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The ultrafast spontaneous electron-density fluctuation dynam-
ics in molecules is studied theoretically by off-resonant multi-
ple X-ray diffraction events. The time- and wavevector-resolved
photon-coincidence signals give an image of electron-density fluc-
tuations expressed through the four-point correlation function
of the charge density in momentum space. A Fourier trans-
form of the signal provides a real-space image of the multipoint
charge-density correlation functions, which reveal snapshots of
the evolving electron density in between the diffraction events.
The proposed technique is illustrated by ab initio simulations of
the momentum- and real-space inelastic scattering signals from a
linear cyanotetracetylene molecule.

X-ray diffraction | photon-coincidence | multidimensional spectroscopy

T ime-resolved ultrafast X-ray diffraction is a rapidly devel-
oping technique (1–7). Recent advances include single-

molecule diffraction (8–10) and multiple-photon coincidence
detection (11, 12). It is now possible to envision time-resolved
detection schemes involving repeated diffraction events on the
same single molecule (13–16). Such measurements use sev-
eral X-ray pulses with variable delays, each undergoing a
diffraction event, whereby a photon is recorded in momen-
tum space. Multidimensional diffraction signals (MDSs) given
by multiple-point correlation functions of the charge-density
operator are obtained when the photons are detected in coin-
cidence. The detection of each photon can be described either
in momentum space by considering directly the momentum-
transfer vector, or in real space by a Fourier transform
of the diffraction signal. Multiple photon-counting signals
thus combine temporal, spatial, and momentum resolutions
to provide valuable information on electronic and structural
dynamics.

We shall focus on the 2D signal represented in Fig. 1A.
Diffracted photons are recorded for various time delays, thereby
directly monitoring the dynamical charge-density fluctuations.
Generalization to n-dimensional signals obtained by n diffrac-
tion events is straightforward. The first scattering event transfers
a momentum q1 to the electrons and brings the molecule into a
superposition state that is later detected by the second diffrac-
tion process. If the two diffraction events come from different
molecules, the signal is independent on the delay and carries
no additional information beyond ordinary 1D single diffraction.
We are therefore interested in single-molecule contributions
whereby the two diffraction events occur with the same molecule.
In a system of N molecules, the first contribution which scales
as N 2 is much stronger than the second contribution that scales
as N . In a macroscopic ensemble, multiple diffraction events
most likely occur on different molecules. The single-molecule
contribution may be isolated by subtracting the two-molecule
background (17, 18) which is independent on the time delay.
Separating the background is easier in a few-molecule sam-
ple (small N ). Sensitive detection (19) can be used in single-
molecule samples where the two-molecule background does
not exist.

Imaging atomic-resolution structure and following the dynam-
ics of single molecules are now feasible, thanks to the major
advances in X-ray free-electron lasers (17, 20–24) and detectors
(10, 25–27). Sensitive single-photon counting detectors are now
available, such as the Jungfrau detector developed by the detec-
tor group at the Paul Scherrer Institute (28). Single-molecule
multidimensional X-ray diffraction has been proposed recently
(14, 15). Here, we demonstrate how this technique may be used
to transfer a controlled momentum to a molecule by the first
scattering event and is able to detect in real-space correlation
functions of the charge density. In the first diffraction event,
a momentum q1 is given to the electrons, thereby preparing
the molecule in a superposition electronic state. The molecule
then evolves freely for a delay T , after which a second diffrac-
tion provides a momentum q2 and so forth. This class of signals
offers a great wealth of information, and an appropriate rep-
resentation is needed for displaying them. Here, we develop a
mixed momentum-space representation that gives a clear phys-
ical insight: The molecular dynamics is followed in real space
after a given momentum has been transferred to the electrons.
The MDS depends on the momentum transfers and times of
all diffraction events (q1,T1, . . . , qn ,Tn). As shown in Fig. 1A,
two interactions are needed to create each diffracted photon. An
n-photon-counting multiple diffraction is given by a 2n cor-
relation functions of charge density in momentum space. The
correlation function of the multiple-photon diffraction thus
involve an even number of charge densities. Various excitation
and detection parameters, such as time, frequency, wavevector,
polarization, and phase, can be used as control knobs.

Significance

X-ray diffraction is routinely used to monitor the ground-
state electronic charge density of molecules or the motion of
nuclei. In this work, we propose a spectroscopic measurement
based on multidimensional photon-coincidence X-ray diffrac-
tion, which probes the correlation functions of the charge den-
sities in momentum space. The inverse Fourier-transformed
signal in real space, which is a combination of correlation
functions of transition charge densities, allows us to identify
the various scattering pathways that dominate the signal in
momentum space and provides most valuable information on
spontaneous electronic fluctuations and correlations.
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Fig. 1. (A) Loop diagram for off-resonant X-ray scattering from a single
molecule detected by two-photon coincidence. The molecule is initially in
the ground state g. T is the time delay between the two scattering events.
(B) Schematic of the two-photon coincidence diffraction process. (C) Chem-
ical structure of cyanotetracetylene (HC8CN) oriented in laboratory frame
along x with the ground-state charge density σgg (isovalue of 0.05). The
color scheme for the atoms is carbon (gray), hydrogen (white), and nitrogen
(blue). (D) Energy levels of the ground (g) and excited (e = 1, . . . , 10) states.

We first introduce the two-photon coincidence signals and
then demonstrate the physical insight gained on a linear
molecule, cyanotetracetylene. The analysis of the density matrix
and the sum-over-states expression for the signal allow us to
identify the dominating pathways of the electron-density dynam-
ics in momentum space. The time- and wavevector-resolved
signal is obtained by eliminating the elastic scattering contribu-
tion. While the signal is highly dependent on the time-evolving
charge densities, it is not obvious that the real-space transition
charge densities can be recovered from the scattering patterns
in momentum space. In this work, we show that the Fourier-
transformed signal directly images the charge-density correla-
tions in real space and provides valuable information about the
various charge-density pathways between the diffraction events.

The 2D Photon-Coincidence Diffraction
The radiation–matter interaction is given by the minimal-
coupling Hamiltonian (29–31)

Hint(t) =
e

2mc

∫
dr σ̂(r, t)Â2(r, t)−

∫
dr ĵ(r, t) · Â(r, t). [1]

Here, c is the speed of light, and e and m are the electron charge
and mass, respectively. σ̂ and ĵ are the charge and current density
operators, respectively, and Â is the radiation field vector poten-
tial. The first term in Eq. 1 dominates off-resonant scattering
processes (32), which will be investigated in this work. The sec-
ond term is responsible for resonant scattering processes and will
be neglected hereafter. Anomalous diffraction involving both σ
and j interactions occurs in the near-resonant regime (32).

The matrix elements of the charge-density operator for an
N -electron system are given by

σij (r) =N

∫
dr2 · · · drN Ψ∗i (r, r2, . . . , rN )Ψj (r, r2, . . . , rN ),

[2]

where Ψi(j)(r, r2, . . . , rN ) is the many-electron wavefunction of
electronic eigenstate i(j ), with r, r2, . . . , rN as the electronic
coordinates.

In a 2D coincidence measurement, two temporally well-
separated pulses with wavevectors kp1 and kp2 and a delay T =
T2−T1 are scattered off a single molecule. The scattered X-
ray field intensities from the two diffraction events are recorded
in coincidence. The process is described by loop diagram (33),
as depicted in Fig. 1 A and B. The first diffraction transfers a
momentum q1 to the electrons which then evolve freely for a
delay period T until the second pulse is diffracted. The two scat-
tered photons are collected in the directions ks1 or ks2. When the
molecule is initially in the ground state g , the diffracted signal is
given by the sum-over-states expression (15)

S(q1, q2,T ) =
∑
cde

ρggAp1(ωs1 +ωcg)A∗p1(ωs1 +ωdg)

×Ap2(ωs2 +ωec)A∗p2(ωs2 +ωed)

×σcg(q1)σ∗dg(q1)σec(q2)σ∗ed(q2)e−iωcdT . [3]

The indices c, d , and e run over the valence molecular eigen-
states, Apj (j = 1, 2) is the spectral envelope of the j -th incoming
pulse, and ωsj is the corresponding detection frequency. σec(qj )
is the transition charge density between states e and c with the
scattering momentum qj = ksj − kpj transferred from the pho-
ton to the electrons. σec(qj ) =

∫
drj e−iqj ·rj σec(rj ) is the Fourier

transform of σec(r). Eq. 3 shows that the time dependence of the
signal originates from electronic coherences during the delay T ,
while populations contribute to a constant background.

The two-photon coincidence signal can be alternatively dis-
played in a mixed q1−R2 representation obtained by a Fourier
transform of Eq. 3 with respect to q2

S(q1, R2,T ) =
∑
ecd

fecd(q1,T )gcgdg(q1)geced(R2). [4]

where gijkl(R2) is the correlation function of transition charge
densities in real space

gijkl(R2) =

∫
dr2 σij (r2)σkl(r2−R2), [5]

and gijkl(q1) =σij (q1)σ∗kl(q1) is defined by the convolution
theorem. fecd(q1,T ) is a lineshape function

fecd(q1,T ) =Ap1(ωs1 +ωcg)A∗p1(ωs1 +ωdg)

×Ap2(ωs2 +ωec)A∗p2(ωs2 +ωed)e−iωcdT . [6]

In a simple picture, when the electronic configurations of two
states i and j only differ by two orbitals ϕa and ϕb , the transition
charge density is given by σij (r) =ϕa(r)ϕ∗b(r). Thus, a real-
space display of the transition charge density indicates where the
charge movement has occurred during an electronic transition.
The correlations between transition charge densities that are
directly measured by the photon coincidence indicate how the
electronic change occurring in two transitions differs. geced(R2)
has been used to investigate the interplay between charge order-
ing and high-temperature superconductivity in cuprates (34), the
correlated movement of electrons in solid-state plasmas (35),
and the protein structural dynamics (36).

Application to Cyanotetracetylene
We have simulated the diffraction signals from cyanotetracety-
lene (HC8CN) (Fig. 1C), a linear polyynic molecule with
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alternating single and triple bonds. Its ground-state charge den-
sity σgg has cylindrical symmetry. Its linear geometry allows a
clear interpretation in both momentum and real space. This
molecule was first detected in interstellar space (37) and has been
studied both experimentally (38–42) and theoretically (43–47).
We assume a single molecule oriented along x in the laboratory
frame as shown in Fig. 1C.

The X-ray scattering signals contain both elastic and inelastic
contributions (48, 49). The former is expressed as the correla-
tion function of the ground-state charge density in momentum
space σgg(q). The latter is given by correlation functions of the
transition charge densities σij (q) (i 6=j ) responsible for the time-
dependent features of the signal. The transition charge densities
(i.e., off-diagonal elements of the charge-density operator) are
smaller than their diagonal counterparts. The inelastic contri-
bution is thus significantly weaker than the elastic one (14).
The latter can be filtered out either by removing the time-
independent contribution or by keeping the detection frequency
ωs outside the pulse bandwidth. Radiation damage is neglected
since we focus on the ultrashort (less than a few femtosec-
onds) dynamics before the Coulombic explosion can take place
(50–52).

The first X-ray pulse is a Gaussian propagating along y

Ap1(ω) =A1

√
2πτ1e

−τ21 (ω−Ω1)2/2. [7]

The central frequency Ω1 is set to 10 keV, and the pulse dura-
tion is τ1 = 5 fs. The detection frequency for the first scattered
photon is ωs1 = Ω1− 3.93 eV, as marked by the red vertical line
in Fig. 2A. Only the valence states within the pulse bandwidth
(3.93 eV) contribute to the inelastic scattering; Fig. 1D. The elas-
tic scattering, which is ∼1012 times stronger than the inelastic,
is eliminated. The q1 scattering pattern is shown in Fig. 2B.
Unlike elastic scattering, which is dominated by the ground-
state charge density σgg and strongly centered around the origin
(qx , qz ) = (0, 0) (14), the inelastic scattering has several peaks
away from the origin.

We have selected two points A = (2.34 Å
−1

, 3.17 Å
−1

) and
B = (−2.45 Å

−1
, 2.92 Å

−1
) from the q1 scattering pattern indi-

cated in Fig. 2B to apply the second scattering event. The
molecule has received a known momentum from the first X-ray
scattering and evolves freely in a superposition state ρab(T ) =
cac
∗
b e
−iωabT until the next pulse arrives, where the superposition

coefficients ci are given by

ci =Ap1(ωs1 +ωig)σig(q1). [8]

Fig. 3 depicts the time evolution of the six off-diagonal ele-
ments ρab(T ) that dominate the signal. Note that the degenerate
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Fig. 3. Time-dependent off-diagonal elements ρab(T) that dominate the
dynamics of the signals for the two q1 points A and B marked in Fig. 2B.

excited states (E2 =E3 and E5 =E6 in Fig. 1D) do not contribute
to the time dependence. The dominating elements are ρ25, ρ26,
ρ35, and ρ36 for point A; and ρ24, ρ25, ρ26, ρ34, ρ35, and ρ36 for
point B.

A broadband attosecond (τ2 = 100 as) off-resonant X-ray
pulse is used to probe this electronic wavepacket. The scat-
tered photon is detected at time T in several directions q2 =
ks2− kp2. Fig. 4 depicts the q2 scattering pattern in the qx2 =

−0.04 Å
−1

plane for the two points labeled in Fig. 3B at three
time delays T . To highlight the changes, we plot the differences
S(T )−S(T = 0) for signals at T > 0. As shown in Fig. 3, the
off-diagonal density matrix elements for point B are smaller com-
pared with A. The signal differences shown in Fig. 4 for point B
are weaker than for point A. Several concentric circular rings
are observed by pointing the second incoming pulse along the
molecule main axis x , reflecting the molecule’s cylindrical sym-
metry. However, when the kp2 pulse propagates along y , two
peaks instead of circular rings are observed at T = 0, due to
the loss of cylindrical symmetry along y . The scattered intensity
variations with the time delay are depicted in Fig. 4. The time
dependencies at points A and B are very different. For exam-
ple, for the yx configuration (k̂p1 = ey and k̂p2 = ex ) at point A,
the signal difference preserves the sign at T = 1.5 and 3 fs, while
the sign is reversed for the yx configuration at point B. This is
because different electronic coherences are prepared at the two
q1 points, reflecting the different momenta q1 transferred to the
electrons by the first diffraction kp1 pulse at T = 0.

The pathways that dominate the signal can be identified
from the sum-over-states expression Eq. 3 (for details, see
SI Appendix , Fig. S1). Take the yy configuration in Fig. 4
as an example. At the q1 point A, the dominating path-
ways are |g〉 〈g |→ |2〉 〈2|→ |2〉 〈2|, |g〉 〈g |→ |2〉 〈2|→ |8〉 〈8|, and
|g〉 〈g |→ |3〉 〈3|→ |9〉 〈9|, which are time-independent, because
the system is in a population after interaction with the kp1

pulse. By resorting to the signal difference S(T )−S(T = 0),
the time-independent pathways can be eliminated. The time
dependence of the signal is dominated by the pathways |g〉 〈g |→
|5〉 〈2|→ |8〉 〈8| and |g〉 〈g |→ |6〉 〈3|→ |9〉 〈9| (and their com-
plex conjugates). Conversely, at point B, the time dependence
of the signal difference is dominated by pathways |g〉 〈g |→
|5〉 〈2|→ |2〉 〈2| and |g〉 〈g |→ |4〉 〈2|→ |8〉 〈8| (and their complex
conjugates).

The homodyne-detected two-photon coincidence signal
directly images the dynamics of charge-density correlations,
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corresponding to the scattering pathways in momentum space.
Fig. 5 depicts snapshots of the real and the imaginary parts of
two-photon coincidence signals S(q1, R2,T ) vs. R2 for the fixed
q1. Since the diagonal elements of the density matrix |c〉 〈c|
(populations) are larger than the coherences |c〉 〈d | with c 6=d ,
the signals are dominated by the time-independent (c = d)
pathways, and the time-independent charge-density correlation
functions fecc(q1)gcgcg(q1)gecec(R2) contribute substantially to
the real part of the signals. To highlight the time variation of
the signals, Fig. 5 displays Re[S(q1, R2,T = 0)] in Left and the
difference Re[S(q1, R2,T )−S(q1, R2,T = 0)] in Center and
Right.

For the yy pulse configuration at point A, Re[S(q1, R2,T )]
at T = 0 lacks cylindrical symmetry along x , because the charge-
density correlation function g2222(R2) makes a significant con-
tribution to the signal, and the corresponding charge density
σ22(r) is not cylindrically symmetric (SI Appendix, Fig. S2).
The imaginary part of S(q1, R2,T ) is a superposition of the
time-dependent correlation functions of charge densities [i.e.,
Im[fecd(q1,T )gcgdg(q1)]geced(R2) with c 6=d ] and strongly varies
with time as shown in Fig. 5B. The signals Im[S(q1, R2,T )]
are cylindrically symmetric along x because all contributing
transition charge densities have this symmetry. Conversely, for
the yx configuration at point A, the corresponding signals
are quite similar to those for the yy configuration, except for
the full signal Re[S(q1, R2,T )] at T = 0. This is because the
dominating scattering pathways for these two pulse configura-
tions are the same except that the pathway |g〉 〈g |→ |2〉 〈2|→
|2〉 〈2| only contributes to the signals for the yy configura-
tion. This pathway and the corresponding correlation function
g2222(R2) are time-independent and do not contribute to the sig-
nals Re[S(q1, R2,T )−S(q1, R2,T = 0)] and Im[S(q1, R2,T )],
which can explain the similarities between the signals for the two
pulse configurations. The real-space signals at point B can be
analyzed similarly. Since different momenta q1 are transferred to

-0.6 0.0 0.6
-0.6

0.0

0.6

B
kp1 || y
kp2 || x

B
kp1 || y
kp2 || y

A
kp1 || y
kp2 || x

A
kp1 || y
kp2 || y

T = 3 fsT = 1.5 fsT = 0 fs

-1

-0.5

0

0.5

1

q 2
z
(Å
-1
)

q2x (Å
-1)

-0.6 0.0 0.6
-0.6

0.0

0.6

× 10

q2x (Å
-1)

q 2
z
(Å
-1
)

-0.6 0.0 0.6
-0.6

0.0

0.6

× 10

q2x (Å
-1)

q 2
z
(Å
-1
)

-0.6 0.0 0.6
-0.6

0.0

0.6

q2y (Å
-1)

q 2
z
(Å
-1
)

-0.6 0.0 0.6
-0.6

0.0

0.6

× 40

q2y (Å
-1)

q 2
z
(Å
-1
)

-0.6 0.0 0.6
-0.6

0.0

0.6

× 40

q2y (Å
-1)

q 2
z
(Å
-1
)

-0.6 0.0 0.6
-0.6

0.0

0.6

q2x (Å
-1)

q 2
z
(Å
-1
)

-0.6 0.0 0.6
-0.6

0.0

0.6

× 180

q 2
z
(Å
-1
)

q2x (Å
-1)

-0.6 0.0 0.6
-0.6

0.0

0.6

× 180

q 2
z
(Å
-1
)

q2x (Å
-1)

-0.6 0.0 0.6
-0.6

0.0

0.6

q 2
z
(Å
-1
)

q2y (Å
-1)

-0.6 0.0 0.6
-0.6

0.0

0.6

× 500

q 2
z
(Å
-1
)

q2y (Å
-1)

-0.6 0.0 0.6
-0.6

0.0

0.6

× 500

q 2
z
(Å
-1
)

q2y (Å
-1)

Fig. 4. Two-photon coincidence q2 scattering patterns for the two points
marked in Fig. 2B at three time delays T . Left shows the full signal S(T = 0).
Center and Right show the signal difference S(T)− S(T = 0).
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the electrons by the kp1 pulses, the signals S(q1, R2,T ) at points
A and B are very different, which result from the interference of
different scattering pathways.

Conclusions
We have proposed a diffraction technique that makes use of
emerging X-ray sources. We demonstrated the physical insight
gained by this signal by simulating the off-resonant X-ray
scattering signals Eq. 3 from a single linear molecule in the
electronic ground state. In the inelastic scattering regime, the
signal dynamics is determined by the transition charge densi-
ties rather than the diagonal elements of the charge-density
matrix and reveals more information about the electronic exci-
tations than the conventional X-ray diffraction. The time- and
wavevector-resolved signals are detected by a two-photon coin-
cidence measurement, which reveals the correlation functions of
the charge densities in momentum space.

The aforementioned off-resonant X-ray scattering signal Eq. 3
uses homodyne detection, which does not provide the phase of
the charge densities. Phase-retrieval algorithms may be used to
overcome this problem (53–55). The real-space two-photon coin-
cidence signal Eq. 4 is not a snapshot of the time-dependent
charge density, but instead reflects the correlation between sev-
eral transition charge densities. The signal shows an interference
of various scattering pathways in momentum space. By using
the density matrix and the sum-over-states expression Eq. 3,
the time-dependent and -independent pathways can be clearly
discriminated.
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The inverse Fourier-transformed signals image the corre-
lation function of charge densities in real space. The real
part of the real-space signal is a sum of the time-dependent
and -independent charge-density correlation functions, while
the imaginary part contains only the time-dependent ones,
which corresponds to the time-dependent scattering pathways
in momentum space. Broadband attosecond X-ray pulses allow
the visualization of time-dependent electron correlations on an
ultrafast timescale. The real-space two-photon coincidence sig-
nals may be used to examine how correlation effects influence
the dynamics of many-electron systems.

In this work, the scattered signal is obtained for a molecule
initially in the ground state, and it thus only depends on a
single time variable. More elaborate multidimensional measure-
ments can be obtained by using coincidences involving more than
two diffractions or by tuning the X-ray frequency at some core
molecular resonance. We assume that the molecule is rigid. This
simplifies the interpretation of the scattering patterns. It is possi-
ble to include nuclear motion between the two diffraction events,
and the signal would then contain a signature of both nuclear
and electronic wavepackets motion. Moreover, a dynamical pro-
cess can also be launched by actinic pulses before or in between

the scattering events (56). These protocols may offer fascinating
new insights into the ultrafast electronic and nuclear dynamics of
molecules.

Finally, the 2D diffraction signal presented here only provides
even order correlation functions of the charge-density matrix
elements that only depend on two wavevectors. Heterodyne
detection scheme or incoming quantum state of light may reveal
more general correlation functions.

Materials and Methods
The optimized geometry was obtained with density functional theory
(DFT) with the functional B3LYP/6-311G(d,p) (57–59). Time-dependent DFT
(TDDFT) CAM-B3LYP (60)/6-311G(d,p) calculations were then performed
with the Tamm–Dancoff approximation (TDA) (61) by using the NWChem
program package (62, 63). Ten valence-excited states were included in the
simulations, with energies ranging from 3.03 to 6.33 eV. The charge-density
matrix elements σij between valence-excited states i and j were evaluated by
using the configuration interaction coefficients from the TDDFT/TDA results.
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