
Genome analysis

Metagenomic binning through low-density

hashing

Yunan Luo1,†, Yun William Yu2,4,†, Jianyang Zeng3, Bonnie Berger4,* and

Jian Peng1,*

1Department of Computer Science, University of Illinois at Urbana-Champaign, Champaign, IL 61801, USA,
2Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA, 3Machine Learning and

Computational Biology Group, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing

100084, China and 4Department of Mathematics and Computer Science and AI Laboratory, Massachusetts

Institute of Technology, Cambridge, MA 02139, USA

*To whom correspondence should be addressed.
†The authors wish it to be known that, in their opinion, the first two authors should be regarded as Joint First Authors.

Associate Editor: Inanc Birol

Received on April 8, 2018; revised on June 18, 2018; editorial decision on July 4, 2018; accepted on July 10, 2018

Abstract

Motivation: Vastly greater quantities of microbial genome data are being generated where envir-

onmental samples mix together the DNA from many different species. Here, we present Opal for

metagenomic binning, the task of identifying the origin species of DNA sequencing reads. We

introduce ‘low-density’ locality sensitive hashing to bioinformatics, with the addition of Gallager

codes for even coverage, enabling quick and accurate metagenomic binning.

Results: On public benchmarks, Opal halves the error on precision/recall (F1-score) as compared

with both alignment-based and alignment-free methods for species classification. We demonstrate

even more marked improvement at higher taxonomic levels, allowing for the discovery of novel

lineages. Furthermore, the innovation of low-density, even-coverage hashing should itself prove

an essential methodological advance as it enables the application of machine learning to other bio-

informatic challenges.

Availability and implementation: Full source code and datasets are available at http://opal.csail.

mit.edu and https://github.com/yunwilliamyu/opal.

Contact: bab@mit.edu or jianpeng@illinois.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Metagenomics is the study of the microbiome—the many genomes

(bacterial, fungal and even viral) that make up a particular environ-

ment. The microbiome has been linked to human health: soil sam-

ples can lead to the discovery of new antibiotics (Forsberg et al.,

2012), and the human gut microbiome has been linked to Crohn’s

Disease (Erickson et al., 2012), obesity (Turnbaugh and Gordon,

2009) and even autism spectrum disorder (MacFabe, 2012).

Metagenomics fundamentally asks what organisms are present in a

genomic sample with the goal of gaining insight into function.

However, the sequencing datasets required to shine any light on

these questions are vastly more complex than standard genomic

datasets due to the mixing of unknown amounts of different

genomes present. These data result in major identification challenges

for certain bacterial, as well as viral, species, strains and genera

(Janda and Abbott, 2007; Tu et al., 2014).

We focus on whole-genome metagenomic DNA sequencing,

since cheaper Amplicon-based sequencing methods, which concen-

trate on the diversity of given marker genes (e.g. the 16S rRNA

gene) and only analyze protein-coding regions, are limited in their

ability to provide microbial functions from the samples (1000

Genomes Project Consortium, 2012; Altschul et al., 1990; Berlin

et al., 2015). Unfortunately, the mixing of DNA from many

VC The Author(s) 2018. Published by Oxford University Press. 219

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/),

which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact

journals.permissions@oup.com

Bioinformatics, 35(2), 2019, 219–226

doi: 10.1093/bioinformatics/bty611

Advance Access Publication Date: 13 July 2018

Original Paper

http://opal.csail.mit.edu
http://opal.csail.mit.edu
https://github.com/yunwilliamyu/opal
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty611#supplementary-data
https://academic.oup.com/

different, sometimes related organisms in varying quantities poses

substantial computational and statistical challenges to metagenomic

binning, the process of grouping reads and assigning them to an ori-

gin organism. This important first step occurs before downstream

data analysis can be applied to elucidate the structure of microbial

populations and assign functional annotations (1000 Genomes

Project Consortium, 2012; Bromberg and Rost, 2007). Existing se-

quence alignment tools, such as BWA-MEM (Li, 2013), Bowtie 2

(Langmead and Salzberg, 2012) or BLAST (Altschul et al., 1990),

can readily be used and usually provide high-resolution alignments

and accurate results by simply finding the highest scoring matching

genome; they have the added advantage of tolerance to small num-

bers of mismatches or gaps. However, the computational cost of

alignment-based methods becomes prohibitive as metagenomic

datasets continue to grow (Wood and Salzberg, 2014; Yu et al.,

2015a). Similarly, contig-assembly based methods, while effective,

are also computationally expensive (Alneberg et al., 2014).

Alternatively, the field has turned to alignment-free metagenomic

binning (also known as compositional binning) (Nawy, 2015), which

assigns sequence fragments to their taxonomic origins according to

specific patterns of their constituent k-mers. State-of-the-art tools such

as Kraken (Wood and Salzberg, 2014) and CLARK (Ounit et al.,

2015) use exact occurrences of uniquely discriminating k-mers in

reads (i.e. k-mers that appear in species A but not species B) and are

very efficient, but as a result are limited in both their sensitivity and

ability to detect unknown organisms. Alternately, Kaiju (Menzel

et al., 2016) uses matches of reads to a protein database instead of ref-

erence genomes for the same purpose. Other approaches rely on

supervised machine learning (ML) classifiers, such as Naive Bayes or

support vector machines (SVMs), trained on a set of reference genome

sequences to classify the origins of metagenomic fragments (Wang

et al., 2007; Patil et al., 2011; Vervier et al., 2016; Brady and

Salzberg, 2009) using the relative k-mer frequency vector of a read.

More recently, latent strain analysis performs covariance analysis of

k-mers to partition reads for low-abundance strain assembly and de-

tection (Cleary et al., 2015). All these approaches are often faster than

alignment-based methods (Li, 2013). However, because they require

exact matches of k-mers, these methods exhibit drawbacks including

intolerance to mismatches or gaps; here we develop algorithmic tools

to address these shortcomings.

Moreover, as large k-mer sizes incur high memory usage and com-

puting requirements, the space of k-mers grows exponentially in k for

many machine learning (ML) approaches. Thus, existing ML-based

metagenomic binning methods generally work with low fixed dimen-

sionality (k). For example, PhyloPythia (McHardy et al., 2007) uses

an ensemble of SVM models trained on contiguous 6-mers, and its

successor, PhyloPythiaS (Patil et al., 2011), further improves the bin-

ning accuracy by tweaking the SVM model to simultaneously include

k-mers of multiple sizes (k¼3, 4, 5, 6) as compositional features.

Some existing bioinformatics methods use mid-sized k-mers (e.g.

k¼31), but primarily for fast indexing and nearest exact search

(Ames et al., 2014; B�rinda et al., 2015; Ounit et al., 2015; Wood and

Salzberg, 2014; Yu et al., 2015b) and not in a supervised ML-based

manner. Longer k-mers have the potential to capture compositional

dependency within larger contexts because they span a larger section

of the read. They can lead to higher binning accuracy but are also

more prone to noise and errors if used in the supervised setting.

To address this problem, locality-sensitive hashing (LSH) techni-

ques (Andoni and Indyk, 2006), such as randomly spaced k-mer

construction have been developed for representing long k-mers

sparsely (Rasheed et al., 2013). In the context of bioinformatics,

these techniques are known as spaced-seed construction (B�rinda

et al., 2015; Keich et al., 2004; Ma et al., 2002). Spaced-seeds are an

example of LSH, but are generally high-density because they have

historically been designed to optimize for the probability of at least

one hit over the expected number of hits in a pair of homologous

but non-identical regions. The original PatternHunter, which intro-

duced spaced-seeds to bioinformatics used 11 locations in a 19-mer

(Keich et al., 2004; Ma et al., 2002). B�rinda et al. (2015) used

spaced-seeds in Kraken for metagenomic binning, but optimized for

hit count and coverage, using e.g. 16 locations in a 28-mer, or 24

locations in a 36-mer. Employing a ‘high density’ of over half the

locations in a k-mer can decrease spurious matches, necessary when

using a discriminative k-mer framework like that of Kraken, which

can only distinguish between two species when a k-mer in the read

matches one species but not another. However, this approach still

runs into the same exponential space problem of large k-mer sizes

when used in a ML framework because most of the positions in the

read still contribute to the dimensionality (Section 2). Thus, using

lower density hashing is necessary, but it comes at the cost of not

capturing long discriminative k-mers. Fortunately, discriminative k-

mers are not needed in SVM-based models such as the one we use,

as well as other ML-based models, so even using lengths as short as

6–12 positions can be sufficient. Thus, low-density hashing is

enabled by SVM-based models, and furthermore, allows those mod-

els to access longer-range correlations that cannot be captured using

contiguous short k-mers. To the best of our knowledge, low-density

hashing—using significantly fewer than half the locations in a k-mer

(e.g. 25% by default in the method we introduce)—has not previ-

ously been used for bioinformatic analysis.

Here we newly overcome these bottlenecks in handling long k-

mers by developing a novel compositional metagenomic binning algo-

rithm, Opal, which efficiently encodes long k-mers using low-

dimensional profiles generated using even-coverage, low-density hash-

ing. We take inspiration from low-density parity check (LDPC) error

correcting codes (also known as Gallager codes)—not previously used

in bioinformatics—to generate evenly covering sparse sets of random

positions of a k-mer (Gallager, 1962; MacKay and Neal, 1996),

which we then newly apply to the ML pipeline introduced by Vervier

et al. (2016) for metagenomic sequence classification.

2 Materials and methods

We offer two major conceptual advances in Opal (Fig. 1). First, al-

though LSH with uneven coverage has previously been used for fast

sequence alignment and assembly in the form of spaced seeds (Berlin

et al., 2015; Buhler, 2001) or for (meta)genome distance estimation

through min-wise hashing of contiguous k-mers (Mash from Ondov

et al., 2016), our method is the first time that low-density LSH has

been used in bioinformatics, including for compositional metage-

nomic binning. Second, we have developed LSH functions based on

the Gallager design for even coverage of relatively very long k-mers

(e.g. k¼64, 128), substantially increasing accuracy when using low-

density hashes of long k-mers. This innovation overcomes the prob-

lem that uniformly random LSH functions are not efficient because

of uneven coverage of a k-mer: in order to achieve a guaranteed min-

imum coverage at every location in a k -mer, uniformly random

LSH functions require many more hashes.

2.1 Compositional read classification with k-mer

profiles
We assume that a sequence fragment s 2 RL, where R ¼ A; T;f
G; Cg, contains L nucleotides. A k-mer, with k < L, is a short

220 Y.Luo et al.

word of k contiguous nucleotides. We define the k-mer profile of s

in a vector representation fk sð Þ 2 R4k

: If we index each k-mer as a

binary string with length 2k, then we have a one-to-one mapping be-

tween any k-mer and an integer from 0 to 22k. In the remainder of

this article, we will not distinguish the k-mer string with its integer

presentation i for notational simplicity. Each coordinate in the k-

mer profile fk s; ið Þ stores the frequency of k-mer i in the sequence

fragment s. For instance, for a fragment s ¼ AATTAT, its 2-mer

profile f2 sð Þ has 4 non-zero entries: f2 s; AAð Þ ¼ 1=5,

f2 s; TTð Þ ¼ 1=5, f2 s; ATð Þ ¼ 2=5 and f2 s; TAð Þ ¼ 1=5. In this way,

instead of representing an L-nucleotide fragment in O 4L
� �

, we can

use a k-mer profile to represent it in O 4k
� �

. Similarly, we can con-

struct k-mer profiles given hash functions that specify other pos-

itional subsequences of the k-mer, rather than only contiguous

subsequences.

After the k-mer profile has been constructed, we can bring super-

vised ML classification algorithms, such as logistic regression, naive

Bayes classifier and SVMs, to train a binning model. The training data

can be generated by sampling L-nucleotide fragments from the refer-

ence genomes with taxonomic annotations. Because the binning classi-

fier often only involves vector multiplication, the speed of

compositional-based binning algorithms is much faster than that of

alignment-based methods, thus more suitable for large datasets. On

the other hand, due to the fact that the k-mer profile can only capture

the local patterns within a fragment, existing compositional binning

algorithms usually have lower binning accuracy than the alignment-

based methods which compare fragments and references in a global

way. In addition, compositional-based classification methods are gen-

erally more sensitive to mutations or sequencing errors, partially due

to the way the k-mer profile is constructed through LSH features.

In this work, we introduce Opal, a novel compositional-based

metagenomic binning algorithm, that robustly represents long

k-mers (e.g. k ¼ 64 or 128) in a compact way to better capture

the long-range compositional dependency in a fragment. The key

idea of our algorithm is built on LSH, a dimensionality reduction

technique that hashes input high-dimensional data into low-

dimensional buckets, with the goal of maximizing the probability of

collisions for similar input data. Although LSH functions are usually

constructed in a uniformly random way, we propose a new and effi-

cient design of LSH functions based on the idea of the LDPC code

invented by Robert Gallager for noisy message transmission

(Gallager, 1962; MacKay and Neal, 1996). A key observation is

that Gallager’s LDPC design not only leads to a family of LSH func-

tions but also makes them efficient such that even a small number of

random LSH functions can accurately encode the long fragments.

Different from uniformly random LSH functions, the Gallager LSH

functions are constructed structurally and hierarchically to ensure

the compactness of the feature representation and the robustness

when sequencing noise appears in the data.

2.2 Locality sensitive hashing
LSH is a family of hash functions that have the property that two

similar objects are mapped to the same hash value (Andoni and

Indyk, 2006). For the metagenomic binning problem, we are only

interested in strings of length k. Then a family of LSH functions can

be defined as functions h : Rk ! Rd which map k-mers into a d-di-

mensional Euclidean space. Assume that we consider Hamming dis-

tances between k-mers; if we choose h randomly and for two k-mers

s1 and s2 with at most r different positions, h s1ð Þ ¼ h s2ð Þ holds

with probability at least P1. For two k-mers s3 and s4 with more

than R different positions, h s3ð Þ 6¼ h s4ð Þ holds with probability at

least P2. With the construction of an LSH family, we can amplify P1

or P2 by sampling multiple hash functions from the family.

Compared with the straightforward k-mer indexing representation,

the LSH scheme can be both lower-dimensional and more robust.

Importantly, we can uniquely construct LSH functions such that

d � 4k. Moreover, when a small number of sequencing errors or

mutations appear in the k-mer, LSH can still map the noisy k-mer

into a feature representation that is very similar to the original

k-mer. This observation is highly significant since mutations or

sequencing errors are generally inevitable in the data, and we hope

to develop compositional-based methods less sensitive to such noise.

One way to construct LSH functions on strings under Hamming

distance is to construct index functions by uniformly sampling a

subset of positions from the k-mer. Specifically, given a string s of

length k over R, we choose t indices i1; . . . ; it uniformly at random

from 1; . . . ; kf g without replacement. Then, the spaced k; tð Þ-
mer can be generated according to s and these indices. More formal-

ly, we can define a random hash function h : Rk ! Rt to generate a

spaced k; tð Þ-mer explicitly:

h sð Þ ¼ hs i1½ �; s i2½ �; . . . ; s it½ �i:

The hash value h sð Þ can also be seen as a 4t dimensional binary vec-

tor with only the string h sð Þ0s corresponding coordinates set to 1 and

otherwise 0. It is not hard to see that such an LSH function h has the

property that it maps two similar k-mers to the same hash value

with high probability. For example, consider two similar k-mers s1

and s2 that differ by at most r nucleotides; then the probability that

they are mapped to the same value is given by

Pr h s1ð Þ ¼ h s2ð Þ½ � �
k� r

t

 !,
k

t

 !

Fig. 1. Low-density hashing with even coverage. (a) Random projections onto

subspaces (left) cover all positions evenly only in expectation, and for small

numbers of hash functions, will give uneven coverage. Using Gallager-

inspired LDPC codes allows us to guarantee even coverage of all positions in

the k-mer (right) with a small number of hash functions. (b) Intuitively, one

can think of a (k , t)-hash function as a 0/1 vector of length k with t 1’s specify-

ing the locations in the k-mer that are selected. Given any (k , t)-hash function

h (e.g. the vector with t 1’s followed by k -t 0’s), one can uniformly randomly

construct another (k , t)-hash function by permuting the entries of h. The key

to the Opal’s Gallager-inspired LSH design is that instead of starting with a

single hash function and permuting it repeatedly, we start with a hash func-

tion matrix H which is a LDPC matrix. H is designed such that in the first row

h1, the first t entries are 1, in the second row h2, the second t entries are 1

and so on, until each column of H has exactly one 1. Permuting the columns

of H repeatedly generates random LSH functions that together cover all posi-

tions evenly, ensuring that we do not waste coding capacity on any particular

position in the k-mer. Additionally, for very long k-mers, we can construct the

Gallager LSH functions in a hierarchical way to further capture compositional

dependencies from both local and global contexts (see Section 2). (c) The

rows of H are then used as hash functions

Metagenomic binning through low-density hashing 221

For two k-mers s3 and s4 that differ in at least R nucleotides; the

probability that they are mapped to different values is given by

Pr h s3ð Þ 6¼ h s4ð Þ½ � � 1 �
X
j�R

k� j

t

 !,
k

t

 !

With the family of LSH functions, we randomly sample a set of m

LSH functions and concatenate them together as the feature vector

for a long k-mer. Note that the complexity of the LSH-based feature

vector is only O m4tð Þ, much smaller compared with Oð4kÞ that is

the complexity of the complete k-mer profile, so long as t is much

smaller than k. As an aside, this is the reason that high-density hash-

ing still runs into the exponential space blow-up problem. When

t ¼ ck, for some constant c > 0; Oð4ckÞ is still exponential in k. It is

for this reason that we turn here to low-density hashing, where t it-

self is a small constant.

More importantly, the LSH-based feature vector is not sensitive

to substitution errors or mutations in the k-mer if m and t are well

chosen, but for the traditional k-mer profile, even one nucleotide

change can change the feature vector completely. To compute the

feature vector for a metagenomic fragment of length L, we first ex-

tract all k-mers by sliding a window of length k over the sequence,

and then apply h on each k-mer to generate LSH-based feature vec-

tors and then normalize the sum of the feature vectors by L� kþ 1.

Summing the feature vectors is equivalent to simply counting k-mer

frequencies in the non-hash based regime, as done by Vervier et al.

(2016), whereas normalizing in theory allows us access to variable-

length fragments, though we do not explore these in this paper. In

this way, one can easily show that similar fragments can also be

mapped to similar LSH-based feature vectors. After the feature vec-

tors are generated for fragments with taxonomic annotations, we

train a linear classifier for metagenomic binning. It is also fairly

straightforward to show that similar fragments have similar classifi-

cation responses if the coefficients of the linear classification func-

tion are bounded. One may expect that the complexity of linear

classification with k-mer profiles would be lower, since there are at

most L� kþ 1 different k-mers in a fragment, and can be computed

easily using sparse vector multiplications; however, we find that the

LSH-based feature vector is also sparse in practice and the indexing

overhead is much smaller when constructing the feature vectors,

since the LSH-based method can have much smaller dimensionality.

In practice, the LSH-based methods can sometimes be even faster if

m and t are not too large.

2.3 Gallager low-density LSH
Despite that the random LSH function family described above has a

lot of nice theoretical properties, uniformly sampled LSH functions

are usually not optimal in practice. Theoretical properties of LSH

functions hold probabilistically, which means that we need to sam-

ple a large number of random LSH functions to make sure the

bounds are tight. However, practically, we simply cannot use a very

large number of random LSH functions to build feature vectors for

metagenomic fragments, given limited computational resources.

Thus, it would be ideal if we could construct a small number of ran-

dom LSH functions that are sufficiently discriminative and inform-

ative to represent long k-mers.

Here we take inspiration from Gallager codes, or LDPC codes,

that have been widely used for noisy communication. The idea be-

hind the Gallager code is similar to our LSH family but with a differ-

ent purpose, namely error correction. The goal of the LDPC code is

to generate a small number of extra bits when transmitting a binary

string via a noisy channel (Gallager, 1962; MacKay and Neal,

1996). These extra bits are constructed to capture the long-range de-

pendency in the binary string before the transmission. After the mes-

sage string and these extra bits have been received, a decoder can

perform error correction by performing probabilistic inference to

compare the differences between the message string and these code

bits to infer the correct message string. In the same spirit, we here

adopt the idea behind the design of the LDPC code to construct a

small set of LSH functions for metagenomic binning.

To construct efficient LSH functions, we hope to not waste cod-

ing capacity on any particular position in the k-mer. Although under

expectation, uniformly sampled spaced k; tð Þ-mers on average cover

each position equally, with a small number of random LSH func-

tions, it is likely that we will see imbalanced coverage among posi-

tions since the probability of a position being chosen is binomially

distributed. The Gallager design of LDPC, on the other hand, gener-

ates a subset of positions not uniformly random but make sure to

equally cover each position (Gallager, 1962). Thus we can use the

Gallager design to generate spaced k; tð Þ-mers. Gallager’s LDPC

matrix H is a binary matrix with dimension m � k, and has exact-

ly t 1‘s in each row and w 1‘s in each column. The matrix H can be

divided into w blocks with m=w rows in each block. We define the

first block of rows as an m
w

� �
� k matrix Q:

Q ¼

1 1 � � � 1

1 1 � � � 1

. .
.

1 1 � � � 1

2
666664

3
777775

where each row of matrix Q has exactly t consecutive 1’s from left

to right across the columns. Every other block of rows is a random

column permutation of the first set, and the LDPC matrix H is given

by:

H ¼ Q; QP1; . . . ; QPw�1½ �T ;

where Pi is a uniform random m
w

� �
� m

w

� �
permutation matrix for

i ¼ 1; . . . ; w� 1. An example with k ¼ 9; t ¼ 3; m ¼ 6;

w ¼ 2 is depicted in Figure 1b, and the general method is given in

Algorithm 1.

We use each row of H to extract a spaced k; tð Þ-mer to construct

an LSH function. Note that the first set of H gives contiguous t-

mers. With m Gallager LSH functions, we can see that each position

in a k-mer is equally covered w times, while the same m uniformly

sampled LSH functions are very likely to have highly imbalanced

coverage numbers for different positions because of the high

Algorithm 1 Gallager’s LDPC Matrix:

Input: k; t; m

Q all zero m
w

� �
� k matrix

for i 1 to m
w do

for j i� 1ð Þ � t þ 1 to i� t do

Q i; j½ � 1

end for

end for

choose w� 1 uniform random k� k permutation matrix Pi,

for i ¼ 1; . . . ; w� 1.

H ¼ Q; QP1; . . . ; QPw�1½ �T

Output: Gallager’s LDPC Matrix H

222 Y.Luo et al.

variance (¼ m t k�tð Þ
k2 Þ: To further improve the efficiency, we con-

struct random LSH functions with minimal overlap using a modified

Gallager design algorithm. The idea is to avoid the ‘four-cycles’ in

the bipartite graph representation (Algorithm 2), as we hope not to

encode two positions together in two ‘redundant’ LSH functions

(MacKay and Neal, 1996).

Relatedly, though the first set of H gives k
t contiguous hashes for

a k-mer, we need only keep one hash, as for a read of length L, we

sweep over all k-mers contained in it. Excepting edge effects, when

featurizing an entire read, it is thus equivalent to having multiple

contiguous hashes.

For very long k-mers, we can use a hierarchical approach to gen-

erate low-dimensional LSH functions for very long-range compos-

itional dependency in k-mers. We first generate a number of

intermediate spaced k; lð Þ-mers using the Gallager design matrix.

Then from these k; lð Þ-mers, we again apply Gallager’s design to

generate l; tð Þ-mers to construct the k; l; tð Þ hierarchical LSH

functions.

2.4 Theoretical justification for efficacy
We expect evenly spaced low-density LSH (hereafter referred to as

Opal-Gallager) to perform well for two reasons. One is that it

allows capturing long-range correlations while keeping the feature

space small. The other is that it admits a greater number of substitu-

tion differences than contiguous k-mers while still mapping to simi-

lar values.

That Opal captures long-range correlations is straightforward

and covered above. If we use Opal-Gallager on k-mers of length 64,

then there is a chance to capture correlations of that length, as sub-

sets of locations within the k-mer are selected randomly. Using con-

tiguous string features cannot capture long range correlations unless

the string size is length 64, which as discussed earlier causes an ex-

ponential explosion in the feature space. Non-SVM based tools like

Clark and Kraken do use long contiguous strings of size 32, but in a

discriminative fashion avoiding the exponential space problem.

Other SVM-based methods such as PhyloPythia and Vervier et al.

are restricted to k < 16 because of the feature space blowup.

For admitting a greater number of substitution differences, con-

sider two strings A and B of length L ¼ 64, that differ in 6 random

locations with a substitution. Suppose we use contiguous k-mer

features of length k ¼ 12. Then, the k-mers that make up A are like-

ly completely disjoint from the k-mers that make up B (>82% prob-

ability that there are 0 shared contiguous 12-mers), because for any

12-mer, 1 of the 6 substitutions probably is in it. Thus, with just 6

substitutions, generating features using 12-mers results in strings A

and B looking like they are completely different, despite being most-

ly the same.

On the other hand, consider using Opal(64, 8) with 256 hashes;

i.e. we pick 8 random locations in the 64-mer for each hash, and do

this 256 times. The feature space of 256� 28 ¼ 212 is exactly the

same size as using contiguous 12-mers. With 256 evenly-spaced,

low-density LSHs, we cover each location 32 times. This means that

at most 32 � 6 ¼ 192 of the hashes are different between strings A

and B. Thus, at least 64=256 ¼ 25% of the hashes are always the

same between strings A and B. Opal is able to detect that two strings

are similar for a greater number of substitution differences than

using contiguous k-mers, which will often treat the two strings as

entirely unrelated.

Note that in this illustrative example, we chose our parameters

to make the math work cleanly, using 256 hashes and 8-mers. In

practice, because of the Gallager code ensuring even coverage, this

lower bound on the percent of matching hashes holds even if we use

only a few hashes (e.g. 8). It is in this way that Opal-Gallager is bet-

ter able to capture the similarity between sequences with some num-

ber of substitution differences than using a contiguous k-mer.

3 Results and discussion

3.1 Experiment settings
We evaluated Opal on multiple benchmark datasets (see details in

each experiment below). Unless otherwise specified, Opal was run

with the default options of k ¼ 64; t ¼ 16 and 8 hash functions.

Opal samples L-nucleotide fragments from the reference with cover-

age 15�. The default fragment length L was chosen to be 200 bp

but can be varied based on the actual length of reads generated by

different sequencing technologies. We trained one-against-all SVMs,

implemented using Vowpal Wabbit, for metagenomic binning.

Detailed description of the dataset in each experiment can be found

in Supplementary Notes 1–3.

3.2 OPAL is much faster and more accurate than

alignment methods
As a proof of concept, we first tested Opal on a large dataset with

50 microbial species, as in other work (Vervier et al., 2016) as com-

pared with state-of-the-art alignment methods. (See Supplementary

Note 2 for details of synthetic metagenomic read sampling, substi-

tute/sequencing error simulation and evaluation setup.) We found

that Opal achieves both improved accuracy and up to two orders of

magnitude improvement in binning speed as compared with BWA-

MEM (Li, 2013), a state-of-the-art alignment-based method

(Supplementary Figs S1 and S2). We can additionally use Opal as a

first-pass ‘coarse search’ (Buchfink et al., 2015; Yu et al., 2015a) be-

fore applying BWA-MEM for nearly 20 times speedup for the

aligner; i.e. we first find candidate genomes using Opal before run-

ning BWA-MEM on just the most likely candidates (Supplementary

Fig. S2). As OPAL exhibits similar speed and memory usage as com-

pared with other compositional classifiers, we will henceforth focus

on comparisons against those methods.

Algorithm 2 Removing 4-cycles:

Input: Gallager’s LDPC Matrix H

repeat

for i 1 to k� 1 do

for j iþ 1 to k do

if j½H :; i½ �[H :; j½ �j �2 (check if 4-cycle

exists) then

ridx row index of the first same

element in H :; i½ � and H :; j½ �.
b ridx

m
w

l m
swap the elements of H :; i½ � and H :; j½ �
that belong to the b-th block.

end if

end for

end for

until no 4-cycle

Output: 4-cycle-free Gallager’s LDPC Matrix H

Metagenomic binning through low-density hashing 223

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty611#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty611#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty611#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty611#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty611#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty611#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty611#supplementary-data

3.3 OPAL outperforms existing metagenomic binning

approaches
We proceeded to compare Opal with compositional-based binning

approaches that use contiguous k-mers (Vervier et al., 2016), testing

on the above dataset of 50 bacterial species. We would like to point

out that lowering the density alone is problematic without also

introducing Gallager codes to ensure even coverage of locations

within a k-mer, as uneven coverage significantly decreases accuracy

(Fig. 2 and Supplementary Fig. S3). In Figure 2, we first importantly

observe that our algorithm for low-density uniformly random long

k-mer LSH (denoted Opal-LSH in Fig. 2) provides better training ac-

curacy as compared with contiguous short k-mers (Vervier et al.,

2016), even when the feature space for the short k-mers is larger.

Second, even coverage using Gallager codes demonstrates another

substantial decrease in the classification error (denoted Opal-

Gallager or simply Opal) without any increase in the computational

or memory cost; as substitution error rate increases, Opal’s advan-

tages become ever more apparent.

Next, we compared Opal with state-of-the-art metagenomic bin-

ning methods that operate on individual reads, including Kraken

(Wood and Salzberg, 2014), Clark (Ounit et al., 2015), Clark-S

(Ounit and Lonardi, 2015), Kaiju (Menzel et al., 2016) and

Metakallisto (Schaeffer et al., 2017). We collected three public

benchmark datasets, A1.10.100, B1.20.500 and SimHC20.500 from

previous works (Ounit et al., 2015; Ounit and Lonardi, 2015). Opal

outperforms these classifiers at assigning reads to both known spe-

cies and to higher phylogenetic levels for unknown species (Fig. 3).

Opal exhibits better accuracy as compared with all pairs of methods

and benchmarks, except for the B2 benchmark, where Opal per-

forms comparably to CLARK-S (Fig. 3a and SupplementaryTables

S1 and S2). In that particular case, we note though that CLARK-S is

not as scalable as it uses an order of magnitude more memory and is

over three times as slow as Opal; plus, Opal is more accurate than

CLARK-S on all the other benchmarks. Similarly, Metakallisto was

almost as accurate on the small benchmarks of Figure 3a at similar

speed and lower memory usage, yet performed significantly worse

on speed, memory, and accuracy for novel lineage identification on

the larger dataset in Figure 3b. Additionally, Opal outperforms

Kaiju on the Mi-SEQ and Hi-Seq data used in its testing (Menzel

et al., 2016) (Supplementary Tables S3 and S4).

We also compared Opal to MetaPhlAn2 (Truong et al., 2015)

for metagenomic profiling—determining the full composition of a

microbial sample—even using their (MetaPhlAn2’s) marker genes.

Opal performs better on the species and genus levels (Supplementary

Table S5). For assigning known species, we use the balanced F1-

score, which is the harmonic mean of precision (true positives div-

ided by all positive predictions) and recall (true positives divided by

all positive labels) on the species labels. For all comparisons with

other methods, we trained Opal on 64-mers with 8 hashes of row-

weight 16. Opal thus achieves better accuracy than both alignment-

based and existing compositional k-mer methods for classifying

known species.

3.4 Opal performs particularly well on novel lineage

detection
Notably, Opal’s performance increase is especially pronounced at

higher phylogenetic levels (Fig. 3b and Supplementary Tables S5

Fig. 3. Comparison of Opal against Kraken, CLARK, CLARK-S, Kaiju and

Metakallisto in terms of accuracy (top row), speed (middle row), and memory

usage (last row): (a) Opal achieves generally higher classification accuracies

on three public benchmark data sets than five other state-of-the-art compos-

itional classifiers. Only CLARK-S is comparable in terms of accuracy, but

CLARK-S uses an order of magnitude more memory while running signifi-

cantly slower (processes fewer fragments/sec). (b) Opal has greater sensitiv-

ity to novel lineages in benchmarks on a large 193-species dataset [19]. We

simulate the effect of novel species by removing a species from the dataset,

and training at the genus level on the remaining data. Then, we predict the

genus of simulated reads from the removed species. Similarly, we repeated

the experiment removing all data from a genus, training at the phylum level,

and attempting to predict the phylum of the removed genus. The improve-

ment over Kaiju is particularly impressive as Kaiju bins using protein sequen-

ces, giving it an inherent advantage at higher phylogenetic levels, which we

overcome using low-density hashing

Fig. 2. Comparison of Opal against compositional SVM-based approaches.

On a synthetic dataset of fragments of length 200 drawn from a dataset of 50

bacterial species (Vervier et al., 2016), using Opal LDPC hash functions (Opal-

Gallagher) as features outperforms using the same method with uniformly

random LSH functions (Opal-LSH), as well as using contiguous 16- and 12-

mers, with (a) substitution errors and (b) indels. We note particularly good ro-

bustness against substitution errors

224 Y.Luo et al.

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty611#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty611#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty611#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty611#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty611#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty611#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty611#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty611#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty611#supplementary-data

and S6). For unknown species, we measure only the sensitivity of

correcting assigning genus or phylum labels. When tested on a

benchmark of 193 species (Vervier et al., 2016), Opal demonstrates

greater sensitivity to novel lineages, where the source genomes of the

sequenced reads share either a genus or phylum but are dissimilar at

lower phylogenetic levels (Fig. 3b and Supplementary Table S7). Of

note, unlike Opal, Kraken, and CLARK, Kaiju matches against pro-

tein sequences, not reference genomes, so it has an inherent advan-

tage in detecting novel lineages, and performs much better than

Kraken and CLARK for that purpose, though Kaiju is for obvious

reasons worse in non-exonic regions. However, Opal demonstrates

that by using low-density hashing of long k-mers, we are able to out-

perform even Kaiju on novel lineage detection. As an aside, this also

holds true for genus and phylum classification for known lineages

on an even larger benchmark of 853-species, where Opal outper-

forms Kaiju on F1-score, at the cost of somewhat increased speed

and memory (Supplementary Table S8). By detecting the genus or

phylum of reads originating from unidentified species, Opal enables

scientists to perform further analyses on reads by starting with infor-

mation on the phylogenetic histories of those unknown species.

Additionally, Opal is effective at the subspecies level, though it

requires additional training for effectiveness likely due to the simi-

larities in the genomes of related species. When trained on subspe-

cies references, for seven closely related subspecies of Escherichi

coli, Opal disambiguates error-free synthetic reads with <15% clas-

sification error, while Kraken and CLARK both had over 30% clas-

sification error (Supplementary Fig. S4).

4 Conclusion

We have presented Opal, a novel compositional-based method for

metagenomic binning. By drawing ideas from Gallager LDPC codes

from coding theory, we designed a family of efficient and discrim-

inative LSHfunctions to construct compositional features that cap-

ture the long-range dependencies within metagenomic fragments.

On public benchmarks, Opal is more accurate than both alignment-

based and alignment-free methods for species classification, but fur-

thermore demonstrates even more marked improvement at higher

taxonomic levels.

Not only is Opal a standalone tool for metagenomic classifica-

tion, but we believe that our methodological advance of using low-

density hashing and generalizing k-mer-based methods to capture

long-range dependencies while being more robust against substitu-

tions in largely similar strings to be of broad interest to the life scien-

ces community. The Opal Gallager LSH functions can immediately

be used in lieu of contiguous k-mers in other metagenomic tools,

such as Latent Strain Analysis (Cleary et al., 2015) or Mash (Ondov

et al., 2016). Alternatively, they can be used for faster clustering of

bioinformatics sequence data, an essential primitive for other appli-

cations such as entropy-scaling similarity search (Yu et al., 2015a).

An improvement over the spaced seeds approach, which generally

amounts to using high-density hashes, our method can also be seen

as a new dimensionality reduction approach for genomic sequence

data, extending the ordinary contiguous short k-mer profile-based

methods with short hashes of much longer k-mers.

With improvements in metagenomic and other sequencing tech-

nologies producing ever larger amounts of raw data, fast and accur-

ate methods for classification and quantification are essential for

handling the data deluge. Here we show that with a straightforward

modification to the choice of hash functions, we can substantially

improve feature selection, enable ML-based algorithms, and thus

improve accuracy over other state-of-the-art classifiers. This

improved accuracy manifests itself most strongly at higher phylo-

genetic levels, allowing Opal to better classify reads originating

from unknown species. We expect Opal to be an essential compo-

nent in the arsenal of metagenomic analysis toolkits.

Acknowledgements

We thank Moran Yassour for introducing us to the subspecies classification

problem. We thank Sumaiya Nazeen and Ashwin Narayan for fruitful

discussions.

Funding

This work was partially supported by the National Institutes of Health grant

GM108348 and Center for Microbiome Informatics and Therapeutics Pilot

Grant.

Conflict of Interest: none declared.

References

1000 Genomes Project Consortium. (2012) An integrated map of genetic vari-

ation from 1, 092 human genomes. Nature, 491, 56–65.

Altschul,S.F. et al. (1990) Basic local alignment search tool. J. Mol. Biol., 215,

403–410.

Alneberg,J. et al. (2014) Binning metagenomic contigs by coverage and com-

position. Nat. Methods, 11, 1144.

Ames,S.K. et al. (2013) Scalable metagenomic taxonomy classification using a

reference genome database. Bioinformatics, 29, 2253–2260.

Andoni,A. and Indyk,P. (2006) Near-optimal hashing algorithms for approxi-

mate nearest neighbor in high dimension. In Foundations of Computer

Science, FOCS’06. 47th Annual IEEE Symposium on, pp. 459–468. IEEE.

Berlin,K. et al. (2015) Assembling large genomes with single-molecule

sequencing and locality-sensitive hashing. Nat. Biotechnol., 33, 623–630.

Brady,A. and Salzberg,S.L. (2009) Phymm and phymmbl: metagenomic phylogen-

etic classification with interpolated markov models. Nat. Methods, 6, 673–676.

B�rinda,K. et al. (2015) Spaced seeds improve k-mer-based metagenomic classi-

fication. Bioinformatics, 31, 3584–3592.

Bromberg,Y. and Rost,B. (2007) SNAP: predict effect of non-synonymous

polymorphisms on function. Nucleic Acids Res., 35, 3823–3835.

Buchfink,B. et al. (2015) Fast and sensitive protein alignment using Diamond.

Nat. Methods, 12, 59–60.

Buhler,J. (2001) Efficient large-scale sequence comparison by locality-sensitive

hashing. Bioinformatics, 17, 419–429.

Cleary,B. et al. (2015) Detection of low-abundance bacterial strains in metage-

nomic datasets by Eigengenome partitioning. Nat. Biotechnol., 33,

1053–1060.

Erickson,A.R. et al. (2012) integrated metagenomics/metaproteomics reveals

human host-microbiota signatures of Crohn’s disease. PLoS One, 7,

e49138.

Forsberg,K.J. et al. (2012) The shared antibiotic resistome of soil bacteria and

human pathogens. Science, 337, 1107–1111.

Gallager,R. (1962) Low-density parity-check codes. IEEE Trans. Inform.

Theory, 8, 21–28.

Janda,J.M. and Abbott,S.L. (2007) 16S rRNA gene sequencing for bacterial

identification in the diagnostic laboratory: pluses, perils, and pitfalls. J. Clin.

Microbiol., 45, 2761–2764.

Keich,U. et al. (2004) On spaced seeds for similarity search. Discrete Appl.

Math., 138, 253–263.

Langmead,B. and Salzberg,S.L. (2012) Fast gapped-read alignment with

Bowtie 2. Nat. Methods, 9, 357–359.

Li,H. (2013) Aligning sequence reads, clone sequences and assembly contigs

with BWA-MEM. arXiv Preprint arXiv: 1303.3997.

Ma,B. et al. (2002) PatternHunter: faster and more sensitive homology search.

Bioinformatics, 18, 440–445.

Metagenomic binning through low-density hashing 225

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty611#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty611#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty611#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty611#supplementary-data

MacFabe,D.F. (2012) Short-chain fatty acid fermentation products of the gut

microbiome: implications in autism spectrum disorders. Microb. Ecol.

Health Dis., 23,

MacKay,D. and Neal,R. (1996) Near Shannon limit performance of low dens-

ity parity check codes. Electron. Lett., 32, 1645–1646.

McHardy,A.C. et al. (2007) Accurate phylogenetic classification of

variable-length dna fragments. Nat. Methods, 4, 63–72.

Menzel,P. et al. (2016) Fast and sensitive taxonomic classification for metage-

nomics with Kaiju. Nat. Commun., 7, 11257.

Nawy,T. (2015) Microbiology: the strain in metagenomics. Nat. Methods, 12,

1005.

Ondov,B.D. et al. (2016) Mash: fast genome and metagenome distance estima-

tion using MinHash. Genome Biol., 17, 132.

Ounit,R. and Lonardi,S. (2015). Higher classification accuracy of short meta-

genomic reads by discriminative spaced k-mers. In: Pop,M. and Touzet,H.

(eds) Algorithms in Bioinformatics. WABI 2015. Lecture Notes in

Computer Science, Vol. 9289. Springer, Berlin, Heidelberg.

Ounit,R. et al. (2015) CLARK: fast and accurate classification of metagenomic

and genomic sequences using discriminative k-mers. BMC Genomics, 16, 236.

Patil,K.R. et al. (2011) Taxonomic metagenome sequence assignment with

structured output models. Nat. Methods, 8, 191–192.

Rasheed,Z. et al. (2013) 16S rRNA metagenome clustering and diversity esti-

mation using locality sensitive hashing. BMC Syst. Biol., 7, S11.

Schaeffer,L. et al. (2017) Pseudoalignment for metagenomic read assignment.

Bioinformatics, 33, 2082–2088.

Truong,D.T. et al. (2015) MetaPhlAn2 for enhanced metagenomic taxonomic

profiling. Nat. Methods, 12, 902–903.

Tu,Q. et al. (2014) Strain/species identification in metagenomes using

genome-specific markers. Nucleic Acids Res., 42, e67–e67.

Turnbaugh,P.J. and Gordon,J.I. (2009) The core gut microbiome, energy bal-

ance and obesity. J. Physiol., 587, 4153–4158.

Vervier,K. et al. (2016) Largescale machine learning for metagenomics se-

quence classification. Bioinformatics, 32, 1023–1032.

Wang,Q. et al. (2007) Naive bayesian classifier for rapid assignment of rRNA

sequences into the new bacterial taxonomy. Appl. Environ. Microbiol., 73,

5261–5267.

Wood,D.E. and Salzberg,S.L. (2014) Kraken: ultrafast metagenomic sequence

classification using exact alignments. Genome Biol., 15, R46.

Yu,Y.W. et al. (2015a) Entropy-scaling search of massive biological data. Cell

Syst., 1, 130–140.

Yu,Y.W. et al. (2015b) Quality score compression improves genotyping accur-

acy. Nat. Biotechnol., 33, 240.

226 Y.Luo et al.

