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Abstract

Motivation: Dual-axis electron tomography is an important 3 D macro-molecular structure recon-

struction technology, which can reduce artifacts and suppress the effect of missing wedge.

However, the fully automatic data process for dual-axis electron tomography still remains a chal-

lenge due to three difficulties: (i) how to track the mass of fiducial markers automatically; (ii) how to

integrate the information from the two different tilt series; and (iii) how to cope with the inconsist-

ency between the two different tilt series.

Results: Here we develop a toolkit for fully automatic alignment of dual-axis electron tomography, with

a simultaneous reconstruction procedure. The proposed toolkit and its workflow carries out the follow-

ing solutions: (i) fully automatic detection and tracking of fiducial markers under large-field datasets;

(ii) automatic combination of two different tilt series and global calibration of projection parameters;

and (iii) inconsistency correction based on distortion correction parameters and the consequently sim-

ultaneous reconstruction. With all of these features, the presented toolkit can achieve accurate align-

ment and reconstruction simultaneously and conveniently under a single global coordinate system.

Availability and implementation: The toolkit AuTom-dualx (alignment module dualxmauto and re-

construction module volrec mltm) are accessible for general application at http://ear.ict.ac.cn, and

the key source code is freely available under request.

Contact: xin.gao@kaust.edu.sa or zhangfa@ict.ac.cn

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Electron Tomography (ET) has become an indispensable tool for

structural biology, in which the three-dimensional density of the

ultrastructure is reconstructed from a series of micrographs (tilt ser-

ies) taken in different orientations (Fernández, 2012; Frank, 2006;

Lu�ci�c et al., 2013). Most of the tilt series are collected within the tilt

angular range 660
�

and result in a wedge of missing data, i.e. the

‘missing wedge’ effect, which is one of the main causations of arti-

facts in reconstruction and the degeneration of resolution. Dual-axis

electron tomography (Mastronarde, 1997; Penczek et al., 1995) is
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an extension to the traditional single-axis technology and can par-

tially compensate for the ‘missing wedge’ issue by having two tilt

series taken approximately perpendicular to each other. In recent

years, dual-axis tomographic reconstruction has proved its effective-

ness in improving resolution (Arslan et al., 2006; Guesdon et al.,

2013; Haberfehlner et al., 2014; Sousa et al., 2011).

The most universal workflow for dual-axis tomography is to re-

construct two single-axis tomograms separately and then combine

the separately reconstructed tomograms into one single volume

(Mastronarde, 1997) (for the convenience of further discussion, we

denote this strategy as ‘reconstruction-combination’). Firstly, the

specimen taken by dual-axis electron tomography is mostly aimed

at cellular analysis and has a relatively large field of view, in which

a mass of fiducial markers may exist so that tracking becomes

error-prone and time-consuming (Han et al., 2015, 2018;

Mastronarde and Held, 2017). Then, merging the two separately

reconstructed tomograms requires a mapping matrix. However,

solving the mapping matrix related to the two tomograms as well as

the following warping correction (Cantele et al., 2007) heavily

depends on the intrinsic structure of the specimen. Additionally,

according to the recent studies (Lawrence et al., 2006; Phan et al.,

2012, 2017), the electron beam trajectory is actually non-linear due

to the effect of the magnetic field. Under the non-linear electron

beam trajectory, distortion of the micrographs is highly likely to

happen with the tilt of specimen (Lawrence et al., 2006; Phan et al.,

2009). And the specimen itself may also undergo deformation. The

distortion of the micrographs will cause the inconsistency of the

two tilt series, which may even lead to the failure of the tomogram

merging. Local optimality of the projection parameters in the separ-

ate calibration is another issue that is caused by the unknown depth

of the specimen position. To overcome the ambiguity, efforts have

been devoted to simultaneous alignment (Cantele et al., 2010;

Winkler and Taylor, 2013), in which all the micrographs of the two

tilt series are calibrated under a single global coordinate system.

Though resolution improvement caused by the projection param-

eter re-estimation has been observed in simultaneous reconstruction

(Winkler and Taylor, 2013), simultaneous alignment still has poten-

tial issues caused by the elongating or stretching of distorted

micrographs.

In this work, we propose a novel toolkit, AuTom-dualx, for fully

automatic simultaneous alignment of dual-axis tilt series and simul-

taneous reconstruction. Firstly, a fully automatic fiducial marker de-

tection and tracking procedure is introduced. The procedure ensures

an exhaustive detection of fiducial markers and provides a fast and

reliable tracking, in which the relationship of fiducial markers in

different tilt series can be easily discovered across the dual-axis tilt

series, offering stable tracks for further projection parameter opti-

mization. Secondly, strategies of automatic combination of two dif-

ferent tilt series and global optimization are devised to ensure the

consistency of micrographs with projection parameters. Thirdly,

extended projection model with latent distortion correction is colla-

borated to compensate the inconsistency of two tilt series. To further

make the fully automatic alignment workflow available, simultan-

eous reconstruction methods [simultaneous algebraic reconstruction

technique (SART) and simultaneous iterative reconstruction tech-

nique (SIRT)] based on nonlinear parameter interpretation are also

provided.

Compared with the traditional solution and previous simultan-

eous alignment work, the toolkit here has the following contribu-

tions: it is a general framework that achieves fully automatic

simultaneous alignment and reconstruction for dual-axis electron

tomography; distortion correction is carried out along with

alignment, and has been proved to be effective to overcome the in-

consistency caused by different tilt series’ local optimization; a com-

prehensive analysis is taken to prove that the simultaneous

alignment is useful to achieve better results compared with the

reconstruction-combination procedure.

2 Materials and methods

The three main stages of our alignment workflow are illustrated

in Figure 1. The first stage is to detect and track the fiducial

markers in each single-axis tilt series as well as the pre-alignment.

This main stage is similar to the general procedure but uses an ex-

haustive detection and tracking of fiducial markers (Han et al.,

2015). The second stage is to combine the two tilt series as well as

tracks and projection parameters. In this stage, the two tilt

series are stitched into a single global coordinate system, with

the global presentation of projection parameters and fiducial

marker tracks. The third stage is to optimize the projection

parameters from coarse to fine, with the introduction of parame-

ters against micrograph distortion. Simultaneous reconstruction

techniques are provided to utilize the results of simultaneous

alignment.

2.1 Detection and tracking of fiducial markers
2.1.1 Fiducial marker detection

In our proposed workflow, the fiducial marker detection is reduced

to a sampling and clustering problem, which is composed of three

main steps: (i) fiducial marker diameter estimation, (ii) fiducial

marker position detection, and (iii) fiducial marker position refine-

ment. Figure 2 summarizes the entire workflow of fiducial marker

detection.

Diameter estimation: The accuracy of the fiducial marker diam-

eter is important and has a great influence on the localization preci-

sion. Our procedure automatically refines the diameter at the

beginning. The fiducial marker diameter estimation relies on the as-

sumption that a good diameter value will output stable diameter de-

tection. Firstly, the 0
�

micrograph is chosen and different values of

the marker diameters are guessed and used to detect the fiducial

markers. For each diameter value, the similarity of the detected

Fig. 1. The workflow of fully automatic simultaneous alignment scheme
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fiducial markers with the artifact fiducial marker template is calcu-

lated. Then the guessed diameters are ranked with the overall simi-

larity, and the diameter value with the highest similarity is recorded.

Repeating the procedure and narrowing the search space would

finally produce the diameter value with the highest similarity as the

fiducial marker diameter.

Position detection: Given a known fiducial marker diameter

value, the number of clearly localized fiducial markers is upper-

bounded for a micrograph (the capacity is fixed by w � h=d2, where

w is the width of the micrograph, h is the height of the micrograph

and d is the fiducial marker diameter). Here, the fiducial marker de-

tection problem is further reduced to a sampling and clustering

problem in our procedure.

Sampling: An average fiducial marker template (denoted as Tavg)

from the low-tilt micrograph can be gained in the previous process.

With the average template Tavg, a cross-correlation between the fi-

ducial marker template and the micrograph can be calculated. By

dividing the correlation matrix of the micrograph into subareas with

size d�d and searching the maximum value in each subarea, a num-

ber of ðw � hÞ=d2 peaks can be picked. These peak positions are the

candidates for fiducial marker positions.

Clustering: Each peak has the correlation value as the score of

shape similarity and the pixel value as the score of contrast simi-

larity. The two scores compose a feature space for the candidates,

in which the detected positions can be grouped into two clusters,

i.e. the fiducial marker cluster and the background (non-fiducial

marker) cluster. Here, it should be noticed that there are thou-

sands of background points. Observing from the central limit the-

orem, the background follows a Gaussian-like distribution in the

feature space. Consequently, an expectation-maximization (E-M)

clustering with the Gaussian mixture model is carried out to sep-

arate the fiducial markers from the background points. For a

detected peak, two probabilities are produced indicating how

likely the peak belongs to the fiducial marker cluster or the

background cluster, respectively. With such clustering, the

fiducial markers can be detected fully automatically and exhaust-

ively. More detailed descriptions can be found in Supporting

Information Section S1.1.

Position refinement: Considering the scale and defocus difference

of each micrograph, the detected fiducial markers are refined with

the assumption that the appearance of the fiducial markers in one

micrograph is similar to each other. Firstly, an average template of

the fiducial markers is generated from the detected fiducial markers

that belong to an identical micrograph. Then the peak deviations be-

tween each of the fiducial markers and the average template are cal-

culated. For each fiducial marker position, by recalculating the

position with the deviation, new fiducial marker positions can be

generated, leading to the corresponding new average template.

Repeat the above procedure until the total deviation between the fi-

ducial markers and the average template reduces below a threshold

(a stable minimal residual). Hereby, the fiducial marker positions

are refined consistently with the scale and defocus change of the cor-

responding micrograph.

2.1.2 Fiducial marker tracking

According to the most recent proof of the relationship between the

projection model and the tracking model (Han et al., 2018), the

positions of fiducial markers on two micrographs are related by

affine transformation within a very small deviation, which makes

it possible to track the fiducial markers only based on their two-

dimensional (2D) projections. Here, the fiducial marker tracking

problem is reduced to an incomplete point set registration

problem:

Let ‘point set’ denote the positions of the fiducial markers

extracted from a projection. Given two point sets (M and S) belong-

ing to different views, an affine transformation T ð�Þ applied to the

moving ‘model’ point setM can be found so that there exists a sub-

set of T ðMÞ with the maximum cardinality in which the points are

corresponding to the points from a subset of the static ‘scene’ set S

under a selected measure of distance.

Two different tracking algorithms are implemented in our

proposal: (i) the RANSAC-based tracking algorithm (Han et al.,

2015) that can ensure the robustness to noise with relatively

slow execution time, and (ii) the fast tracking algorithm (Han

et al., 2018) that solves the tracking problem by algebraic opti-

mization. The main ideas of the two algorithms are summarized

as follows:

In the RANSAC-based tracking algorithm, the point sets from

two different projections are divided into the ‘query set’ and

the ‘reference set’. Firstly, a query tree based on the four-point-set

(A set of four points on one surface consist a system that keeps the

cross-ratio invariant under affine transformation.) (Aiger et al.,

2008) for the reference set is built. Here, only the four points with

Fig. 2. The workflow of fiducial marker detection
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wide-baseline are used. Then a four-point-set is randomly selected

from the query set, which is queried in the query tree. If the closest

peer is obtained, a transformation can be calculated from the two

corresponding four-point-sets. If the estimated transformation is

not degenerate and can cover enough points, the transformation is

recorded as a candidate of the global transformation between the

query set and the reference set. Repeat the procedure until there is

no improvement of the transformation’s mapping residual or it

reaches the termination of the consensus query.

In the fast tracking algorithm, the point sets are represented by

the probability density function of a Gaussian kernel, i.e. the

Gaussian-mixed model (GMM). The algebraic solution contains

two steps. Firstly, the affine transformation parameters are coarse-

ly refined based on the theoretical transformation derived from the

projection model and its 2 D projections (Han et al., 2018). This

step can ensure the existence of the solution and give a coarse esti-

mation of the global affine transformation. Then, the transform-

ation parameters are refined based on the GMM-presented point

set and coherent point drift technique (Myronenko and Song,

2010). These steps can provide a fitted estimation in an E-M

fashion.

In general, the RANSAC-based algorithm is robust but slow,

while the algebraic algorithm is fast but slightly less robust. Here,

the merits of the two algorithms can compensate each other.

Considering the mass of fiducial markers in the view of large field,

fast fiducial marker tracking is recommended since it is much

faster than the random sampling algorithm. If the fast tracking

fails for two attempts with different initializations, the procedure

will automatically alter to the RANSAC-based tracking.

However, in most cases, the fast tracking is robust enough to go

through the entire procedures fluently. More details about the

two tracking algorithms can be found in Supporting Information

Section S1.2.

2.2 Combination of two tilt series
With the exhaustive detection and tracking of the fiducial markers,

it is possible to fully use the information of the mass tracks to re-

cover the projection parameters as well as the optical distortion.

Before the global optimization, a combination of the two tilt series

is required.

2.2.1 Projection parameters pre-refinement

Each tilt series is aligned separately before the combination.

Firstly, it is straightforward to fix the large motion of two differ-

ent views by using the information of affine transformation. For

example, given the already known affine transformation of the

two views, i.e. x0 ¼ Axþ t (A is a 2�2 transformation matrix, t

is a 2�1 translation vector, x is the fiducial marker position

from one projection and x0 is the corresponding marker position

from the other projection), the invariant point x0 that makes

x0 ¼ Ax0 þ t is the point that can minimize the difference between

fx0g and fxg. Furthermore, considering the invariant of tilt

axis, the in-plane rotation can also be compensated by analysis of

multiple tracks.

Then, the 3 D relationship of the micrographs in one tilt series

is considered. As a practical implementation, the projection is

modeled as a classic orthogonal projection (The bold font is used to

indicate vectors or matrices; a 2D point is represented by a 2�1

vector.):

u

v

 !
¼ sRcPRbRa

X

Y

Z

0
BB@

1
CCAþ t;

Ra ¼
1 0 0

0 cos a sin a

0 �sin a cos a

0
B@

1
CA;

Rb ¼
cos b 0 �sin b

0 1 0

sin b 0 cos b

0
B@

1
CA;

P ¼
1 0 0

0 1 0

� �
;

Rc ¼
cos c sin c

�sin c cos c

� �
;

(1)

where s is the image scale change, c is the inplane rotation angle, a is

the pitch angle of the tilt axis, b is the tilt angle of the sample, (u, v)

is the measured projection point and P denotes the orthogonal pro-

jection matrix. The projection parameters can be optimized by the

procedure described in Section 2.3.2.

2.2.2 Spatial relationship calibration

The two separately refined tilt series should be merged into a single

global coordinate system. Here, the calibrated spatial fiducial markers

fðX;Y;ZÞTg serve as the bridge of tilt series A and tilt series B.

Denote the spatial fiducial markers calibrated in tilt series A as

XA ¼ fXA
j g and that in tilt series B as XB ¼ fXB

j g. Theoretically,

the corresponding fiducial markers in XA and XB have a relation-

ship of rigid transformation. However, due to the optical distortion

and local optimization, XA and XB cannot be simply related by rigid

transformation. An affine transformation is much more feasible to

describe the relationship between XA and XB. Considering the possi-

bility of view field’s difference, the 3 D point set registration based

on RANSAC is used (it is a 3 D version of the algorithm described in

Supporting Information Section S1.2.1, by extending the model

from 2 D to 3 D).

After obtaining the corresponding relationship, we denote the

matched spatial fiducial markers from tilt series A as PA ¼ frA
n gn¼1;:::;K

and the corresponding ones as PB ¼ frB
mgm¼1;:::;K, where K is the num-

ber of fiducial markers. With the merging pairs ðrA
i ; r

B
i Þ, a rigid trans-

formation T ð�Þ from PA to PB that approximates the affine

transformation can be calculated by the least square estimation.

For the convenience of discussion, we define the coordinate sys-

tem of tilt series A as the global coordinate system. Given a rigid

transformation that makes rB ¼ RrigidrA0 þ trigid, where Rrigid and

trigid are the approximate estimation of the rigid transformation

from rA to rB, and rA0 is the inversion estimation of rA from T �1ðrBÞ,
the parameters and spatial fiducial markers to describe the projec-

tion of axis B under the coordinate system of A can be denoted as:

uB

vB

� �
¼ sBRcB

PRbB
RaB
ðRrigidrA0 þ trigidÞ þ tB: (2)

By considering the observation of projection ðuB; vBÞT on the co-

ordinate system of A, we have:

uB

vB

� �
¼ sA0RcA0 PRbA0RaA0 r

A0 þ tA0 : (3)

The initial transformation for each micrograph in tilt series B is

estimated separately. By substituting Equation (2) to Equation (3)
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and solving a non-linear least square problem, we can get the

corresponding initial estimation of the global parameters

sA0 ; cA0 ; bA0 ; aA0 ; tA0 , with which the projection in tilt series B can be

represented under the coordinate system of A for the consequent

global optimization (a detailed solution can be found in Supporting

Information Section S1.3). Furthermore, with the relationship be-

tween the spatial fiducial markers of A and B, it is easy to generate

globally consistent tracks that go across both tilt series. The tracks

that cover enough micrographs in one tilt series are also kept for the

further analysis.

2.3 Global optimization of the tilt series
With the globally transformed projection parameters and tracks, a

global optimization of the two tilt series can be solved, based on

which a simultaneous reconstruction will be carried out.

2.3.1 Globally consistent model

The separate alignment and reconstruction cannot remove the ambi-

guity in the parameter optimization for tilt series A and B (Cantele

et al., 2010). Here, a two-stage based projection parameter estima-

tion is designed to produce the global optimization.

In the first stage, a simultaneous alignment based on the orthog-

onal projection model is carried out, as shown in Equation (4):

uG

vG

 !
¼ sGRcG

PRbG
RaG

X

Y

Z

0
BB@

1
CCAþ tG: (4)

Here, to distinguish from the prealignment, the suffix G is used

to denote global parameters and to announce that all the parameters

of the two tilt series are optimized under a single global coordinate

system. Firstly, the spatial fiducial marker estimation is fixed to the

value from tilt series A and the parameters from tilt series B are

adjusted. After the initialization, the parameters are relaxed to be

subject to tuning for both tilt series A and tilt series B. By doing this,

the ambiguity caused by the unknown depth in the separate estima-

tion can be removed.

However, due to the optical distortion, the orthogonal projec-

tion model is not enough to produce a consistent, global alignment.

In the second stage, an extended projection model with extended

parameters is introduced to cope with the issue:

uG

vG

 !
¼ RcG

PRbG
RaG

xx 0 0

0 xy 0

0 0 xz

0
BB@

1
CCA

X

Y

Z

0
BB@

1
CCAþ tG; (5)

where xx, xy and xz are the distortion weight along the x, y, z direc-

tions, respectively. Here, all the parameters from axis A and axis B

are free for optimization. Therefore, the information inherent in

both tilt series determines the optimization simultaneously.

2.3.2 Robust estimation

An L-2 norm objective function is used to optimize the parameters:

E ¼
X

i

X
j

�
ProjiðXjÞ � xi;j

�2

di;j; (6)

where X ¼ fXjg is the set of spatial points to be estimated, Projð�Þ is

the process of projection defined in Equations (4) and (5) [also feas-

ible for Equation (1)], and xi;j is the configured position of fiducial

marker and di;j (di;j 2 f0;1g) indicates whether the j-th marker is vis-

ible in the i-th micrograph. Our aim is to find the most appropriate

projection parameters to minimize the objective function E as well

as to produce the estimation of spatial fiducial markers.

For the robustness of the estimation, the projection parameters

are refined incrementally from the orthogonal projection to the dis-

tortion compensated projection. A sparse version of bundle adjust-

ment (SBA) (Triggs et al., 2000) is adapted and a procedure against

noise is proposed to solve this problem:

1. Initialize X by backprojection of fxi;jg;
2. Optimize projection parameters in Equation (4) by SBA;

3. For the i-th micrograph, reproject every Xj by the i-th projection

parameters and calculate the deviation with measured positions;

4. Calculate the threshold and remove the positions with large

deviations (outliers);

5. Repeat Steps 2–4 until no outliers are removed.

If Equation (4) converges, the procedure introduces parameters

for distortion correction, moves to Equation (5), and iterates until

convergence. Here, a threshold based on M-estimator is used to sup-

press the effect of noise. And the orthogonal projection uses a rela-

tively relaxed threshold to retain distortion information. More

details can be found in Supporting Information Section S1.4.

2.3.3 Simultaneous reconstruction

Projection-model-altered versions of SART and SIRT are provided

to solve the simultaneous reconstruction of distortion-extended pro-

jection model. Both SIRT and SART are algebraic reconstruction

methods. Algebraic reconstruction methods formulate the 3 D re-

construction problem as a large system of linear equations, which

guarantees the ability to model the inverse projection problem dis-

cretizing the geometric optics models of the image formation

process.

In the following, we adopt a discrete representation of the space:

volume reconstructions are made of voxels, with uj representing the

unknown density value and N the total number of voxels. The pro-

jection constraints are then expressed with the following linear

system:

vi ¼
XM

i

wi;juj; (7)

where vi denotes the i-th measured projection value and M ¼ B� S

is the dimension of v, B being the number of projection angles and S

the number of projection values per view. The matrix W ¼
ðwi;jÞM�N is a sparse matrix where wi;j can be computed according

to the contribution of the j-th point in the volume to the i-th projec-

tion, once the projection map is specified.

Before reconstructing the volume uj, we should first define the

matrix W. In our projection-model-altered version, the matrix W is

defined by the Projð�Þ discussed above, i.e. extended projection

model with parameters for distortion correction. For SART

(Andersen and Kak, 1984; Casta~no-Dı́ez et al., 2007), the iterative

process with extended projection model can be written by the fol-

lowing expression:

u
ðkþ1Þ
j ¼ uk

j þ
XS

i¼1

kwi;jXS

i¼1
wi;j

XN

h¼1
wi;h

viðPbðjÞÞ �
XN
h¼1

wi;huk
h

 !
;

(8)

where k is the index of the iteration, k is the relaxation factor (in

general, 0 < k < 2), i ¼ bSþ s denotes the i-th equation of

Equation (7) and b ¼ ðk mod BÞ is the index of the view. SART

adopts a view-by-view strategy. That is, an approximation is
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updated simultaneously by all the projections of each view. SIRT

(Gilbert, 1972; Sorzano et al., 2001) is another type of iterative re-

construction method, which uses all the projections from all the

views in each iteration.

3 Experiments and results

3.1 Datasets
Two experimental datasets are used here to show the performance

and improvement by simultaneous alignment. In the following con-

text, we will call the tilt series generated from the relatively vertical

tilt axis as ‘axis A’ and the ones generated from the relatively hori-

zontal tilt axis as ‘axis B’.

The first dataset, Centriole, is a tilt series of plastic embedded

cell section around a centriole region, which was taken on a FEI

TF30 microscope (operated at 300 kV) with a Gatan Camera. The

0-degree tilt image of the tilt-series A and B are illustrated in Figure

3(A) and (D), respectively. This dataset is obtained from IMOD

tutorial (Downloaded from http://bio3d.colorado.edu/imod/files/

tutorialData-1 K.tar.gz). The tilt angles of the projection images

range from þ65:0
�

to �61:0
�

at 2
�

intervals. There are 64 images in

the tilt series of each axis. The size of each tilt image is 1024�1024

with a pixel size of 1.01 nm. The initial orientation of the tilt azi-

muth with respect to the vertical direction of the images from axis A

and axis B is �12:5
�
.

The second dataset, Adhesion belt, is a tilt series of the

adhesion belt structure. The Adhesion belt dataset was a negative

stained cryo-ET dataset provided by the National Institute of

Biological Sciences of China. The data were collected by an

FEI Titan Krios (operated at 300 kV) with a Gatan camera. The

0-degree tilt images of the tilt-series A and B are illustrated in

Figure 3(B) and (E), respectively. There are 111 images for axis A

and 113 images for axis B, with tilt angles ranging from �60:0
�

to

þ60:0
�

at 1–2� intervals for each axis. The size of each tilt image

is 2048�2048, with a pixel size of 2.03 nm (two magnitude-

binned). The initial orientation of the tilt azimuth with respect to

the vertical direction of the images from axis A and axis B is 2:4
�
.

This dataset has a mass of fiducial markers embedded in the

specimen.

Due to the lack of resolution criteria in ET (Cardone et al.,

2005), it is difficult to directly measure the resolution improve-

ment by experimental data. Here, a simulated dataset (named as

Simul) generated by InSilicoTEM (Vulovi�c et al., 2013) is used to

demonstrate the reconstruction improvement of our toolkit. The

simulated tomogram with 2560� 2560� 250 voxel that contains

81 volumes of 2WRJ (the default map in InSilicoTEM,

downsampled by two factor) was generated. And about 45 fidu-

cial markers with a diameter of 18 pixels were embedded. From

the tomogram, 51 projections were produced for each tilt axis

(þ50:0
�

to �50:0
�

at 2
�

intervals), and random translation and

rotation ranging in 6150 pixels and 610
�

were added. The

0-degree tilt images of the tilt-series A and B are illustrated in

Figure 3(C) and (F), respectively. More details of the simulation

process can be found in Section S2.1. This simulated dataset is

processed by subtomogram averaging to further demonstrate

the effect of simultaneous reconstruction in resolution. Because

the 2WRJ map has been downsampled by two factor in our

simulation, in the following analysis, we assume that both

the micrograph and the ground-truth are obtained with 2 Å per

pixel.

Table 1 summarizes the parameters of all the datasets.

Both SART and SIRT implementation based on Cþþ/MPI with

the distortion-extended projection model are provided in our tool-

kit. However, without loss of generality, in the following context,

only the results based on SART are shown.

3.2 Results
3.2.1 Automatic detection and tracking

Fiducial marker detection and tracking are the basis of marker-

based alignment. Here we use the Centriole dataset to demonstrate

the automatic detection and tracking in our workflow.

Figure 4 shows the detected fiducial markers from the projection

images at 0
�

and a high tilt angle. As shown in Figure 4(A) and (C),

all the well-distributed markers at low tilt angles are detected by our

workflow. In addition, most of the good-shape fiducial markers in

high tilt angles are detected [Fig. 4(B) and (D)], whereas the blurred

and low-contrast fiducial markers are excluded, which indicates the

robustness of our marker detection procedure. For the entire tilt ser-

ies in the two axes, our method detects more than 90% of the fidu-

cial markers.

The length of the tracks is used to demonstrate the overall per-

formance of the detection and merging. Figure 5 demonstrates the

histograms of the tracking length obtained by the tracking proced-

ure. In our implementation, the projection images with one or two

view intervals are matched and then combined into several merging

pairs to obtain the tracks. Not all the markers will go across the en-

tire tilt series and the micrographs at high tilt angles will have more

fiducial markers, as shown in Figure 5 (A) and (B). For the tilt-

series of axis A, we detected 25 tracks that cover the entire tilt ser-

ies. For the tilt-series of axis B, we detected 28 tracks appearing in

the entire tilt series. We obtained 21 tracks (fiducial markers)

whose projections appear both in the tilt series of axis A and axis B

[Fig. 5(C)]. There are 14 tracks that cover the entire tilt series of

both axis and the length of all the 21 tracks is higher than 100 (128

micrographs in total). By analyzing the overlapped space of the tilt

series of axis A and axis B, we can find that all the fiducial markers

that appear both in the tilt series of axis A and axis B are identified

and tracked.

Table 1. Parameter summary of the datasets

Dataset Centriole Adhesion belt Simulation

Microscope FEI TF30 (300 kV) Titan Krios (300 kV) Ideal (300 kV)

Tilt range þ65
�
to�61

� �60
�
toþ60

� þ50
�
to�50

�

Interval 2
�

1 to 2
�

2
�

Image size 1024� 1024 2048� 2048 2560� 2560

Pixel size 10.1 Å/pixel 20.3 Å/pixel 2.0 Å/pixel

Fig. 3. Illustration of test datasets. (A)&(D) The 0
�

micrographs of Centriole of

axis A and axis B. (B)&(E) The 0
�

micrographs of Adhesion belt of axis A and

axis B. (C)&(F) The 0
�

micrographs of simulated dataset of axis A and axis B
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3.2.2 Tilt series combination

With the mass of fiducial marker tracks, it is possible for us to fix the

optical distortion. In our strategy, we used all the well tracked fiducial

markers (the tracks that cover more than 85% of the micrographs for

each tilt series) in both axis A and axis B. Figure 6 demonstrates the

tracks for datasets Centriole and Adhesion belt, after the pre-

refinement of projection parameters. As showed in Figure 6(A) and

(B), the shift and rotations are almost corrected, and both the tile series

A and B are aligned under a single unique coordinate system. Our

model does not assume the relative locations of the two tilt axes.

Instead, it treats the tilt based on the value of Euler angles that are

recalculated from the information of the tilt angles. The relationship of

each tilt series can be discovered automatically in our scheme.

3.2.3 Global optimization and reconstruction

If the axis A and B are calibrated under a single global coordinate

system but just based on the orthogonal projection model, the

inconsistency caused by optical distortion still remains. We illustrate

the difference between the global optimization based on the orthog-

onal projection model and the projection model with distortion cor-

rection in Figure 7. Without distortion correction, the reconstructed

fiducial markers have ambiguous shapes [Fig. 7(A)], whereas distor-

tion correction results in well-shaped markers and fewer artifacts

[Fig. 7(B)].

Figure 8 demonstrates the final reconstruction of Centriole by

both AuTom-dualx and IMOD (Because it is difficult and unfair to

compare the results from different reconstruction methods (for ex-

ample, WBP and SART), the weighted back-projection (WBP) in the

workflow of IMOD is replaced by SART, with all the geometry

parameters unchanged.). Here, AuTom-dualx uses the simultaneous

alignment and reconstruction procedure, and IMOD separately

reconstructs the two axes and then merges the reconstruction to-

gether. It can be seen that the result of AuTom-dualx is smoother

than that of IMOD, and there are less artifacts in the result of

AuTom-dualx on the top slice. The average reprojection residual of

fiducial markers for the global estimation in AuTom is 0.516,

whereas the average fiducial marker reprojection residuals of tilt ser-

ies A and B for IMOD are 0.556, 0.591, respectively (The reprojec-

tion residual can only prove the alignment quality to a certain

extent, because the projection models used in AuTom and IMOD

are different.). We further compared the reconstruction by reprojec-

tion consistent analysis. We find that the average normalized cross-

correlation (NCC) value of AuTom-dualx’s reprojection with the

original two tilt series (the center 512�512 area) is 0.955 while

that of IMOD for axis A and axis B is 0.953 and 0.951, respectively

(IMOD can only ensure the consistency in one axis).

Figure 9 shows the final reconstruction of Adhesion belt by both

AuTom-dualx and IMOD. The result of AuTom-dualx has a higher

contrast and clearer details. The average reprojection residual of fi-

ducial markers for the global estimation in AuTom is 0.69, whereas

those of tilt series A and B for IMOD are 0.915 and 0.945, respect-

ively. By reprojection consistent analysis, we find that the average

Fig. 7. Reconstruction results of the lefttop part of Centriole (SART with 40

iterations and relaxation factor k ¼ 0:2). (A) Reconstruction of the alignment

based on the classic orthogonal projection. (B) Reconstruction of the align-

ment with distortion correction

Fig. 4. Illustration of marker detection. All the detected markers are marked by

circles. (A) Detected fiducial markers from the micrograph of axis A with 0
�

tilt

angle. (B) Detected fiducial markers from the micrograph of axis A with 64
�

tilt

angle. (C) Detected fiducial markers from the micrograph of axis B with 0
�

tilt angle.

(D) Detected fiducial markers from the micrograph of axis B with 64
�

tilt angle

Fig. 5. (A) The track lengths of tilt series of axis A. (B) The track lengths of tilt

series of axis B. (C) The combined track lengths of tilt series of axis A and B

Fig. 6. Illustration of pre-refinement of projection parameters. (A) Overlay of

the pre-refined fiducial marker tracks of dataset Centriole. (B) Overlay of the

pre-refined fiducial marker tracks of dataset Adhesion belt
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NCC value of AuTom-dualx’s reprojection with the original two tilt

series (the center 1024�1024 area) is 0.916 while that of IMOD

for axis A and axis B are 0.906 and 0.911, respectively.

For these two datasets, a detailed comparison of selected fiducial

markers are shown in Figure 10, in which the top panel is the results pro-

duced by AuTom-dualx and the bottom one is produced by IMOD.

From the shape of the fiducial markers, we can find that the results pro-

duced by simultaneous alignment and reconstruction show fewer arti-

facts and less elongation, especially along the direction of missing wedge.

We further studied the reprojection consistency (Fig. 11). Here,

because IMOD uses a separate reconstruction and merging strategy,

there are two choices, i.e. merging the reconstruction of axis B to the

one of axis A or merging the reconstruction of axis A to the one of

axis B. IMOD can only keep the consistency for one tilt series,

whereas AuTom-dualx calibrates the projection parameters and re-

construction of axis A and axis B simultaneously. Therefore,

AuTom-dualx can well balance the consistency between axis A and

axis B. For IMOD on the Centriole dataset, when merging axis B to

axis A, the average NCC value for the micrographs in axis A can

reach 0.953 while that in axis B is only 0.878. On the contrary,

when merging axis A to axis B, the average NCC value for the

micrographs in axis B can reach 0.951 while that in axis B is only

0.863. As a comparison, the results of AuTom-dualx always keep

high NCC values and gain an average value of 0.955. A similar con-

clusion can be drawn for the Adhesion belt dataset [Fig. 11(B)]. For

IMOD, when merging axis B to axis A, the average NCC value for

the micrographs in axis A can reach 0.906 while that in axis B only

reaches 0.809; when merging axis A to axis B, the average NCC

value for the micrographs in axis B can reach 0.911 while that in

axis B only reaches 0.812. AuTom-dualx can keep a consistent NCC

value of 0.916. It is interesting that AuTom-dualx obtains a better

correlation value on axis B and IMOD has a large decline when

merging B to A. This is due to the tilt range difference: axis B has

113 micrographs and series A has 111 micrographs, axis B thus has

more contribution to the 3 D reconstruction and better NCC values.

3.2.4 Resolution gain by simultaneous reconstruction

Reprojection consistency represents one aspect of the reconstruction

results. A more direct measurement is the reconstruction resolution.

Fig. 8. Sample slices of reconstruction on the Centriole dataset. All the illus-

trated data are reconstructed by SART with 40 iterations and relaxation factor

k ¼ 0:2. (A)&(B) The middle and top slices of the reconstruction obtained by

the simultaneous alignment and reconstruction of AuTom-dualx. (C)&(D) The

middle and top slices of the reconstruction obtained by the separate recon-

struction and merging of IMOD (merging axis B to axis A)

Fig. 9. Sample slices of reconstruction on the Adhesion belt dataset. All the

illustrated data are reconstructed by SART with 40 iteration and relaxation

factor k ¼ 0:2. (A)&(B) The middle and top slices of the reconstruction

obtained by the simultaneous alignment and reconstruction of AuTom-dualx.

(C)&(D) are the middle and top slices of the reconstruction obtained by the

separate reconstruction and merging of IMOD (merging axis B to axis A)

Fig. 10. Fiducial marker subvolumes from the Centriole (left) and Adhesion

belt (right) datasets. The fiducial marker location in the Centriole volumes is

(449 418 259) for AuTom-dualx and (475 418 283) for IMOD. The fiducial mark-

er location in the Adhesion belt volumes is (578 1025 116) for AuTom-dualx

and (574 1035 105) for IMOD

Fig. 11. The NCC curves between the reprojection of the reconstruction for

both AuTom-dualx and IMOD and the original tilt series for the Centriole data-

set (A) and the Adhesion belt dataset (B)
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However, unlike Fourier shell correlation (FSC) in single particle

cryo-EM, the field of ET still lacks such mature criteria (Cardone

et al., 2005). Here, the experiment of a simulated tomogram that

contains several copies of the already-solved ribosome structure

(2WRJ) was designed to evaluate the reconstruction resolution.

Firstly, the dataset Simul was aligned and reconstructed by the

workflow of IMOD and AuTom-dualx respectively, with SART (20

iterations, k ¼ 0:2). For each workflow, a reconstructed tomogram

that contains all the 81 substructures was obtained. Then the subvo-

lumes that contain the ultrastructure were selected. Since the rota-

tion and translation for each subvolume are known in Simul, it is

not difficult to obtain an accurate averaged subtomogram from the

picked subvolumes by inverse transformation (Considering the radi-

ation damage caused by the electron beam, it is not natural to use

dual-axis tomogram in subtomogram averaging. However, the con-

clusion that is drawn from the simulation is universal from the com-

putational point of view.). For the simulated dataset, since the

ground truth is at hand, we compared the optimized fiducial marker

positions of AuTom-dualx and IMOD with the ground-truth

(Supporting Information Section S2.2).

To analyze the results, both FSC and Resmap (Kucukelbir

et al., 2014) were used to compare the performance between

AuTom-dualx and IMOD. For each subtomogram, a sphere mask

with a diameter of 180 pixels was applied to remove the surren-

dering area, and the ground-truth of the ribosome (the 2WRJ

map) was used as the reference. All the results were calculated

with the Å/voxel setting to 2. Figure 12 shows the FSC curves be-

tween the reconstructed subtomogram and the reference 2WRJ

map of AuTom-dualx and IMOD. According to the frequency

value truncated at 0.5 (FSC0:5), the result of AuTom-dualx has a

resolution of 5.49 Åwhile the result of IMOD has a resolution of

5.88 Å. The results obtained by Resmap also draw a similar con-

clusion. As shown in Figure 13, we can find that most of the local

resolutions gained by AuTom-dualx are distributed around 5.4 Å,

while the majority of the local resolutions gained by IMOD are

distributed around 6.2 Å (This experiment is based on simulation,

in which many variables were simplified. The value of resolution

presented here is just for the purpose of computational method

comparison but not to indicate the advance in subtomogram aver-

aging.). Here, both the results of FSC and Resmap indicate that

simultaneous reconstruction can gain an improvement of the re-

construction quality compared to the reconstruction-combination

strategy. And the results here are also consistent with the conclu-

sion in Winkler and Taylor (2013).

4 Conclusion

In this paper, we present a toolkit for fully automatic alignment of

dual-axis tilt series and simultaneous reconstruction. Our scheme pro-

vides the automatic detection and tracking of fiducial markers across

the tilt series under large-field datasets, automatic combination of two

different tilt series, and simultaneous alignment with inconsistency cor-

rection by parameters for distortion correction. The presented toolkit is

fully automatic, which does not require manual intervention and avoids

the ambiguity in separate alignment. To our knowledge, the presented

toolkit is the first general framework for fully automatic alignment of

the dual-axis electron tomography, which also produces globally con-

sistent alignment and supports simultaneous reconstruction. The ex-

perimental results demonstrate the effectiveness of our workflow.

In the future, we plan to improve the proposed toolkit along the fol-

lowing directions. First, the current toolkit still lacks visualization and

auxiliary tools. We will integrate AuTom-dualx into the AuTom plat-

form (Han et al., 2017). The reconstruction acceleration techniques

used in AuTom (Wan et al., 2011, 2012, 2013; Zhang et al., 2015) will

be migrated to AuTom-dualx to improve the computational efficiency.

Second, we will investigate the effect of the reconstruction strat-

egy under complex conditions, to further accelerate the convergence

and improve the reconstruction quality (Tong et al., 2006).

Third, our current toolkit uses extended parameters to correct the

optical distortion. Although we have shown that this idea can effective-

ly fix the inconsistency issue in the dual-axis tilt series alignment, a

more complex model that considers higher level distortion (Lawrence

et al., 2006) is also provided by our toolkit (�w 2 option of dual-

xmauto), which will introduce xy;x2; y2; xz; yz and z2 to the distortion

correction (Supporting Information Section S1.5). In particular, the

Fig. 13. Results obtained by Resmap analysis. (A)&(C)&(E) The slices, local

resolution distribution and resolution histogram of the subtomogram pro-

duced by the workflow of AuTom-dualx, respectively. (B)&(D)&(F) The slices,

local resolution distribution and resolution histogram of the subtomogram

produced by the workflow of IMOD, respectively

Fig. 12. The Fourier shell correlation between the reconstructed subtomo-

gram and the reference 2WRJ map
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work of Myasnikov et al. (2013) supports the wide applicability of

dual-axis tomography and the work of Fernandez et al. (2018) further

proves the power of distortion correction in single-axis cryo-ET.

However, because of the requirement of abundant and well-distributed

fiducial markers, the application of higher level distortion correction

remains a sophisticated operation in specimen preparation and

micrograph-photographing. The high-variance introduced by a com-

plex projection model is also a serious issue, which increases the over-

fitting risk when the number of fiducial markers is insufficient and the

quality of fiducial markers is not so good. Therefore, our toolkit uses a

simpler model as default to handle optical distortion, following the

Occam’s razor principle. We will further conduct a more comprehen-

sive comparison about the different models under different situations.

Fourth, a potential topic is the application of dual-axis tomography

to practical subtomogram averaging. The subtomogram averaging

applications, including datasets like EMPIAR-10064 (Khoshouei

et al., 2017) and EMPIAR-10045 (Bharat and Scheres, 2016), are

becoming more and more popular in structural biology. However,

these datasets are all based on single-axis tomography. Currently, there

are almost no such applications and datasets that produce subtomo-

gram averaging data based on dual-axis tomography. Theoretically,

dual-axis tomography can retain more information for a single par-

ticle. Therefore, it is possible for dual-axis based subtomogram averag-

ing, with the development of the instrument, to reduce the radio

damage caused by the long time exposure. We will investigate the ef-

fect of simultaneous alignment and reconstruction in practical subto-

mogram averaging if such datasets become available in the future.
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