, and was down-regulated in
HNT34. Together, the surface proteomics analysis, similar to
gene expression analysis, suggests that the effects of AZA are
largely dependent on the inherent differences among the AML
cell lines. Hierarchical clustering of significantly enriched pro-
tein expression showed a distinctive protein regulation profile
in each cell line (SI Appendix, Fig. S8C). Further functional
analysis using GSEA with GO terms indicated an increase in
immune response and a decrease of various transmembrane
transporters (SI Appendix, Fig. S10). The pathway analysis of
proteomics was consistent with the pathway analysis of transcrip-
tomics, showing activation of immune response and repression of
metabolism.

Previously, Hofmann et al. (18) used three cell-surface cap-
ture techniques to identify a total of ∼500 surface proteins
between two AML cell lines (HL60 and NB4) that represent
the M2 and M3 stages of AML. Indeed, comparison of our
HL60 datasets showed an overlap of 230 identified proteins
(SI Appendix, Fig. S11). To understand cellular differentiation,
Hofmann et al. (18) further characterized the surface proteome
in response to all-trans retinoic acid (ATRA). Despite different

mechanism of action, both ATRA and AZA treatment of HL60
cells are known to induce granulocytic and monocytic differenti-
ation. To this end, we compared our HL60 dataset to the existing
dataset and observed a considerable overlap of changes in the
surface proteome (Pearson correlation of 0.44; Fig. 3F). Among
the up-regulated proteins identified in both datasets are sev-
eral known monocytic differentiation markers such as ITGAM
(CD11b), CD14, and CD38, as well as some previously undefined
markers such as ADGRE3 and CR1. It is remarkable that even
though the two molecules target different cellular functions a
number of common targets emerged. As such, these proteins are
potential therapeutic targets for subtypes of AML that undergo
differentiation upon AZA or ATRA treatment.

Comparisons of Methylome, Transcriptome, and Surface Proteome
Profiles. Having all three omics datasets allowed for compar-
isons of cellular states of the four cell lines with and without
AZA at the DNA, RNA, and surface protein levels. Hierarchi-
cal clustering of each omics dataset was dominated by variation
among the individual cell lines rather than variation due to AZA
treatment (Fig. 4A). At the DNA methylation level, KG1a (M1)
clustered with HL60 (M2), while AML193 (M5) clustered with
HNT34 (M4), consistent with their FAB classifications. At the
transcriptome and surface proteome levels, however, KG1a (M1)
and HNT34 (M4) clustered together, while AML193 (M5) and
HL60 (M2) clustered together. KG1a and HNT34 are cell lines
known to be nonresponsive to differentiation agents such as GM-
CSF (24, 25), while AML193 and HL60 have been shown to
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Fig. 4. Omics comparison between methylome, transcriptome, and surface proteome in AML cells treated by AZA. (A) Hierarchal clustering of methylome,
transcriptome, and surface proteome data were dominated by differences between cell lines rather than differences between vehicle and AZA treatment.
(B) Representative RNA expression profiles of all genes (green), of all genes annotated to be surface proteins (blue), and of genes identified by mass
spectrometry experiment (cyan) illustrate that surface proteins have higher gene expression levels. (C) Correlation of changes between gene and protein
expression range from 0.44 for HL60 cells to 0.71 for HNT34 cells (r, Pearson correlation). Significantly up- and down-regulated genes and proteins are
highlighted in red and green, respectively (P value <0.05 for both gene and protein expression profile). For KG1a and HL60, correlation was calculated
after removing two and one outlier points with log2 (fold change of protein expression) >0, respectively. Dashed lines (y = x) are drawn for reference.
(D) Comparison of omics datasets for genes with significant protein changes in at least one cell line. Log2 fold changes are plotted for protein and gene
expression, and scaled average changes in beta values for CpG sites within 1,500 bp of the transcriptional start site are plotted for methylation changes.

differentiate in response to various reagents (26, 27). There-
fore, the four cell lines defined by cellular morphology may
correlate with the methylome, but the functional state of these
cells is more closely correlated to transcriptome and cell-surface
proteome.

Comparison between gene and surface protein expression
showed that surface proteins identified in the proteomic datasets
tend to have a higher transcriptional signal overall (Fig. 4B and
SI Appendix, Fig. S12A). This likely reflects the nature of mass
spectrometry in detecting proteins with the highest abundance.
Quantitative comparison between the changes in RNA and pro-
tein expression after AZA treatment showed Pearson correlation
coefficients (r) ranging from 0.41 to 0.71 (Fig. 4C). Such cor-
respondence has been previously reported in other whole-cell
proteomics experiments using cell lines (28–30). The differences
between mRNA and protein levels are likely due to protein
regulation and steady-state turnover.

Next, we compared the magnitude of changes in DNA methy-
lation, gene expression, and surface protein expression in a
subset of cell-surface proteins that were significantly regulated in
at least one of the cell lines (Fig. 4D and SI Appendix, Fig. S12B).
Comparing the three omics datasets for these genes/proteins of
interest, we found that while protein and transcript levels tracked
reasonably well, changes in methylation status were not corre-
lated with either transcript or protein level. Studies have shown
that methylation effects on transcription can be both positive and
negative (31, 32). This may explain why only a small subset of
RNA changes can be directly accounted for by DNA methyla-
tion changes at either the corresponding gene promoter regions
or gene body.

In an effort to identify AZA-induced functional modules that
might be missing from analyzing one type of data, we adopted a

recently developed algorithm, SMITE (Significance-based Mod-
ules Integrating the Transcriptome and Epigenome) to further
probe for the functional consequence that might be exerted
jointly at methylation and transcription levels (33). Through this
analysis, we found that although methylation and transcription
regulation by AZA might not be synchronized at the gene level
across cell lines, functional networks appeared to be commonly
regulated (SI Appendix, SMITE Analysis and Dataset S3).

Discussion
As omics technology becomes more widely accessible, integrat-
ing data analysis from orthogonal omics sources will be crucial
to understanding any biological question. In this study, we asked
how AZA affects four different AML cell lines at three omics
levels: the DNA methylome, RNA transcriptome, and surface
proteome. This allowed us to compare the AML cell lines at
the epigenetic level and how that manifests into gene expres-
sion and surface protein expression. Our multiomics study of
the four AML cell lines showed that ∼80% CpG sites, ∼53%
transcripts, and ∼50% surface proteins overlap in methylation or
expression pattern in vehicle-treated cells. AZA treatment led to
global reduction in DNA methylation, ranging from 45 to 70%
of all probed CpG sites, while changes in mRNA and surface
protein expression were much more subdued, ranging from 5 to
10%. Although we focused on the surfaceomics of the surviv-
ing cells, it could also be of interest to study the apoptotic cell
population in the future. One gene encoding a surface protein,
TRPM4, was found to be commonly up-regulated by AZA treat-
ment in all four cell lines and may represent a potential novel
therapeutic target for AML in combination with AZA. Compar-
ing to previously published data of ATRA treatment in HL60,
we identified several previously undefined markers such as
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ADGRE3 and CR1 that are potential therapeutic targets for sub-
types of AML that undergo differentiation with AZA or ATRA
treatment.

Despite relatively few changes observed at the transcriptome
and surface proteome levels after AZA treatment, functional
analysis of RNA and protein regulation showed a general repres-
sion of metabolism and activation of immune response across the
four cell lines. The repression of metabolism was consistent with
a general inhibition of cell growth, albeit to different degrees,
suggesting a common response of the cells toward AZA treat-
ment (SI Appendix, Table S1). We also observed activation of
immune-responsive genes, which is consistent with previous stud-
ies showing that AZA treatment in cells of epithelial origin led
to the transcription of endogenous retrovirus, and an induction
of a number of immune response genes (AIM genes) related
to antiviral response (13). Even though most of the defined
AZA-induced immune genes (AIM genes) were activated in the
current study, the magnitude of induction was variable among
all four cell lines (SI Appendix, Fig. S13). Recently, a number
of clinical trials using combination therapy with AZA and check-
point inhibitors have shown some clinical efficacy, and it has been
postulated that this antiviral response induced by AZA can sensi-
tize various cancers (7, 17). Given the common functional impact
among the different subtypes of AML cell lines as well as cervi-
cal (12, 13) and colorectal (14) cancer, combination therapy with
AZA and checkpoint inhibitor is a promising strategy for cancer
types of hematopoietic origin.

AZA and other DNMTi have been approved for treatment
of MDS and AML for the past decade; however, unmet medi-
cal need remains for these patients. Here, we used a multiomics

approach to detail the impact of AZA on AML at the individual-
gene level as well as the functional-pathway level. The heteroge-
neous response of AZA treatment reflects the heterogeneity of
cell types, implicating that a subtype-specific therapeutic strategy
would be more suitable than a general antibody-based therapy
against all AML. Three therapeutic candidate targets, TRPM4,
ADGRE3, and CR1, were identified for treatment of AML in
combination with AZA, and we hope to validate these targets
in matched patient samples before and after AZA treatment
using more sensitive targeted proteomics methods such as par-
allel reaction monitoring. Beyond specific validation of these
targets, further experiments using a similar integrated omics
approach to analyze clinical specimens will advance our under-
standing of how DNMTi affect AML. Given the heterogenous
response we observed, developing techniques toward single-cell
parallel analysis of epigenome, transcriptome, and proteome will
be paramount to deciphering the interaction between cell types
and different cellular states.

Materials and Methods
AML193, HL60, KG1a, and HNT34 cells were cultured in RPMI SILAC media
and treated with vehicle (DMSO) or 0.5 µM AZA daily for 3 d. Cells were
cultured for another 4 d in drug-free RPMI SILAC media before they were
harvested for DNA methylation, gene expression, and surface proteomics
analyses. Detailed materials and methods are included in SI Appendix.
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