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The dynamics and stability of ecological communities are in-
timately linked with the specific interactions—like cooperation or
predation—between constituent species. In microbial communi-
ties, like those found in soils or the mammalian gut, physical an-
isotropies produced by fluid flow and chemical gradients impact
community structure and ecological dynamics, even in structurally
isotropic environments. Although natural communities existing in
physically unstructured environments are rare, the role of environ-
mental structure in determining community dynamics and stability
remains poorly studied. To address this gap, we used modified
Lotka−Volterra simulations of competitive microbial communities
to characterize the effects of surface structure on community dy-
namics. We find that environmental structure has profound effects
on communities, in a manner dependent on the specific pattern of
interactions between community members. For two mutually com-
peting species, eventual extinction of one competitor is effectively
guaranteed in isotropic environments. However, addition of envi-
ronmental structure enables long-term coexistence of both species
via local “pinning” of competition interfaces, even when one spe-
cies has a significant competitive advantage. In contrast, while
three species competing in an intransitive loop (as in a game of
rock−paper−scissors) coexist stably in isotropic environments,
structural anisotropy disrupts the spatial patterns on which coex-
istence depends, causing chaotic population fluctuations and sub-
sequent extinction cascades. These results indicate that the
stability of microbial communities strongly depends on the struc-
tural environment in which they reside. Therefore, a more com-
plete ecological understanding, including effective manipulation
and interventions in natural communities of interest, must account
for the physical structure of the environment.
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From the scale of large metazoans down to microbes, natural
environments are replete with multispecies communities that

compete for resources and space, and, in many cases, actively
predate other species within their environment. Within complex
ecosystems, the topology and type of interactions between con-
stituent species are thought to be primary determinants of eco-
system dynamics and stability. Typical pairwise interactions, like
competition, cooperation, or predation, form the building blocks
for constructing multispecies interactions and can be used to
predict dynamics and stability in “well-mixed” environments
where spatial distributions are uniform (1, 2). Interaction to-
pology plays a particularly important role in species coexistence.
For instance, in three-species intransitive competition (as in the
classic rock−paper−scissors game), extinction of any species re-
sults in extinction cascades that favor dominance of a single
species. Microbial systems present a particularly salient mani-
festation of these concepts, not only because complex commu-
nities of microbes are found in a wide array of industrial- and
health-relevant environments, like soils and the mammalian gut,
but also because the ability to genetically recapitulate and manip-
ulate specific pairwise interactions biochemically makes microbial

systems particularly well suited for testing our understanding of
fundamental mechanisms underlying ecosystem dynamics.
Characterization of interactions within ecological networks,

and their corresponding biochemical mechanisms, often focuses
on microbial communities in which the spatial distribution of
actors can significantly impact the type and magnitude of those
interactions, and the resulting population dynamics. For exam-
ple, spatially localized clonal domains that result from compe-
tition between mutually killing isolates of Vibrio cholerae may
facilitate emergence of cooperative behaviors like public good
secretion (3). Large clonal domains stabilized three-way in-
transitive competition within a consortium of Escherichia coli
strains (4), which was unstable in well-mixed environments;
similar mechanisms were found to stabilize competing cancer
cell lineages when comparing spatial vs. nonspatial models of
tumorigenesis (5). Reversing the causative arrow, ecological in-
teractions can also dictate spatial arrangements of genotypes: In
simulated three-species intransitive consortia with mobile indi-
viduals, lack of a single dominant competitor leads to population
waves that continually migrate throughout the environment (6),
thereby ensuring dynamic and long-term stability in species
representation. Conversely, in competition between two mutual
killers, coarsening of clonal domains guarantees the eventual
extinction of one of the species (3), unless additional interaction
mechanisms are present (7). Therefore, in contrast to dynamics
that play out in well-mixed environments, it is clear that the
spatial distribution of organisms is an important determinant of
community dynamics and long-term ecological outcomes.

Significance

Many microbial communities of ecological and medical impor-
tance reside in complex and heterogeneous environments,
such as soils or intestinal tracts. While many studies consider
the effects of flow or chemical gradients in structuring these
communities, how the physical structure of the environment
shapes community dynamics and outcomes remains poorly
understood. Using simulations of competitive microbial com-
munities, we show that stability and dynamics qualitatively
shift in environments with complex surface structures com-
pared with open isotropic environments. Therefore, in addition
to biochemical interactions between species, our work sug-
gests that the physical structure of the environment is an
equally important determinant of dynamics and stability in
microbial communities, in a manner dependent on the specific
patterns of interactions within that community.
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A common condition imposed on simulations of spatially ex-
plicit ecological systems is environmental isotropy, defined by the
system having the same chemical and physical properties in all
directions [for example, a homogeneous 2D plane (3, 6, 8)].
While such simplifications are essential in building fundamental
understanding of system dynamics, they do not reflect salient
environmental anisotropies found in most natural systems, such
as chemical gradients, fluid flow, and complex surfaces. Despite
relevance to natural communities, examination of the mecha-
nisms by which environmental anisotropies affect ecological
communities is sparse. In single-species populations, colonizing
complex environments can result in drastic changes in spatial
distributions. For instance, using microfluidic devices, Drescher
et al. (9) showed that surface morphology and fluid shear forces
interact to drive formation of novel biofilm structures in Pseu-
domonas aeruginosa, while, in V. cholera, cell adhesiveness and
fluid flow interact to dictate the cluster size of competing gen-
otypes (10). Biofilm formation can also disrupt fluid flow in a
microfluidic mimic of soil environments, which, in turn, allows
for coexistence of competing cheater and cooperator phenotypes
of P. aeruginosa that are otherwise unstable under well-mixed
conditions (11); similar outcomes were observed for competing
cooperative and cheating lineages of E. coli in heterogeneous
nutrient landscapes (12). Complex environments may interact
with bacterial social behaviors as well: When colonizing maze-
like microfluidic environments, chemoattractant production by
E. coli caused heterogeneous population structures to form due
to concentration of such attractants in the “dead ends” of the
maze (13). Importantly, these perturbations to population
structure are commensurate with length scales at which mixing
occurs for in vivo communities such as the mammalian (14, 15)
and fish (16) guts, or in dental plaque (17). Theoretical investi-
gations indicate that similar environmental perturbations are
likely to affect multispecies communities; for example, turbulent
flow (18) or directional motility (19) can disrupt spatial pat-
terning of intransitive three-species communities and thus in-
crease the risk of extinction cascades, while graph-theoretic
approaches suggest that random perturbations to spatial lattices
result in similar community destabilization (20). Together, these
results suggest not only that spatial distributions of organisms
influence ecological dynamics but that the magnitude of these
effects depends strongly on the specific nature of anisotropies
within the environment.
In this work, we systematically characterized the effects of

structural anisotropy on multispecies population dynamics and
spatial distributions within in silico ecological communities. The
structural attributes of these simulations are intended to capture
the primary spatial structure found in natural environments, like
the packing of steric soil particles or the contents and epithelial
structure of the mammalian gut. Using reaction−diffusion
models, we simulated asymmetrically competing two-species and
intransitively competing three-species ecological networks in the
presence of steric barriers arranged in a lattice within the envi-
ronment. These networks and the corresponding simulations
were chosen for direct comparison with previous work (3, 6) that
provides clear expectations for spatial distributions and com-
munity dynamics in homogeneous environments, and which we
discuss within Results. We find that the addition of environmental
structure fundamentally alters community dynamics in both two-
and three-species competitive systems. In the two-species case,
coarsening of genetic domains that would otherwise lead to ex-
tinction of one competitor is arrested due to “pinning” of compe-
tition interfaces between barriers, resulting in long-term coexistence
of both species. This effect is strongly linked to the geometry of
the steric barriers, and is robust to asymmetry in competitive
fitness. For intransitive three-species competition, steric barriers
cause interference between traveling population waves, inducing
chaotic fluctuations in the abundances and spatial distributions

of species and a concomitant increase in the probability of ex-
tinction cascades. Our results affirm that the trajectories, stability,
and spatial structure of ecological communities are drastically altered
by the arrangement and length scale of structural perturbations
in the environment.

Results
Competition Model. We model interspecies interactions using a
modified version of the Lotka−Volterra (LV) competition
framework. In the classic LV model, interaction mechanisms and
fitness differences are combined into a single parameter that
characterizes competition as an effective carrying capacity for
the focal species relative to the density of a competitor; hence
there is no differentiation between, e.g., competition for re-
sources and toxin-mediated killing. Here, we extend the classic
LV framework to reflect “active competition,” where passive
competition for space and nutrients (affecting carrying capacity)
is decoupled from active competition mechanisms that directly
impact growth rate, such as Type VI secretion system mediated
killing or bacteriocin production (21, 22), giving the system of
partial differential equations (PDEs)
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Here Ai is the local concentration of focal species i, Ak is the
concentration of the active competitor species for Ai, and the
sum is over all species passively competing for space and nutri-
ents. The primary dispersal mechanism is through diffusion char-
acterized by D, basal growth rate is given by r, and carrying
capacity for each species is given by Cj. Active competition is
characterized by the concentration parameter Pki, which is the
concentration of Ak above which Ai is killed, and hence lower
values of Pki indicate more potent active competition (i.e., lower
concentrations of the active competitor are required to cause
death). This framework has the capacity to model passive fitness
differences (through species-specific values of Cj) and anticom-
petitor mechanisms (through Pki), thereby capturing two basal
and distinct mechanisms of microbial competition. This model is
appropriate for describing diffusively mediated local competitive
interactions, like Type VI secretion contact-mediated killing or
local killing by secreted toxins such as colicins (23). Additional
PDEs would be required to describe highly motile cells, exoge-
nous chemical gradients, or the production, potency, transport,
and decay of rapidly diffusing secreted toxins. This set of PDEs
establishes a baseline set of assumptions and corresponding phe-
nomena from which to build more complex models.
In this work, we focus specifically on the competitive effects,

and assume equal basal growth rates r, diffusion D, and carrying
capacities C for all species in the community. This simplification
allows the population density to be scaled by carrying capacity
and the time to be scaled by the growth rate, which reduces the
parameter space of the model, leaving the dimensionless version
of Pki (i.e., Pki/C) as the single free parameter that dictates the
strength of active interspecies competition,
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Here time is in units of r−1, length is in units of
ffiffiffiffiffiffiffiffi
D=r

p
, and

organismal concentrations Ai (i.e., number per unit area) are
in units of C; therefore 0≤Ai ≤ 1. The natural length scale
λ=

ffiffiffiffiffiffiffiffi
D=r

p
is proportional to the root-mean-squared distance an

organism will move over a single doubling time. Finally, we
employed a minimum concentration cutoff Amin, such that, if
Ai < Amin, then Ai → 0. This is meant to approximate the fact
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that arbitrarily small organismal concentrations—compared with
the carrying capacity—do not reflect the reality that single discrete
organisms correspond to finite levels of organismal concentration.
We used this nondimensionalized model to simulate commu-

nities in a 2D environment into which we introduce structural
anisotropy via a lattice of steric pillars (Fig. 1, and see Fig. 3).
Like a grain in soil or tissue in a gut, these pillars do not allow
free transport through them, nor allow microbes to occupy them;
their perimeter is a reflecting boundary condition. Structural
perturbations were explored by introducing a triangular lattice of
steric circular pillars, with each lattice fully characterized by the
radii of the pillars R and the center-to-center spacing of the
pillars Δx, with each simulation evolving in a square domain of
side length L. These parameters (pillar radius R, pillar spacing
Δx, and simulation size L) are reported in units of λ. We then
characterized the impact of these perturbations on the spatial
distribution and dynamics of in silico communities across struc-
tural length scales by monitoring the distributions and abun-
dances of resident community members as we varied the radius
and density of pillars within the simulation environment.

Competition Between Two Mutual Killers.
Structured environments arrest genetic phase separation. For an ac-
tively competing two-species community in an isotropic envi-
ronment, recent theoretical and experimental work indicates that
species phase separate according to genotype, with the eventual
extinction of one species via domain coarsening (3). Our model
produces results consistent with those findings, but, in contrast,
we find that, when spatial structure is introduced into the envi-
ronment, genetic phase separation is arrested, resulting in stable
coexistence of mutually killing genotypes (Fig. 1 and Movie S1).
Arrest occurs by pinning of competition interfaces between steric
barriers (i.e., pillars). In both isotropic and anisotropic envi-
ronments, coarsening of genetic domains is driven by the cur-
vature of competition interfaces. If competition is symmetric, a flat
interface will not move, whereas a curved interface will translate

toward the center of the circumscribing circle. In isotropic con-
ditions, stable interfaces are the exception, only found in the rare
case where a single flat interface bisects the entire environment,
which is itself increasingly unlikely in larger environments. Thus,
all domains enclosed by a competitor will eventually be consumed,
and one of the competitors will go extinct. In contrast, we find that
flat competition interfaces are stabilized between steric barriers,
resulting in the arrest of domain coarsening and subsequent long-
term coexistence of both species (Fig. 1). Importantly, for sym-
metric competition, we observed that the size and/or density
of pillars had little effect on community stabilization (left edge
of Fig. 2A), suggesting that, for well-matched competitors, even
slight structural perturbations that allow for interface pinning
may be sufficient to foster coexistence.
Pinning of genetic domain interfaces is robust to asymmetric competition.
When one species is a more potent competitor (e.g., PAB > PBA),
even the symmetry of an environment fully bisected by a linear
competition interface will result in extinction of the weaker
competitor. While flat interfaces balance symmetric competition,
they are not stable when one species has a competitive advan-
tage, and instead will translate through space. Likewise, when
competition is asymmetric in an isotropic environment, over an
ensemble of random initial conditions, the dominant competitor
will drive the weaker competitor to extinction in the overwhelming
majority of cases. We wanted to know whether structural pertur-
bations could stabilize coexistence even when competition was
asymmetric. Thus, we performed simulations identical to those
described above, but varied the difference in the competition
parameters, jPAB − PBAj, while holding their mean constant. We
observed that stable coexistence via interface pinning was robust
to asymmetric competition within certain regimes of the lattice
parameters (Fig. 2 and Movie S2). The mechanism, however, was
somewhat counterintuitive: For a given degree of competition
asymmetry, jPAB − PBAj, there exists some critical interface cur-
vature that balances the numeric advantage of the weaker species
against the competitive advantage of the more potent species

species A species B
100% 100%0%

t = 8 t = 20 t = 60 t = 300 t = 1200

Fig. 1. Structurally anisotropic environments arrest genetic phase separation in two-species systems, resulting in long-term coexistence. Panels depict
snapshots from simulations of two-species competition in structurally isotropic (Top) and anisotropic (Bottom) environments, with color intensity reflecting
species abundance, and pillars shown in gray. Time is measured in doubling times. Under isotropic conditions, domain coarsening robustly leads to extinction
of one of the species. Anisotropic environments, however, allow for local pinning of competition interfaces, resulting in arrest of domain coarsening and
thereby sustained coexistence. Simulation parameters are L/(1.29 λ) = 100, P = 0.1, and Amin = 0.001, with R/(1.29 λ) = 2 and Δx = 3.5 R for the anisotropic case.
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(Fig. 2B, Inset). This is true regardless of the presence of environ-
mental structure; however, in isotropic conditions, this competitive
equilibrium is unstable, and any perturbation of domain curvature
from the critical value will result in interface translation and even-
tual extinction. We found that structural perturbations stabilize the
equilibrium created by curved competitive interfaces if the spatial
structure of the environment can support the critical curvature
between two steric surfaces (SI Appendix); only then will phase
separation halt and coexistence be maintained. Otherwise, the
dominant competitor will drive the weaker species to extinc-
tion (Fig. 2A), albeit with slower dynamics than isotropic
conditions.
Unlike symmetric competition, where coexistence is fully de-

termined by flat competition interfaces, the curved interfaces re-
quired to stabilize asymmetric competition also impose a minimum
domain size on the competitively disadvantaged species that de-
pends on the lattice parameters. This is because a sufficiently large
population of weak competitors is required to compensate for
competitive losses at the interface through growth and diffusion
(note the increased levels of extinction with the smallest pillar
spacings in Fig. 2A, and the dissolution of domains in Movie S2 that
were stable under the symmetric competition of Movie S1). Fur-
thermore, using geometric and scaling arguments (SI Appendix), we
predicted that the critical curvature should be, to leading order, a
linear function of the competitive asymmetry and confirmed this
with our simulations (Fig. 2B).
Finally, we speculated that, because the stabilization of asym-

metric competition was largely governed by interactions between
pillar geometry and curved competition interfaces, structurally
induced coexistence of competitors should be a general feature
of models with sufficiently sharp competition interfaces. We
tested this by simulating a classic competitive LV model with
structural perturbations across the same range of competitive
asymmetry and pillar spacing as Fig. 2A. We found that pinning
and coexistence were robust features in the classic LV frame-
work and generated quantitatively similar results to our modified
framework from Fig. 2A (SI Appendix, Figs. S7 and S8).

Three Species Intransitive Competition.
Environmental structure disrupts three-species dynamics. Previous in
silico simulations of an intransitively competing three-species
network (i.e., displaying a cyclic competitive hierarchy, as in the
game rock−paper−scissors) within an isotropic environment
resulted in the formation of striking spiral wave patterns, in
which dense waves of species constantly migrate throughout the
environment, with each species wave chasing its prey and being
followed by its predator (see ref. 6, and recapitulated in our model
in Fig. 3A). Despite constant flux of species at small length scales,
the community robustly exhibited stable coexistence of all three
species on ecological time scales (more than 104 generations)
when provided with a sufficiently large environment relative to the
natural length scale set by diffusion and growth. These findings
agree with the earlier experimental results of Kerr et al. (4), albeit
at different time and length scales. However, it should be noted
that previous theoretical work indicates that fluctuations (24) or
finite number effects (25) can force such systems into heteroclinic
cycles that eventually lead to extinction cascades.
Given the drastic changes in ecological outcomes when

structural perturbations were introduced in two-species com-
petitive systems, we wanted to characterize how dynamics and
outcomes changed in three-species competition when we in-
cluded structural perturbations. We performed simulations using
the same set of governing equations as in the two-species case,
now accounting for the topology of a cyclic competitive hierarchy
and imposing fully symmetric competition for simplicity (i.e., all
Pki set equal). We found that the introduction of spatial structure
into the environment significantly destabilizes wave patterns
observed under isotropic conditions in a manner that strongly
depends on the spacing and size of steric barriers and the value
of the minimum concentration Amin. For example, while densely
packed barriers prevent regular pattern formation and result in
erratic fluctuations in species abundance (Fig. 3 C and D), in-
creasing the space between pillars allows the system to reestab-
lish wave patterns that dominate the environment and significantly
reduce the magnitude of population fluctuations (Fig. 3B). Thus,
whereas structure in the two-species competitive model promotes
coexistence and long-term stability that is otherwise absent in
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Simulation parameters are L/(1.29 λ) = 100, Amin = 0.001, and the average competition strength (PAB + PBA)/2 is held constant at 0.1. (B) Stable interface
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Inset schematically depicts stable curved interfaces, where the numerical advantage of the weaker competitor species (green) balances the advantage of the
stronger competitor species (magenta). See Methods for description of curvature calculation.
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isotropic conditions, three-species intransitive competition dis-
plays the opposite qualitative trend: Adding structure reduces
coexistence and promotes extinction cascades. We therefore set
out to characterize the complex dynamics arising from intransitive
competition in structured environments, with special attention
paid to transitions in population dynamics as a function of quan-
titative changes in environmental structure.
Introducing structural anisotropy leads to chaotic fluctuations in species
abundance and extinction cascades. To quantify how structural per-
turbations destabilize pattern formation and cyclic dynamics in
our deterministic simulations, we examined the dynamic trajec-
tories of multiple replicates of the same steric pillar array initial-
ized with controlled, random differences in the initial distributions
of the three species. We then compared the correlations in species
distributions between replicate simulations as the system evolved.
In contrast to limit cycle dynamics in isotropic environments, we
found that increasing pillar density resulted in extreme sensitivity
to perturbations of initial conditions, a hallmark of chaotic
dynamics (26), with an exponential decay in pairwise replicate
correlations through time (Fig. 4). Chaotic fluctuations were
accompanied by transitions into extinction cascades (evident in
Fig. 4, where correlation traces are truncated at the first extinction
event among replicates), and we found that higher values of Amin
favored faster transitions into extinction cascades; for all sub-
sequent analyses, we used Amin = 0.01 to make these large-scale
computations tractable. In the SI Appendix, we further examine
the difference between limit cycle and chaotic behaviors, dem-
onstrating that the latter has positive Lyapunov exponents. We
also performed demonstrative simulations of intransitive three-
species competition in a typical LV model, and found that, even
in the classic LV framework, introducing environmental structure

could elicit transitions from limit cycle to chaotic dynamics as
pillar density increased (SI Appendix, Fig. S6).
In initial simulations, we noted that species distributions often

exhibited dynamic transitions between patterns of spiral waves
and chaotic fluctuations (Fig. 3C), and thus we sought to char-
acterize overall system dynamics as a function of environmental
structure. We performed simulations with uncorrelated initial
conditions across a range of pillar sizes and spacings, and clas-
sified system dynamics as “limit cycle” or “chaotic” by calculating
the temporal autocorrelation of the species distribution in space.
If the spatiotemporal autocorrelation of all three species (minus
steric barriers) at time t reached an autocorrelation value above
a threshold value of 0.8 two or more times after t, we defined the
dynamic state as cyclic at time t (Methods and SI Appendix, Fig.
S12). With this definition, we classified the dynamics as a func-
tion of R and Δx into pseudophase diagrams for fraction of time
spent in cyclic dynamics (Fig. 5A) and the extinction frequency
over the simulation time scale (Fig. 5B). Example simulations are
provided in Movies S3–S6. We found that smaller and more
densely packed pillars lead to greater destabilization, with less
time spent in limit cycle dynamics and higher rates of extinction.
Intriguingly, however, with the smallest and most densely packed
pillar structures, we observed a reduced extinction frequency,
reversing the trend seen at larger pillar spacings (Fig. 5B, bot-
tom). This appears to be specific to the mechanisms by which
pillars destabilize the system. With large pillars and spacings,
spiral waves develop in open areas and are largely unperturbed
by the pillars, resulting in cyclic behavior and few extinctions
(Movie S3). As pillar spacing decreases, open areas narrow to
the point that spiral wave centers are destabilized, migrating
erratically and eventually collapsing due to interference from
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Fig. 3. Structurally anisotropic environments disrupt spatial patterns and cyclic dynamics in intransitively competing three-species communities. (Top)
Snapshots of spatial distributions from representative simulations, with (Bottom) corresponding abundance dynamics. (A) Following a brief “grow-in” period,
isotropic conditions result in spiral waves and cyclic abundance dynamics with corresponding stable coexistence. The Inset illustrates the intransitive com-
petitive network topology, with flat-headed arrows indicating predation. (B) Introducing pillars spaced far apart compared with the natural length scale of
the system slightly perturbs wave center formation and dynamics, but the system still robustly exhibits spiral waves and stable coexistence. (C) Moving pillars
closer disrupts cyclic pattern formation, leading to irregular spatial distributions and large fluctuations in species abundance. However, in this example,
transient wave centers form (white arrow) and produce locally stable cyclic dynamics, indicated by the dashed boundary in Top. Note the longer time scale on
this plot. (D) More densely packed pillars hinder transition to a limit cycle, resulting in sustained large fluctuations in abundance and irregular species dis-
tributions that exhibit extreme sensitivity to perturbations and corresponding chaotic dynamics. See SI Appendix for demonstration of positive Lyapunov
exponents. Movies S7–S10 correspond to A through D, respectively. Simulation parameters are L/(1.29 λ) = 150, P = 0.1, Amin = 0, and, for simulations including
pillars, R/(1.29 λ) = 3 and Δx as indicated.
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other wave fronts (Movie S4). With smaller pillar radii, the pil-
lars themselves often act as wave centers, and appear to be
particularly vulnerable to disruption via interference (Movie S5).
However, when small pillars are so densely packed that a pillar
cannot serve as a wave center, the centers again migrate errati-
cally between pillars, but the pillar density is high enough to
“cage” the rapidly diffusing wave centers and prolong their ex-
istence in a chaotically fluctuating state (Movie S6). Thus, the
prevalence of extinction cascades is a nonmonotonic function of
pillar density, suggesting that intermediate scales of spatial struc-
ture produce the strongest destabilizing effects on intransitive
communities. Finally, to ensure that the observed changes to
system dynamics and corresponding destabilizing effects were
not dependent on the symmetry of a triangular lattice, we
performed a subset of simulations where pillar radii or spacing

were independently and randomly perturbed, and no significant
changes to system dynamics and ecological outcomes were
observed (SI Appendix, Fig. S13).
A three-state kinetic model describes coupling of dynamic transitions and
extinction. In our three-species simulations, we observed transi-
tions from chaotic dynamics to limit cycles and back again, with
many simulations ultimately making the transition from chaotic
dynamics to the fully absorbing state of extinction. Although the
simulations are deterministic, the ensemble of random initial
conditions creates statistical variability in system dynamics. Thus,
we wanted to characterize how the distribution of extinction
times, and hence the time scale of coexistence, depended on en-
vironmental structure. We developed a three-state kinetic model
to describe transitions between chaotic (C), limit cycle (L), and
extinct (E) states, using three positive rate parameters to connect
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the states (kCL, kLC, and kCE). The closed-form solution to our
model (SI Appendix) predicts that any system whose structural
perturbations result in kLC > 0 and kCE > 0 will go extinct given
enough time, which is consistent with previous work (24, 25). It
also predicts that the rates of arrival to the extinct state depend on
the dynamics fostered by the environmental structure. To test this,
we took structural conditions whose initial dynamics were classi-
fied as either limit cycle, chaotic, or mixed for the first 1,000
doubling times (marked tiles in Fig. 5), and used the observed
distribution of extinction times as a function of environmental
structure to fit extinction probability densities predicted by the
model over a period of 10,000 doubling times. We found that our
model recapitulated observed distributions of extinction times (Fig.
6), and that, indeed, changes in environmental structure had sig-
nificant effects on the distribution of extinction times. These results
indicate that structurally induced destabilization results from a
combination of decreased rates of transition from chaotic fluctua-
tions to limit cycle dynamics and/or increased rates of transition
from chaotic dynamics to extinction (see model diagrams in Fig. 6).
Accordingly, systems that remained largely in a limit cycle had
slower rates of extinction. The fitted model parameters were func-
tions of multiple individual transition rates with complex mappings
(SI Appendix, Fig. S10); hence direct inference of the effects of
structural perturbations on individual transition rates (e.g., from
limit cycle to chaos) was not possible with this model.
Larger systems prolong species coexistence despite chaotic fluctuations.
Lastly, we sought to characterize the effect of system size on com-
munity stability. Holding the structure of the pillar array constant,
we observed that the mean time to an extinction cascade increased
approximately exponentially with increasing system size (Fig. 7A).
This suggests that, with sufficiently large systems relative to the
natural length scale, communities can coexist for long periods de-
spite continual chaotic fluctuations in individual species abundances

and distributions. However, consistent with the predictions of our
kinetic model (Fig. 6), larger systems cannot fully prevent ex-
tinctions, as evidenced by observed extinction frequencies
when simulation times were extended. In Fig. 7B, we demon-
strate this effect, showing that, for a given simulation duration,
there is a system size above which the extinction frequency drops
to nearly zero, but, by simply extending the simulation time, the
extinction frequency increases to unity.

Discussion
Using in silico simulations of ecological communities, we found
that adding structural complexity to the environment results in
fundamental changes to community dynamics and outcomes in a
manner dependent on the interaction network topology. Spe-
cifically, we observed that, for two mutually competitive species,
structured environments allowed for long-term coexistence between
species with relatively large differences in competitive fitness, an
outcome impossible in well-mixed or isotropic environments. Con-
versely, for a three-species intransitively competing community,
which is expected to be stable under isotropic conditions (6), we
found that environmental structure can disrupt the dynamic
spatial patterns that stabilize these communities, resulting in
chaotic fluctuations in species abundances and spatial distribu-
tions, and an increased frequency of extinction cascades. To-
gether, these findings strongly suggest that the physical structure
of the environment can interact significantly with the specific
nature of interspecies interactions within resident communities to
affect stability and dynamics, and more generally indicate that
physical attributes of the environment must be considered when
assessing the stability of resident communities.
Our results extend established findings that spatially struc-

tured communities maintain biodiversity by localizing interac-
tions among community members (8, 27, 28). In particular, in the

0 2500 5000 7500 10000

0

50

100

0

50

100

0

50

100

time to extinction (doubling times)

ex
tin

ct
io

ns
 (o

ut
 o

f 1
00

0 
tri

al
s)

Nextinct = 35

Nextinct = 741
K = 0.016
τ = 40

Nextinct = 1000
K = 0.239
τ = 130

initial conditions

L C

E

L C

E

L C

E

lim
it cycle

m
ixed

chaos

Fig. 6. A kinetic model of dynamic transitions describes extinction time distributions for a range of environmental structures. From the lattice structures
indicated by overlaid symbols in Fig. 5 (indicated here at top left in histogram plots), we performed 1,000 replicate simulations for 10,000 doubling times to
measure the distribution of extinction times and compare them to our model. These conditions typify the three observed dynamic regimes [(Top) limit cycle,
(Middle) transitory, and (Bottom) chaotic], and map to a three-state model of system dynamics with two correlated rate parameters that depend on structural
characteristics (in this case, pillar grid parameters; see SI Appendix). The histograms were constructed from observed extinction times, and gray lines are fits to
probability distributions predicted from the three-state model. Fitting was not attempted for the cyclic case (Top), as only 3.5% of simulations were observed
to go extinct over the simulation period. The number of extinctions and (where applicable) the fit parameters are shown within the corresponding plots.
(Left), Connections between the dynamical states of limit cycle (L), chaotic (C), and extinction (E) are depicted, with relative rates qualitatively indicated by the
width of the arrows. Simulation parameters are L/(1.29 λ) = 100 and P = 0.1, with pillar size and spacing as indicated in Fig. 5.

Vallespir Lowery and Ursell PNAS | January 8, 2019 | vol. 116 | no. 2 | 385

BI
O
PH

YS
IC
S
A
N
D

CO
M
PU

TA
TI
O
N
A
L
BI
O
LO

G
Y

EC
O
LO

G
Y

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1811887116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1811887116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1811887116/-/DCSupplemental


context of simple competition, the spatial bottlenecks that
structurally complex environments provide impede competitive
mechanisms to the point that only a small fraction of a given
population is engaged in active competition, and hence fitness
differences become less important relative to geometric advan-
tages provided by specific localization within the environment.
However, our findings also suggest that intransitive interaction
networks are not a robust means of stabilizing communities, as
has been theoretically postulated (29, 30). If deviation from
isotropic conditions (which is found in virtually all natural en-
vironments) only serves to accelerate the frequency of extinction
cascades within these networks, this work offers a mechanism as
to why such networks are only rarely observed outside of the
laboratory (31–34). More generally, developing experimental
systems to directly assess the impact of spatial structure on mi-
crobial community dynamics will be essential in isolating and
characterizing the mechanisms that stabilize or perturb com-
munities. We suggest that derived systems, such as microfluidic
environments, will be crucial in this respect, as finding suitable
natural environments that vary in degree of spatial structuring
and are not also confounded by factors like nutrient availability,
phages, predation, or other physical anisotropies like fluid flow
may be difficult. We note that the complementary approaches of
Kerr et al. (4) and Kirkup and Riley (32), where the same ex-
perimental community was observed within in vitro and in vivo
environments, respectively, may offer a possible alternative.
We speculate, based on scaling effects, that the increase in

surface area-to-volume ratio going from 2D into 3D will enhance
the stabilization of asymmetric competition between two species.
Conversely, given the potential augmentation of structural
complexity available in higher dimensions, we expect that, in
dynamic intransitive communities, chaotic fluctuations would be
a robust feature. We also expect that the shape of steric barriers
could play a nontrivial role in ecosystem dynamics and stability;
we chose circles for simplicity, as they are characterized by a
single parameter (R). The spectrum of available interface cur-
vatures within a particular environmental structure is a function
of both overall spatial scale (e.g., here Δx) and the shape of the
steric objects themselves. Rationally designed structures could
therefore potentially be used to tune the range of competitive
asymmetries and/or stochastic fluctuations that an environment
can stably support, and to shift system dynamics and stability to
favor particular species or interaction topologies.

Whether our findings are robust when placed in the context of
other physical and ecological phenomena will meaningfully
comment on whether principles gleaned through idealized con-
texts transfer to complex natural systems. For example, how
robust are pinned competition interfaces to stochastic spatial
fluctuations caused either by finite organism size or other forms
of motility (besides diffusion), tunable interaction strengths, such
as with competition sensing (23, 35), or phenotypic differentia-
tion (36)? Are chaotic fluctuations a dominant dynamic state
when cells can respond to chemical gradients via chemotaxis?
What are the effects of physical structure on species distributions
for larger networks, where specific interaction motifs are embedded
within a more complex ecological context? These extensions will
pave the way toward future theoretical work, as well as generating
specific hypotheses to be tested experimentally. Conversely, phe-
nomena that were salient in this work, in particular the pinning
phenomena that slowed or halted genetic coarsening, play impor-
tant roles in other physical and biological systems, including domain
wall stabilization in Ising-like systems due to pinning at random
spatial impurities (37), pinning-induced transitions of supercooled
liquids into glassy states (38), and arrest of lipid bilayer domain
coarsening in the presence of biopolymers that impose structure on
the bilayer (39). Likewise, other physical mechanisms, such as flow
(40), have been found to slow or halt coarsening in phase-separating
systems, suggesting that modulation of system dynamics and stability
due to complexities within the physical environment is not the ex-
ception but rather the rule.
Finally, we note that the reductionist approach we take here is

valuable toward unraveling the multitude of forces acting on
microbial communities in complex environments. While we focus
specifically on environmental structure, and others give similar
focus to flow (10, 41) and chemical gradients (42) in structuring
communities, all of these environmental features are intimately
linked and, in combination, will modulate impacts on commu-
nities in important ways (11). Building a bottom-up understanding
of how various features interact to drive community processes is
therefore essential in determining the primary forces acting on a
community in a given environmental context, paving the way to-
ward the ultimate goals of understanding basal mechanisms of
ecosystem dynamics and of targeted and robust engineering of
microbial communities.

Methods
Two-Species Mutual Killer Simulations. Simulations were randomly seeded
with pink noise (43) at an average density of 10% of the carrying capacity,
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with each species represented by its own field matrix. Pillars were placed in a
triangular lattice with the specified radius and spacing. Microbial density that
coincided with pillar locations was removed from the simulation. The
bounding box and pillar edges were modeled as reflecting boundary con-
ditions. At each simulated time step (Δt = 0.01t, with t in doubling times),
populations diffused via a symmetric and conservative Gaussian convolution

filter with standard deviation set by σ =
ffiffiffiffiffiffiffiffiffiffiffiffi
4DΔt

p
. After the diffusion step,

changes in population density (growth and death) were calculated using the
equations given in Competition Model, and used to update the density of
each species according to a forward Euler scheme. In combination with the
small dimensionless time step and concentration-conserving convolution
filter, hard upper and lower bounds (1 and Amin in units of carrying capacity,
respectively) were enforced on each species field to ensure numerical sta-
bility of simulations; population densities outside this range were set to
1 and 0, respectively. For each set of lattice constants and competitive
asymmetry values, 30 independently initialized replicates were simulated
for 2,000 doubling times. Mean population abundances and images of the
simulation were recorded every doubling time for the duration of the simu-
lation. Extinction was defined as the mean population density of either species

dropping below a threshold value of ðð2RÞ2 − πR2Þ=4A, where R is the pillar
radius and A is the area of lattice points not obstructed by pillars, to account
for surviving populations “trapped” between a pillar and the corner of the
simulation box and therefore not in contact with the rest of the simulation.

Calculation of Pinned Curvature. To obtain higher resolution of pinned cur-
vature in asymmetric competition, two pillars of R/(1.29 λ) = 10 were put at
two opposing edges of a simulation box, and in contact with the simulation
boundary, leaving a single gap between the pillars. Two competing species
were symmetrically and uniformly inoculated at 30% of the carrying ca-
pacity on either side of this gap, leaving a single flat interface spanning the
distance between the two pillars. Simulations were then allowed to evolve
as above until dynamics ceased due to either pinning or extinction. All
combinations of the indicated competitive asymmetries were sampled, and
pillar gap distances were sampled by varying the size of the simulation box.
For simulations where pinning was observed, the interface location was
defined as the boundary points where species A and B were of equal
abundance. The interface curvature was calculated from three points along
that boundary (the midpoint and the two points in contact with the pillars);
this method was found to be more robust than other circle-fitting methods,
especially for low curvatures and narrow pillar gaps.

Intransitive Three-Species Simulations. Three-species intransitive simulations
were carried out similarly to the two-species cases described above, with the
competition terms in the model modified to reflect the intransitive interaction
network topology. Simulations were inoculated randomly with 10 replicate
simulations per structural condition. Unless otherwise indicated, simulations
were evolved for 1,000 doubling times, with images written every 0.4t.

A schematic of the classification of simulation dynamics is given in SI
Appendix, Fig. S12. Spatiotemporal autocorrelations were calculated for
each simulation, where correlations at each time point were calculated from
the concatenated vectorized simulation matrix of all nonpillar grid locations

for each species; e.g., for the autocorrelation matrix in SI Appendix, Fig.
S12A, each matrix entry represents the correlation of two 438,000 (three
species multiplied by 146,000 unique nonpillar grid locations) length vectors
at the indicated time points. Using the autocorrelation matrix, at every time
point (i.e., starting from the matrix diagonal and moving forward in time),
that time point was classified as exhibiting limit cycle dynamics if the au-
tocorrelation rose above the threshold value of 0.8 for at least two cycles.
This threshold was chosen empirically as the level at which isotropic simu-
lations were reliably classified as limit cycles (excluding grow-in periods and
final time points for which future dynamics were not observed). Extinction
events were calculated as in the two-species cases.

To establish correlated initial conditions (Fig. 4), the following procedure
was used: For each replicate set of simulations, a random initial inoculum at
a density of 10% of the carrying capacity was generated using the same
random seed (i.e., constructing 10 identical initial condition matrices). Then,
for each individual replicate, a randomly selected percentage (as indicated in
Fig. 4) of nonpillar grid locations were randomly resampled between 0%
and 10% of the carrying capacity. Simulations were then allowed to evolve
as described above. At each time point, each unique pairwise correlation
(45 for the 10 replicates used) between vectorized simulation matrices was
calculated, and the mean over all pairwise correlations was used to generate
Fig. 4. Correlation traces were truncated upon the first observed extinction
event among the replicates.

Kinetic Modeling. For details on assumptions and analysis of the kinetic state
model, and derivation of the closed-form solutions for the time-to-extinction
distributions, see SI Appendix. Histograms in Fig. 6 were generated from
randomly initialized simulations as described above, with 1,000 replicates
per set of lattice constants, each over 10,000 doubling times. Model pa-
rameters K and τ were fit by minimizing the squared error between the
empirical cumulative distribution function (CDF) from simulated data and
the corresponding CDF predicted by the model; global minima in the pa-
rameter space were found using grid search. A temporal offset parameter
τoffset was also fit to account for grow-in periods, effectively shifting the
histogram along the time axis and setting extinction probability for t < τoffset
to zero.

Data Availability. Code to run simulations and analyses is available in Datasets
S1–S12.
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