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Abstract

Motivation: Kinases play a significant role in diverse disease signaling pathways and understand-

ing kinase inhibitor selectivity, the tendency of drugs to bind to off-targets, remains a top priority

for kinase inhibitor design and clinical safety assessment. Traditional approaches for kinase select-

ivity analysis using biochemical activity and binding assays are useful but can be costly and are

often limited by the kinases that are available. On the other hand, current computational kinase se-

lectivity prediction methods are computational intensive and can rarely achieve sufficient accuracy

for large-scale kinome wide inhibitor selectivity profiling.

Results: Here, we present a KinomeFEATURE database for kinase binding site similarity search by

comparing protein microenvironments characterized using diverse physiochemical descriptors.

Initial selectivity prediction of 15 known kinase inhibitors achieved an >90% accuracy and demon-

strated improved performance in comparison to commonly used kinase inhibitor selectivity predic-

tion methods. Additional kinase ATP binding site similarity assessment (120 binding sites) identified

55 kinases with significant promiscuity and revealed unexpected inhibitor cross-activities between

PKR and FGFR2 kinases. Kinome-wide selectivity profiling of 11 kinase drug candidates predicted

novel as well as experimentally validated off-targets and suggested structural mechanisms of kinase

cross-activities. Our study demonstrated potential utilities of our approach for large-scale kinase in-

hibitor selectivity profiling that could contribute to kinase drug development and safety assessment.

Availability and implementation: The KinomeFEATURE database and the associated scripts for

performing kinase pocket similarity search can be downloaded from the Stanford SimTK website

(https://simtk.org/projects/kdb).

Contact: rbaltman@stanford.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The human kinome consists of �500 protein kinases that regulate di-

verse cellular process including metabolism, apoptosis, immune re-

sponse, cell growth and proliferation (Braconi Quintaje and Orchard,

2008; Manning et al., 2002). Based on cellular localization and the

residue(s) of phosphorylation, human protein kinases can be classified

as receptor or non-receptor kinases and tyrosine, serine/threonine, or

dual kinases, respectively. Many kinases have been implicated in a
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wide variety of diseases including cancers, inflammatory diseases

and metabolic syndrome and are potential therapeutic targets

(Momcilovic et al., 2017; Patterson et al., 2014). Consequently,

designing selective kinase inhibitors that target specific cellular path-

ways, known as ‘targeted therapy,’ has been a major focus area in the

pharmaceutical industry. Following the discovery of the Abelson mur-

ine leukemia viral oncogene homolog (ABL)-targeting agent imatinib

(Gleevec) as a highly successful treatment for chronic myeloid leuke-

mia (CML), numerous other kinase targets have been actively pursued

for cancer therapy. Several well-known druggable kinases include

stem-cell factor receptor (KIT) for gastrointestinal tract stromal

tumors (GIST), proto-oncogene tyrosine-kinase receptor (RET) for

medullary thyroid carcinoma (MTC) and fetal liver tyrosine-protein

kinase receptor 3 (FLT3) for acute lymphocytic leukemia (ALL)

(Akeno-Stuart et al., 2007; Druker et al., 2001; Helguera et al., 2006;

Rosnet et al., 1991; Verweij et al., 2004). Since the majority of kinase

inhibitors bind within the ATP binding region, unintended inhibitor

off-target binding can occur due to high structural homology across

kinase ATP binding pockets, resulting in either favorable interactions

or adverse events (Hanks et al., 1988). For example, although imati-

nib was originally developed as a selective ABL inhibitor, the discov-

ery of its unexpected activity against KIT has led to the approval of

imatinib for the treatment of GIST (Demetri et al., 2002). Similarly,

multi-targeted tyrosine kinase inhibitors like sunitinib, a potent inhibi-

tor of VEGFR1, VEGFR2, FLT3, KIT, PDGFRa and PDGFRb could

counter drug resistance by preventing ‘signal rewiring’ in cancer treat-

ment. However, unintentional off-target drug binding have already

proven to contribute to severe side-effects and dose-limiting toxicities

from numerous clinical and preclinical studies (Tabernero, 2007).

Therefore, an accurate method for comprehensive off-target profiling

of kinase drug candidates is essential for kinase inhibitor design and

assessment of drug safety and efficacy.

Multiple approaches have been developed to profile the kinase

selectivity of small molecules. Experimental methods include bio-

chemical activity and binding assays that measure the effects of kin-

ase inhibitors in large kinase panels (Brandt et al., 2009; Fedorov

et al., 2007; Karaman et al., 2008). However, these biochemical

methods are often costly, time consuming and limited by the kinases

that are available (Sheridan et al., 2009). Furthermore, variations

among the assay platforms and the activity metrics assessed can po-

tentially lead to apparent differences in the selectivity measured for

the same molecule (Anastassiadis et al., 2011; Fabian et al., 2005;

Fedorov et al., 2007). To this end, computational kinase selectivity

profiling methods could serve as efficient alternatives for predicting

kinase inhibitor selectivity across a larger kinome space. Although

kinase sequence similarity searching is a widely used method to pre-

dict kinase inhibitor off-target bindings, sequence homology alone

cannot fully capture inhibitor selectivity (Fabian et al., 2005;

Sheridan et al., 2009). For example, a single residue difference in the

binding pocket among the homologous p38 kinase isoforms was

enough to define discrete selectivity toward diverse kinase inhibitors

(Caffrey et al., 2008). Other computational methods for off-target

predictions include chemical similarity inference, inverse docking of

inhibitor to multiple kinase structures, or binding site similarity

comparison (Caffrey et al., 2008; Kinnings and Jackson, 2009;

Kuhn et al., 2006; Sciabola et al., 2008; Subramanian and Sud,

2010; Zahler et al., 2007). Recently, machine learning approaches

such as kernel regression have also been developed for kinase activ-

ity profiling where a computational model was trained based on

descriptors of protein sequence and chemical structures to predict

bioactivities of new drugs (Cichonska et al., 2017). While useful,

many of these approaches did not fully utilized 3D structure

information of the proteins and their prediction outcomes are often

dependent on the quality and availability of the structure-activity

data or require intensive computation of binding scores and struc-

tural superpositions. Furthermore, their performances have not been

fully evaluated for kinome-wide prediction (Zahler et al., 2007).

Here, we report a new computational approach for large-scale

kinase inhibitor selectivity profiling based on structural knowledge

of the ligand binding sites (Fig. 1a) (Zhou et al., 2015). To this end,

we have constructed a kinase database called ‘KinomeFEATURE,’

which consists of �2850 kinase structures from 189 unique human

Fig. 1. KinomeFEATURE database creation and characterization. (a) Workflow

for kinase selectivity profiling using the KinomeFEATURE database. For each

kinase pocket in the database, residues within 6 Ú of the bound ligand were

characterized using several physiochemical descriptors in a 6-concentric ra-

dial shell. The degree of binding site microenvironments similarity between

two given kinases was evaluated using the PocketFEATURE score (PFS)

based on the presence or absence of shared protein microenvironments and

the kinase structures with the best (most negative) PFS were identified from

multiple kinase structures for a given kinase. (b) Workflow for

KinomeFEATURE database creation. 292 kinase genes represented in the

SelectScreen
VR

kinase selectivity panel were converted to 283 UniProt ID by

UniProt ID mapping. Protein sequence similarity of the PDB identified 4582

protein structures sharing >50% sequence identity. Further UniProt ID match-

ing identified 1725 homologous structures and 2857 identical structures. The

2857 identical structures represented by 189 kinase genes were selected to

form the KinomeFEATURE database. (c) Profiling of the KinomeFEATURE

database showed that the 2857 kinase drug pockets were distributed among

5 existing kinase categories including tyrosine kinases (TK) (556 structures),

tyrosine kinase-like (TKL) kinases (84 structures), protein kinase A, G and C

(AGC) (79 structures), calcium/calmodulin-dependent kinases (CAMK) (173

structures), cyclin-dependent kinases (CDK), mitogen-activated protein kin-

ases, glycogen synthase kinases and CDK-like kinases (CMGC) (571 kinases)

and others (1394 kinases). Kinases with the most abundant structures are pri-

marily in the TK and CAMK categories including CDK, EGFR and PIM, which

are common oncology targets of many existing kinase inhibitors
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kinases for kinase binding site similarity searching. The kinase bind-

ing site similarities were evaluated by comparing protein microenvir-

onments, which were comprised of diverse physiochemical

descriptors in a 6-radial shells at binding residues of the co-crystal

ligand (Fig. 1a and Section 2) (Liu and Altman, 2011).The degree of

pocket similarity between two kinases was determined using a

PocketFEATURE score (PFS) based on the presence or absence of

shared protein microenvironments (Fig. 1a and Section 2). For a

given kinase inhibitor, its binding pocket was compared to kinase

pockets in the KinomeFEATURE database and kinase structures

with the best (most negative) PFS were identified (Fig. 1a). In con-

trast to existing approaches, our binding site similarity is evaluated

by comparing microenvironments between two pockets independent

of their distances. Therefore, our prediction does not necessitate a

strong geometric requirement and is highly robust against protein

conformational changes.

We tested this approach by profiling the kinase selectivity of 15

known kinase inhibitors and achieved >90% accuracy when com-

paring our prediction with the biochemical assay data. Additional

kinase ATP binding site similarity assessment (120 binding sites)

identified 55 kinases with significant promiscuity and revealed unex-

pected inhibitor cross-activities between PKR and FGFR2 kinases.

Kinome-wide selectivity profiling of 11 kinase drug candidates pre-

dicted novel as well as experimentally validated off-targets and sug-

gested structural mechanisms of kinase cross-activities. The study

demonstrated potential utilities of our approach for accurate and ro-

bust kinase inhibitor activity prediction that could contribute to fur-

ther kinase drug development and safety assessment.

2 Materials and methods

2.1 Compounds
Fifteen kinase known inhibitors (compound 1–15) for validation

study were retrieved from the PDB as previously reported.

C16 (compound 16), LY2874455 (compound 17) and 11 kinase

drug candidates (compounds 18–28) were purchased or synthesized

by Genentech, Inc., at greater than 95% purity. For additional com-

pound information, please see Supplementary Tables S3 and S7.

2.2 In vitro kinase activity and binding assays

Kinase inhibitor potency and selectivity was assessed in a panel of

156 recombinant human kinase activity and binding assays, includ-

ing cytoplasmic and receptor tyrosine kinases, serine/threonine kin-

ases and lipid kinases (SelectScreenVR Kinase Profiling Services,

Thermo Fisher Scientific, Madison, WI). The kinase activity assays

measure peptide phosphorylation (Z’-LYTEVR ) or ADP production

(AdaptaVR ) while the kinase binding assays monitor displacement of

ATP site-binding probes (LanthaScreenVR ). The ATP concentrations

used in the activity assays were within 2-fold of the experimentally

determined apparent Michaelis constant (Km
app) value for each kin-

ase while the competitive binding tracer concentrations used in the

binding assays were within 3-fold of the experimentally determined

dissociation constant (Kd) values. Inhibitors were tested at 0.1 and

1mM in duplicate against each kinase and the mean % inhibition

values are reported. For selected kinases, 10-point inhibitor titra-

tions were carried out using the same kinase assays as used in the

single point tests in order to determine the inhibitor concentration

providing 50% inhibition (IC50). Details regarding the kinase pro-

teins used and the assay protocols are available online

(thermofisher.com).

2.3 Statistical analysis

IC50 values were determined by plotting the % of control activity or

binding data (mean of duplicate measurements) against the log of

the inhibitor concentration and fitting the data by non-linear regres-

sion to the variable slope 4-parameter sigmoidal inhibition model

using GraphPad Prism version 5.0f for Mac OS X (GraphPad

Software, San Diego, CA USA, www.graphpad.com). Receiver oper-

ating characteristic (ROC) curves and the related area under the

curve (AUC) for the kinase-panel selectivity analysis were obtained

using the ROC curve node in the KNIME program (version 3.3.1)

(Beisken et al., 2013). AUC was used to estimate the accuracy in

binding class prediction for both sequence similarity and PFS. The

AUC values were calculated for the entire set as well as for all the in-

dividual 17 targets with at least one active kinase inhibitor using the

‘ROC curve’ node in KNIME. To estimate the error rates for the

AUC values of the two virtual screening methods, an independent

group t-test was performed by evaluating AUC values for each 17

targets to determine a significant P-value. The statistical analysis

was performed using the ‘independent group t-test’ node in KNIME.

2.4 Software

The heatmap analysis was performed using R statistical package

(version 3.2.3). The network analysis was performed using

Cytoscape software (version 3.4.0). The structural alignment was

performed using the FeatureViz web-based visualization program

(https://simtk.org/projects/feature-viz/).

3 Results

3.1 Creation and characterization of KinomeFEATURE

database
To create the KinomeFEATURE database for kinase binding pocket

similarity comparison, we performed a BLAST sequence similarity

search of the commercial available kinases in the SelectScreenVR kin-

ase selectivity panel (ThermoFisher) against the protein data bank

(PDB) and identified 2857 kinase structures represented by 189

unique human kinases (Fig. 1b and Supplementary Text S1)

(Berman et al., 2003; Braconi Quintaje and Orchard, 2008).

Inspection of the KinomeFEATURE database indicated that the

2857 binding pockets were distributed among 5 existing protein kin-

ase categories including tyrosine kinases (TK) (556 structures), tyro-

sine kinase-like (TKL) kinases (84 structures), protein kinase A, G

and C (AGC) (79 structures), calcium/calmodulin-dependent kinases

(CAMK) (173 structures), cyclin-dependent kinases, mitogen-

activated protein kinases, glycogen synthase kinases, CDK-like kin-

ases (CMGC) (571 structures) and others (1394 structures) (Fig. 1c

and Supplementary Table S1). As expected, kinases with the most

abundant structures are primarily in the CMGC, TK and CAMK

groups including CDK, MAPK, EGFR and PIM, which are common

therapeutic targets of many drugs in preclinical and clinical develop-

ment for cancer treatments (Arora and Scholar, 2005; Cicenas and

Valius, 2011; Swords et al., 2011).

For each kinase pocket in the database, residues within 6 Ú of

the bound ligand were identified and subsequently characterized

using diverse physiochemical descriptors in 6-concentric radial shells

using the PocketFEATURE program (Fig. 1a and Section 2) (Liu and

Altman, 2011). To compare two kinase binding sites, residues with-

in 6 Ú of the bound ligand in the kinase structure were identified to

define a drug binding pocket (Liu and Altman, 2011). For each resi-

due in the binding site, the geometric center of the residues was first
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determined based on the location of the heavy atom. The FEATURE

program was used to compute the residue microenvironments in 6-

concentric radial shells where each shell contains 180 physiochem-

ical descriptors (Zhou et al., 2015). To evaluate the similarity be-

tween two microenvironments, a Tanimoto-like score was

computed to identify the shared bits between two feature vectors of

1280 length. To evaluate the pocket similarity between two sites,

the microenvironments were sequentially compared in a combina-

torial fashion to maximize the total matching scores. A

PocketFEATURE score (PFS) was calculated by normalizing the

summed Tanimoto scores against a random background of all per-

missible microenvironment pairs.

We validated our approach by predicting kinase off-target bind-

ings of 15 known kinase inhibitors, which encompass diverse kinase

drug classes. These molecules have been previously tested against

280 unique kinases for their inhibition of kinase activity or binding

affinity, and their co-crystal structures are available in the PDB

(Karaman et al., 2008).The selected compounds include 2 ABL

inhibitors: dasatinib (compound 1) and imatinib (compound 2); 2

multi-target inhibitors: sorafenib (compound 3) and staurosporine

(compound 4); 3 P38a inhibitors: VX-745 (compound 5), SB203580

(compound 6) and BIRB-796 (compound 7); 3 EGFR inhibitors:

lapatinib (compound 8), gefitinib (compound 9) and erlotinib (com-

pound 10); 2 CDK inhibitors: flavopiridol (compound 11) and

roscovitine (compound 12); 1 PRKß inhibitor: LY-333531 (com-

pound 13); 1 AurA inhibitor: VX-680 (compound 14) and 1 KIT in-

hibitor: sunitinib (compound 15). To identify the optimal score

cutoff, we analyzed the PFS of 8 selected kinase inhibitors: dasati-

nib, imatinib, VX-745, SB203580, lapatinib, gefitinib, flavopiridol

and sunitinib at three binding affinity (Kd) thresholds: 100 nM,

1mM and 10mM, as measured in the biochemical assays (Fig. 2a)

(Karaman et al., 2008). The PFS distribution showed that the

KinomeFEATURE database search achieved the highest sensitivity

for differentiating primary targets from off-targets at 100 nM po-

tency for 8 selected molecules using the optimal PFS score cutoff

(PFS<�5) (Fig. 2a). The observation was supported by evaluating

the receiver operating characteristics (ROC) curves where the area-

under-curve (AUC) at three concentration thresholds were all

greater than 0.7 (AUC100nM¼0.78, AUC1mM¼0.72 and

AUC10mM¼0.7) (Fig. 2b). Retrospective performance comparison

for the 15 kinase inhibitors showed that our method improved kin-

ase selectivity prediction over the binding site signature (BSS)

method and yielded an average accuracy and specificity of 91 and

96% using the optimal PFS score cutoff (Fig. 2c, e and

Supplementary Text S3) (Subramanian and Sud, 2010). Notably,

imatinib achieved the highest prediction accuracy and specificity of

�97% potentially due to the robustness gained from evaluating

multiple kinase-inhibitor co-crystal complexes. Linear regression

analysis of imatinib kinase off-target profile established a significant

correlation between the PFS and binding affinity (logKd) (R2¼0.81)

and the predicted binding affinity were consistent with the observed

binding data as visualized by the kinase phylogenetic tree (Fig. 2d

and e). With the exception of staurosporine, each kinase inhibitor

has an R2 value>0.5 with an average R2 value of 0.63 (Fig. 2c and

Supplementary Fig. S2).

3.2 Computational estimation of kinase promiscuity
Since most kinase inhibitors target the ATP binding site through

competitive inhibition, site similarity analyses of the kinase ATP

binding pocket will offer critical information on the kinase promis-

cuity in the absence of bound ligands. To estimate the ligand

selectivity of druggable kinases, we profiled the off-target binding of

120 kinase ATP binding sites retrieved from the KinomeFEATURE

database and compared their pocket similarity based on the PFS.

Network clustering of kinase ATP binding sites with a PFS thresh-

old<�5 identified 55 highly connected nodes with potential kinase

cross-activities. The identified kinases included common drug tar-

gets for cancer therapy like EGFR, RET, KIT and others (Fig. 3a).

Interestingly, promiscuity estimation based the node degree e.g.

number of neighbors connected to each node, showed that kinases

such as GS3K3b, FGFR2 and TYK2 were highly promiscuous and

their binding site features were similar to 40–60 other kinase ATP

Fig. 2. Computational off-target profiling of known kinase inhibitors. (a) The

PocketFEATURE score distribution of 6 selected kinase inhibitors: lapatinib,

sunitinib, flavopiridol, VX-745, imatinib and gefitinib showed that the

KinomeFEATURE database can identify primary targets and other off-targets

with high selectivity, particularly for kinase-ligand interactions with

Kd< 100 nM. Note that the x-axis indicates the rank order of the kinases based

on the PFS. Kianses that mapped back to the ligand with negative PFS are

shown. (b) Performance assessment for selectivity profiling of 15 known kin-

ase inhibitors using the PocketFEATURE algorithm. The area-under-curve

(AUC) values from the receiver operating characteristics (ROC) curves eval-

uated at three concentration thresholds were greater than 0.7

(AUC100nM¼0.78, AUC1mM¼0.72, AUC10mM¼0.7). (c) The prediction accuracy,

sensitivity and specificity for 15 known kinase dugs were assessed using the

optimal scoring cutoff (PFS¼�5) (see Supplementary Text S3). The

KinomeFEATURE database search achieved an average of 90% accuracy,

96% specificity and 40% sensitivity at the 100-nM potency threshold. (d)

Validation of predicted off-targets of imatinib. Linear regression analysis of

the predicted off-targets of imatinib showed a high correlation (R2>0.81) be-

tween the predicted PFS, and binding affinity (logKd) and was used to con-

struct a linear model to predicted kinase binding affinities. (e) Comparison of

predicted (color: blue) and experimental validated (color: red) off-target bind-

ing affinities visualized by the kinase phylogenetic tree. Note that the size of

the node is proportional to the binding affinity (and inversely proportional to

the Kd)
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pockets (Fig. 3b). In comparison, KIT, PLK1, AurA and PIM1 kin-

ase pockets appear to be more selective toward ligand binding based

on our assessment (Fig. 3b). To further substantiate these predic-

tions, we analyzed the predicted PFS values of 55 selected kinases

using a pairwise similarity map with an optimal score cutoff

(PFS<�5) and compared to that by protein sequence similarity

search using a sequence identity (SI) threshold commonly used for

predicting protein structure homology (SI>35%)(Fig. 3c,

Supplementary Fig. S3 and Supplementary Tables S4 and S5)

(Forrest et al., 2006). To validate the predicted off-targets using ei-

ther approaches, we identified 17 kinases that have at least one spe-

cific inhibitor tested in a previous kinase assay panel and showed

that both similarity score cutoffs achieved the optimal accuracy, spe-

cificity and sensitivity evaluated by multiple threshold values

(Supplementary Fig. S4 and Supplementary Table S6) (Davis et al.,

2011). The ROC curves indicated that PFS achieved a higher AUC

values than SI by either including primary targets (AUCPFS¼0.78

versus AUCSI¼0.72) or excluding primary targets (AUCPFS¼0.74

versus AUCSI¼0.66) (Fig. 3c, Supplementary Fig. S5a and b). The

average AUC values for each 17 targets is 0.81 (STD¼0.11) for PFS

and 0.72 (STD¼0.13) for SI respectively. A Statistical group t-test

showed that the difference between the two methods is statistical

significant (P-value¼0.04) (Section 2). Notably, the removal of pri-

mary targets equally affected the performance using either approach

(DAUC<0.05), suggesting that the improvement in prediction by

PFS was not attributed to the on-target predictions.

Overall, our assessment showed that among the 935 total off-

target pairs, 109 off-target pairs were predicted by pocket microen-

vironments similarity (PFS<�5), 110 off-target pairs were pre-

dicted by sequence homology (SI>35%), 75 off-target pairs were

predicted by both approaches, while �600 off-target pairs were not

predicted to have substantial structural or sequence similarities.

Furthermore, 123 off-target pairs predicted by the PFS were con-

firmed by the kinase biochemical assay data, in comparison to 94

off-target pairs by sequence homology search, and 75 off-target

pairs by both approaches. To test if our prediction can reveal novel

kinase inhibitor off-target interactions, we experimentally validated

the predicted compound cross-activity pair between FGFR2 and

PKR kinases (PFS¼�5.8) that have not been confirmed by the ex-

periment (Fig. 4a and Supplementary Table S4). As an initial assess-

ment, we evaluated the effects of the PKR selective inhibitor, C16

(compound 16), and the FGFR2 selective inhibitor, LY2874455

(compound 17), on PKR and FGFR2 kinases at 1mM (Fig. 4b and

Fig. 3. Computational estimation of intrinsic kinase promiscuity. (a) Network

similarity clustering of 120 kinase ATP binding pockets from the

KinomeFEATURE database based on a optimal PFS threshold (<-5) identified

55 kinases of potential inhibitor cross-activities. (b) To estimate kinase prom-

iscuity, the number of neighbors connected to each node (degree) was used

to determine the number of direct interacting partners. The node color in the

network correlates with the degree of connectivity. (c) The cross-similarity of

55 kinases were evaluated based on the PFS or SI visualized using heatmaps

and the performance were validated by comparing predictions with 17 kin-

ases that have at least one specific inhibitor tested in a previous kinase assay

panel (see Fig. 4a and Supplementary Table S6). Quantitative performance

assessment based on the ROC curves shows that PFS achieved a higher PFS

than SI by either including primary targets (AUCPFS¼ 0.79 versus

AUCSI¼0.72) or excluding primary targets (AUCPFS¼ 0.74 versus

AUCSI¼0.66) (Supplementary Fig. S5a and b)

Fig. 4. Computational identification of known and novel kinase off-target. (a)

Pair-wise cross similarity map of 55 kinase ATP pockets predicted by the

PocketFEATURE score (<�5) (color: orange), sequence similarity measure

(>35%) (color: blue), both approaches (color: yellow) or neither approaches

(color: white). 17 kinases (column) have a least one specific inhibitor tested in

a previous SelectScreenVR kinase selectivity panel and the confirmed off-target

pairs (border: black) were highlighted in the heatmap. The PocketFEATURE

algorithm predicted a high binding site similarity (PFS¼�5.8) between

FGFR2 and PKR. (b) Experimental validation of compound cross-activity be-

tween FGFR2 and PKR kinases. The PKR selective inhibitor, C16 (compound

16), and the FGFR2 selective inhibitor, LY2874455 (compound 17), were tested

at 1mM for their interactions with FGFR2 and PKR kinases, respectively. C16

(compound 16) showed 93% FGFR2 inhibition as compared with 97% inhib-

ition by LY2874455 (compound 17). On the other hand, LY2874455 displayed

46% inhibition of PKR in comparison to 88% inhibition of PKR by C16. (c) IC50

evaluation [nM], PFS and SI (%) of C16 (compound 16) and LY2874455 (com-

pound 17) against Aurora A, FGFR2, FGFR3, PKR and RET kinases

Computational analysis of kinase inhibitor selectivity 239



Section 2) (Jammi et al., 2003; Zhao et al., 2011). C16 achieved

95% inhibition of FGFR2, which compares with 99% inhibition of

this kinase by LY2874455 (Fig. 4b). On the other hand, LY2874455

exhibited 46% inhibition of PKR, whereas C16 inhibited PKR by

85% (Fig. 4b). To further quantify these initial observations, we car-

ried out full inhibitor titrations and found that the PKR inhibitor

C16 inhibited its primary target with an IC50 of 141 nM, but it also

inhibited the FGFR2 kinase with an IC50 of 31.8 nM (Fig. 4c and

Supplementary Fig. S6). The FGFR2 kinase inhibitor LY2874455

was more selective for its primary target, and showed an IC50 of

1.27 nM against FGFR2 and an IC50 of 843 nM against PKR (Fig.

4c and Supplementary Fig. S6). Notably, the sequence similarity be-

tween FGFR2 and PKR kinase is only 23% and no significant chem-

ical similarity observed between C16 and LY2874455 ligands (Lo

et al., 2015, 2016, 2017). Thus, the compound cross-activity be-

tween PKR and FGFR2 could not have been predicted by conven-

tional kinase selectivity computational prediction methods. To

further test the compound cross-activities of three kinase triplicate

pairs: FGFR2/FGFR3/PKR, FGFR2/RET/PKR and FGFR2/Aurora

A/PKR, we experimentally evaluated IC50 values of PKR inhibitor

C16 and FGFR2 inhibitor LY2874455 on FGFR3, RET and Aurora

A (Fig. 4c and Supplementary Fig. S6). Using a PFS cutoff of -5 and

an activity cutoff of 100 nM, we showed that the PKR inhibitor C16

is active against FGFR2 (PFS¼�5.46, IC50¼31.8 nM) but not

FGFR3 (PFS¼�4.68, IC50¼478 nM) as predicted by their pocket

similarities with the PKR kinase. Similarly, the FGFR2 inhibitor

LY2874455 was capable of inhibiting the Aurora A kinase due to a

high pocket similarity with FGFR2 (PFS¼�5.41, IC50¼11.1 nM)

while the same compound did not inhibit the PKR activity signifi-

cantly (PFS¼�2.73, IC50¼114 nM). Notably, the cross-activity

between FGFR2 and Aurora A would not have been predicted by

the sequence-based approach (SI¼26%). Although the PKR inhibi-

tor C16 has a moderate inhibition on RET (PFS¼�3.96,

IC50¼33.8 nM), the compound activity is >10 fold lower than

LY2874455 against RET, which shared a higher pocket similarity to

FGFR2 (PFS¼�7.8, IC50¼2.56 nM). Overall, the experimental

data is consistent with our computational prediction of kinase

selectivity.

3.3 Off-target identification of kinase drug candidates
Since kinase inhibitor off-target interactions have been a major

cause of severe adverse events in patients, determining compound se-

lectivity is essential for kinase inhibitor design prior to clinical stud-

ies (Force et al., 2007). Here, we applied the KinomeFEATURE

database to profile the off-targets of 11 kinase drug candidates in

preclinical and clinical development that were designed to bind se-

lectively to 5 kinase targets: PIM1/2, JAK, cMET, BRAF and PI3K

(Supplementary Table S7). Using co-crystal structures of the kinase

drug candidates, we evaluated the binding site microenvironments

similarity of these compounds against the database to identify po-

tential kinase off-target interactions. As an initial validation, the pri-

mary targets of the 11 kinase drug candidates were all correctly

predicted by the best PFS (Supplementary Table S7, Supplementary

Figs S7 and S8). Overall, KinomeFEATURE database profiling of

the compounds identified more than 220 primary targets and novel

off-targets above the significant PFS threshold of <�5

(Supplementary Table S8).

To further validate kinase off-target prediction, we evaluated the

inhibitor potency (logIC50) of 11 kinase drug candidates against 111

kinases with protein crystal structures in PDB and compared the pre-

dicted and observed binding profile using heatmaps (Fig. 5a,

Supplementary Fig. S9, 10, 11 and Supplementary Text S4).

Consistent with the experimental observations, the PFS revealed

promiscuous kinase off-target bindings for PIM inhibitors (com-

pounds 18, 19 and 20), JAK inhibitors (compounds 21, 22 and 23)

and cMET inhibitors (compounds 24 and 25) whereas the binding

interactions for BRAF inhibitors (compounds 26 and 27), and the

PI3K inhibitor (compound 28) are relatively specific (Fig. 5b,

Supplementary Figs S10 and S11). Linear regression analyses

showed that multiple predicted kinase off-targets with significant

PFS (PFS<�5) were confirmed by the in vitro biochemical assay

Fig. 5. Off-target identification of kinase drug candidates. (a) Heatmaps of kin-

ase off-target binding profile generated based on PFS values or experimental-

ly observed IC50 values (logIC50) for the 11 kinase drug candidates

(compounds 18–28). Consistent with the experimental data, predicted PFS

revealed promiscuous kinase off-target binding for PIM inhibitors (com-

pounds 18, 19 and 20), JAK inhibitors (compounds 21, 22 and 23), and cMET

inhibitors (compounds 24 and 25) while binding for BRAF inhibitors (com-

pounds 26 and 27), and a PI3K inhibitor (compound 28) were highly specific.

(b) Scatterplots of predicted PFS values and experimental IC50 values

(logIC50) for PIM inhibitor (compound 18), JAK inhibitor (compound 22),

cMET inhibitor (compound 24), BRAF inhibitor (compound 26 and 27), and

PI3K inhibitor (compound 28). Note that the primary targets with the highest

binding affinity (lowest logIC50 values) were predicted by the optimal (most

negative) PFS. (c) Structural alignments between primary targets: PIM1 (PDB:

1XR1), JAK (PDB: 4IVD), and cMET (PDB: 3LQ8) and off-targets: GSK3b (PDB:

3PUP), TYK2 (PDB: 3LXN), and LCK (PDB: 2OG8) with CHK1 kinase (PDB:

1NVR) identified critical residues pair involved in kinase off-target binding

from the multiple-sequence alignment (see Supplementary Fig. S12). (d) The

identified critical binding regions include the phosphate binding region/DFG,

the ribose/adenine pocket, the front specificity pocket, the linker region, the

gate keeper residue, and the hydrophobic pocket region. Site similarity com-

parison based on the PocketFEATURE algorithm showed that phosphate

binding region/DFG, hydrophobic pocket, and gate keeper regions have the

highest average PS-PFS, suggesting their important functional roles in modu-

lating compound cross-activities (Fig. 5d and Supplementary Fig. S12)
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data, including CHK1, DAPK1 and GSK3b for PIM inhibitors (com-

pounds 18, 19 and 20), TYK2 and CSF1R for JAK inhibitors (com-

pounds 21, 22 and 23), TRK, LCK and FLT3 for cMET inhibitors

(compounds 24 and 25), and LCK, ZAK and RIPK2 for BRAF

inhibitors (compounds 26 and 27) (Fig. 5b, Supplementary Figs S9

and S10). On the other hand, high target selectivity was confirmed

for the PI3K inhibitors (compound 28) (Supplementary Fig. S11).

Importantly, the identified off-targets revealed additional

pharmacological mechanisms for the analyzed kinase drug candi-

dates. For example, off-target ZAK inhibition by BRAF inhibitors

has been implicated in the suppression of JNK pathway activation

and apoptosis during the treatment of melanoma, which is thought

to result in the secondary cutaneous squamous cell carcinoma

(cSCC) (Vin et al., 2013). On the other hand, inhibition of GSK3b, a

known off-target of multiple PIM inhibitors, was recently shown to

have synergy with PIM inhibition in the treatment of prostate can-

cers (Santio et al., 2016). To determine the structural basis of off-

target interactions for PIM (compound 18), JAK (compound 22)

and cMET (compound 24) kinase drug candidates, we performed

multiple sequence alignments followed by structural superposition

to identify critical residues involved in 6 regions of the kinase inhibi-

tor ATP binding site including phosphate binding region (DFG), ri-

bose/adenine pocket, front specificity pocket, linker region, gate

keeper residue and hydrophobic pocket (Supplementary Fig. S12

and Supplementary Text S5). Further structural alignments between

predicted intended targets: PIM1 (PDB: 1XR1), JAK (PDB: 4IVD)

and cMET (PDB: 3LQ8) and predicted off-targets: GSK3b (PDB:

3PUP), TYK2 (PDB: 3LXN) and LCK (PDB: 2OG8) from the

KinomeFEATURE database search was used to determine the pos-

ition specific-PFS (PS-PFS) value between identified residue pairs.

PocketFEATURE analysis showed that the DFG (PS-PFSAverage¼
�0.53), the hydrophobic pocket (PS-PFSAverage¼�0.46), and the

gate keeper regions (PS-

PFSAverage¼�0.45) have the highest average PS-PFS than the ri-

bose/adenine pocket (PS-PFSAverage¼�0.42), the front specificity

pocket (PS-PFSAverage¼�0.41) or the linker region (PS-FPSAverage¼
�0.34), suggesting their important functional roles in modulating

compound cross-activities (Supplementary Text S5 and Fig. 5d)

(Patel and Doerksen, 2010; Sohl et al., 2015). Interestingly, each

kinase has slight variations in the PS-PFS in different regions of the

ATP binding site, which likely reflects the unique binding chemistry

of distinct kinases. Thus, the mechanistic knowledge derived from

our analysis can potentially be leveraged to design inhibitors target

selective kinases to maximize therapeutic effects or reduce side

effects.

4 Discussion

Kinases play a significant role in diverse biological pathways and ab-

errant kinase activity has been implicated in a multitude of diseases.

Therefore, methods to inform and ultimately improve the design of

selective kinase inhibitors are of tremendous value to develop more

potent and safer drugs. While kinase inhibitor selectivity can be ex-

perimentally measured using biochemical and kinase binding assay

panels, high costs and variability between assay platforms can hin-

der large-scale kinase selectivity studies or profile comparisons. To

this end, we report a new kinase off-target prediction method based

on the comparison of binding site microenvironments similarity

characterized by diverse physiochemical descriptors. To enable

large-scale kinome analysis, we have constructed the

KinomeFEATURE database of �2850 kinase pocket structures from

189 unique human kinases from the Invitrogen panel and can direct-

ly complement experimental validation. In a retrospective analysis,

we have showed that our KinomeFEATURE database profiling

improved kinase off-target binding prediction accuracy and specifi-

city over the commonly used binding site signature or sequence

homology search methods. To further demonstrate the utility of this

approach, we applied the algorithm to predict the compound cross-

activity between the FGFR2 and PKR kinase inhibitors, LY2874455

and C16, and identified FGFR2 inhibitor LY2874455 as a potent in-

hibitor of PKR. To date, only C16 had been reported as a selective

inhibitor of PKR; thus, our finding suggested that LY2874455 could

serve as an initial lead for further PKR inhibitor development. To

evaluate the feasibility of our approach for kinome-wide kinase drug

selectivity prediction, we computationally profiled the kinase off-

target binding activities of 11 kinase drug candidates and identified

novel and experimentally validated kinase off-targets. Further struc-

tural analysis identified residue pairs critical for modulating kinase

cross-activities, which led to further insight into kinase inhibitor

promiscuity and pointed to potential strategy for kinase inhibitor

design at the kinome scale.

To define the limitations of the KinomeFEATURE database for

kinase selectivity profiling, we investigated one predicted kinase off-

target, MER, of one cMET kinase drug candidate (compound 24)

whose PFS values deviate from the linear regression model

(Supplementary Fig. S11). Further structural alignments between

cMET and MER kinase structures suggested that conformational

changes upon ligand binding involving a4 could contribute to a

reduced microenvironment match between two binding sites

(Supplementary Fig. S13). Therefore, developing a probabilistic ap-

proach that incorporates protein flexibility may improve the predic-

tion. Like other binding site similarity comparison algorithms, one

potential challenge of kinase selectivity profiling using the

KinomeFEATURE database remains the availability of protein

structure data. However, this limitation can be alleviated by recent

advances in homology modeling, de novo protein design techniques

as well as the rapidly growth of high throughput structural genomic

initiatives (Sali and Blundell, 1993). Although we have shown that

most kinase inhibitors activity can be predicted from their binding

site, several reports described the compound ‘activity cliff’ where a

small structural modification results in drastic changes in their bind-

ing profile despite of similarities of their native binding microenvir-

onments (Hu et al., 2013; Stumpfe et al., 2014). This problem can

be potentially addressed by combining chemical similarity metrics

with PFS to generate a stronger signal for similarity detection

(Guha, 2012; Liu and Altman, 2011). Still, our KinomeFEATURE

database has attempted to cover existing kinase structures to the

fullest extent possible and is directly applicable for kinome-wide

kinase inhibitor selectivity profiling. In addition, our strategy can be

further expanded to analyze inhibitors targeting kinase mutations as

well as non-kinase off targets. Most importantly, we anticipate that

our method will complement experimental assays and aid in the de-

sign of selective kinase inhibitors to mitigate liabilities associated

with kinase off-target binding.

Acknowledgements

We thank Kenta Yoshida, Charlie Eigenbrot, Andrew Erdman, Donna

Dambach, Dan Ortwine, James Kiefer, James Crawford and Dolo Diaz at

Genentech and all members of the Helix group at Stanford University for their

helpful feedback and suggestions. We are grateful to Gina Wang, Mark Zak,

Daniel Sutherlin, Joachim Rudolph, Tim Heffron, Tamara Kale, James Nesbitt,

and Chi Sullivan at Genentech for the help during the manuscript preparation.

Computational analysis of kinase inhibitor selectivity 241



Funding

The project was supported by Genentech and the following funding sources:

NIH GM102365, LM05652 and HL117798.

Conflict of Interest: none declared.

References

Akeno-Stuart,N. et al. (2007) The RET kinase inhibitor NVP-AST487 blocks

growth and calcitonin gene expression through distinct mechanisms in me-

dullary thyroid cancer cells. Cancer Res., 67, 6956–6964.

Anastassiadis,T. et al. (2011) Comprehensive assay of kinase catalytic activity

reveals features of kinase inhibitor selectivity. Nat. Biotechnol., 29,

1039–1045.

Arora,A. and Scholar,E.M. (2005) Role of tyrosine kinase inhibitors in cancer

therapy. J. Pharmacol. Exp. Ther., 315, 971–979.

Beisken,S. et al. (2013) KNIME-CDK: workflow-driven cheminformatics.

BMC Bioinformatics, 14, 257.

Berman,H. et al. (2003) Announcing the worldwide Protein Data Bank. Nat.

Struct. Biol., 10, 980.

Braconi Quintaje,S. and Orchard,S. (2008) The annotation of both human

and mouse kinomes in UniProtKB/Swiss-Prot: one small step in manual an-

notation, one giant leap for full comprehension of genomes. Mol. Cell

Proteomics, 7, 1409–1419.

Brandt,P. et al. (2009) Small kinase assay panels can provide a measure of se-

lectivity. Bioorg. Med. Chem. Lett., 19, 5861–5863.

Caffrey,D.R. et al. (2008) Prediction of specificity-determining residues for

small-molecule kinase inhibitors. BMC Bioinformatics, 9, 491.

Cicenas,J. and Valius,M. (2011) The CDK inhibitors in cancer research and

therapy. J. Cancer Res. Clin. Oncol., 137, 1409–1418.

Cichonska,A. et al. (2017) Computational-experimental approach to

drug-target interaction mapping: a case study on kinase inhibitors. PLoS

Comput. Biol., 13, e1005678.

Davis,M.I. et al. (2011) Comprehensive analysis of kinase inhibitor selectivity.

Nat. Biotechnol., 29, 1046–1051.

Demetri,G.D. et al. (2002) Efficacy and safety of imatinib mesylate in

advanced gastrointestinal stromal tumors. N. Engl. J. Med., 347, 472–480.

Druker,B.J. et al. (2001) Efficacy and safety of a specific inhibitor of the

BCR-ABL tyrosine kinase in chronic myeloid leukemia. N. Engl. J. Med.,

344, 1031–1037.

Fabian,M.A. et al. (2005) A small molecule-kinase interaction map for clinical

kinase inhibitors. Nat. Biotechnol., 23, 329–336.

Fedorov,O. et al. (2007) A systematic interaction map of validated kinase inhibi-

tors with Ser/Thr kinases. Proc. Natl. Acad. Sci. USA, 104, 20523–20528.

Force,T. et al. (2007) Molecular mechanisms of cardiotoxicity of tyrosine kin-

ase inhibition. Nat. Rev. Cancer, 7, 332–344.

Forrest,L.R. et al. (2006) On the accuracy of homology modeling and se-

quence alignment methods applied to membrane proteins. Biophys. J., 91,

508–517.

Guha,R. (2012) Exploring uncharted territories: predicting activity cliffs in

structure-activity landscapes. J. Chem. Inf. Model., 52, 2181–2191.

Hanks,S.K. et al. (1988) The protein kinase family: conserved features and

deduced phylogeny of the catalytic domains. Science, 241, 42–52.

Helguera,G. et al. (2006) Cytokines fused to antibodies and their combina-

tions as therapeutic agents against different peritoneal HER2/neu expressing

tumors. Mol. Cancer Ther., 5, 1029–1040.

Hu,Y. et al. (2013) Advancing the activity cliff concept. F1000Res, 2, 199.

Jammi,N.V. et al. (2003) Small molecule inhibitors of the RNA-dependent

protein kinase. Biochem. Biophys. Res. Commun., 308, 50–57.

Karaman,M.W. et al. (2008) A quantitative analysis of kinase inhibitor select-

ivity. Nat. Biotechnol., 26, 127–132.

Kinnings,S.L. and Jackson,R.M. (2009) Binding site similarity analysis for the

functional classification of the protein kinase family. J. Chem. Inf. Model.,

49, 318–329.

Kuhn,D. et al. (2006) From the similarity analysis of protein cavities to the

functional classification of protein families using cavbase. J. Mol. Biol., 359,

1023–1044.

Liu,T. and Altman,R.B. (2011) Using multiple microenvironments to find

similar ligand-binding sites: application to kinase inhibitor binding. PLoS

Comput. Biol., 7, e1002326.

Lo,Y.C. et al. (2016) 3D chemical similarity networks for structure-based tar-

get prediction and scaffold hopping. ACS Chem. Biol., 11, 2244–2253.

Lo,Y.C. et al. (2017) Computational cell cycle profiling of cancer cells for priori-

tizing FDA-approved drugs with repurposing potential. Sci. Rep., 7, 11261.

Lo,Y.C. et al. (2015) Large-scale chemical similarity networks for target

profiling of compounds identified in cell-based chemical screens. PLoS

Comput. Biol., 11, e1004153.

Manning,G. et al. (2002) The protein kinase complement of the human gen-

ome. Science, 298, 1912–1934.

Momcilovic,M. et al. (2017) Targeted inhibition of EGFR and glutaminase

induces metabolic crisis in EGFR mutant lung cancer. Cell. Rep., 18,

601–610.

Patel,R.Y. and Doerksen,R.J. (2010) Protein kinase-inhibitor database: struc-

tural variability of and inhibitor interactions with the protein kinase P-loop.

J. Proteome Res., 9, 4433–4442.

Patterson,H. et al. (2014) Protein kinase inhibitors in the treatment of inflam-

matory and autoimmune diseases. Clin. Exp. Immunol., 176, 1–10.

Rosnet,O. et al. (1991) Murine Flt3, a gene encoding a novel tyrosine kinase

receptor of the PDGFR/CSF1R family. Oncogene, 6, 1641–1650.

Sali,A. and Blundell,T.L. (1993) Comparative protein modelling by satisfac-

tion of spatial restraints. J. Mol. Biol., 234, 779–815.

Santio,N.M. et al. (2016) The PIM1 kinase promotes prostate cancer cell mi-

gration and adhesion via multiple signalling pathways. Exp. Cell. Res., 342,

113–124.

Sciabola,S. et al. (2008) Predicting kinase selectivity profiles using Free-Wilson

QSAR analysis. J. Chem. Inf. Model., 48, 1851–1867.

Sheridan,R.P. et al. (2009) QSAR models for predicting the similarity in bind-

ing profiles for pairs of protein kinases and the variation of models between

experimental data sets. J. Chem. Inf. Model., 49, 1974–1985.

Sohl,C.D. et al. (2015) Illuminating the molecular mechanisms of tyrosine kin-

ase inhibitor resistance for the FGFR1 gatekeeper mutation: the Achilles’

heel of targeted therapy. ACS Chem. Biol., 10, 1319–1329.

Stumpfe,D. et al. (2014) Advancing the activity cliff concept, part II.

F1000Res, 3, 75.

Subramanian,G. and Sud,M. (2010) Computational modeling of kinase inhibi-

tor selectivity. ACS Med. Chem. Lett., 1, 395–399.

Swords,R. et al. (2011) The Pim kinases: new targets for drug development.

Curr. Drug Targets, 12, 2059–2066.

Tabernero,J. (2007) The role of VEGF and EGFR inhibition: implications for

combining anti-VEGF and anti-EGFR agents. Mol. Cancer Res., 5,

203–220.

Verweij,J. et al. (2004) Progression-free survival in gastrointestinal stromal

tumours with high-dose imatinib: randomised trial. Lancet, 364,

1127–1134.

Vin,H. et al. (2013) BRAF inhibitors suppress apoptosis through off-target in-

hibition of JNK signaling. Elife, 2, e00969.

Zahler,S. et al. (2007) Inverse in silico screening for identification of kinase in-

hibitor targets. Chem. Biol., 14, 1207–1214.

Zhao,G. et al. (2011) A novel, selective inhibitor of fibroblast growth factor

receptors that shows a potent broad spectrum of antitumor activity in sev-

eral tumor xenograft models. Mol. Cancer Ther., 10, 2200–2210.

Zhou,W. et al. (2015) High resolution prediction of calcium-binding sites in 3D

protein structures using FEATURE. J. Chem. Inf. Model., 55, 1663–1672.

242 Y.-C.Lo et al.


