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Abstract

Variance in IQ is associated with a wide range of health outcomes, and 1% of the population are 

affected by intellectual disability. Despite a century of research, the fundamental neural 

underpinnings of intelligence remain unclear. We integrate results from genome-wide association 

studies (GWAS) of intelligence with brain tissue and single cell gene expression data to identify 

tissues and cell types associated with intelligence. GWAS data for IQ (N = 78 308) were meta-
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analyzed with a study comparing 1 247 individuals with mean IQ ~170 to 8 185 controls. Genes 

associated with intelligence implicate pyramidal neurons of the somatosensory cortex and CA1 

region of the hippocampus, and midbrain embryonic GABAergic neurons. Tissue-specific analyses 

find the most significant enrichment for frontal cortex brain expressed genes. These results suggest 

specific neuronal cell types and genes may be involved in intelligence and provide new hypotheses 

for neuroscience experiments using model systems.

Introduction

Genome-wide association studies (GWAS) have successfully identified statistical 

associations with a wide range of behavioral phenotypes and neuropsychiatric disorders 1–3. 

Increasing sample sizes has begun to yield findings for intelligence 4–6. The largest and 

most recent study of intelligence reported 18 loci significantly associated with intelligence 4. 

Significant genetic correlations were observed between intelligence and a variety of 

behavioral (educational attainment, smoking behaviors), anthropometric (cranial 

morphology, height, body composition), and psychiatric phenotypes (schizophrenia, autism, 

depressive symptoms), mirroring epidemiological evidence for correlations between 

intelligence and a broad range of health-related outcomes 4, 7.

Considered alone, not all associations identified by GWAS precisely localize biological 

mechanisms amenable to subsequent experimentation. For instance, the most associated 

variant in a significant locus may not be the causal variant 8, 9, there may be multiple causal 

variants in a locus 10, loci may act through altering the expression of distant genes 11, and 

the associations identified by GWAS of complex traits are often spread across the genome 

12–14. To extract meaningful biological inferences from GWAS results, it is necessary to 

integrate data from other sources, such as studies of gene expression 15. Results from gene-

wise analyses in Sniekers et al. (2017) identified expression predominant in the brain for 14 

of the 44 genes with significant association, although some transcription was inferred for 

most genes across most tissues 4. Integration of genomic results with data on biological 

pathways suggested that the most common function of genes associated with intelligence 

was in the development of the nervous system.

In silico functional annotation of GWAS results is dependent on high-quality biological 

reference data. Recently, data from the Karolinska Institutet (KI) mouse superset of single-

cell RNA sequencing (scRNAseq) of ~10 000 single cells from multiple brain regions was 

used to map schizophrenia GWAS results to brain cell types 16. Genes that previously 

showed association with schizophrenia were expressed with higher specificity in pyramidal 

cells, medium spiny neurons, and interneurons than in 20 other brain cell types. This 

demonstrates the potential of cell-type specific annotation to enable the construction of new 

functional hypotheses for complex traits.

We sought to develop a better understanding of the neurobiological underpinnings of 

intelligence through combining GWAS results with a number of data sources concerned with 

tissue and cell-type specific gene expression. To this end, we meta-analyzed the most recent 

GWAS of intelligence 4 with an extreme-trait GWAS that compared individuals of very high 

intelligence to a group from the general population (HiQ) 17. By doing this, we increased 
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the effective sample size of Sniekers et al by 25%. We then analyzed the enrichment of 

associations with intelligence in single cell expression data from the KI mouse superset (the 

largest and most comprehensive brain single-cell expression dataset available) 16, and in 

genomic and transcriptomic data from the GTEx project 18. Finally, we performed a novel 

analysis combining genomic and tissue-specific expression data with information from 

biological, disease-relevant and drug-target pathway databases to further assess the potential 

impact of biological mechanisms explaining variance in intelligence.

Materials and Methods

Cohort descriptions

Sniekers intelligence GWAS 4—The cohort analyzed in Sniekers et al. (2017) was 

drawn from 7 cohorts (13 sub-cohorts), primarily consisting of data from the UK Biobank 

pilot genotyping release (N = 54 119) and the Childhood Intelligence Consortium (N = 12 

441) as well as five additional cohorts (N = 11 748). The phenotype for analysis was 

Spearman's g, or a primary measure of fluid intelligence that correlates highly with g 4, 19. 

Summary statistics from this analysis are available at https://ctg.cncr.nl/software/

summary_statistics. Full details on cohort characteristics, genotyping and analysis are 

supplied in the Supplementary Material.

HiQ high-intelligence GWAS—The Duke University Talent Identification Program (TIP) 

cohort has been described previously 17. In brief, TIP is a non-profit organization that 

recruits and nurtures academically-gifted children of extremely high intelligence (top 3%) 

from the US population. For genomic study, 1 247 participants from the top 1% of TIP (top 

0.03% of population) were selected as a high-intelligence cohort (HiQ). IQ was inferred 

from performance on the Scholastic Assessment Test (SAT) or American College Test 

(ACT) taken at age 12 rather than the usual age of 18 years. A population comparison cohort 

(N = 8 185) was obtained from the The University of Michigan Health and Retirement Study 

(HRS). Participants were assumed to be drawn from the normal distribution of intelligence. 

Full details on genotyping and analysis are supplied in the Supplementary Material.

Meta-analysis

Summary statistics from Sniekers et al. (2017) and HiQ were meta-analyzed using METAL 

4, 20. The extreme-sampling method used in TIP means the high-intelligence individuals 

included in Zabaneh et al (2017) are likely to be enriched for variants contributing to 

intelligence in the population distribution 17. As such, standard weighting by sample size 

would not account for the increased discovery power afforded by the extreme-sampling 

method. Instead, analyses were weighted by their respective non-centrality parameters 

(NCP), estimated using the Genetic Power Calculator 21–23. Specifically, NCPs were 

estimated assuming a causal variant of 20% frequency, capturing 0.1% of variance in each 

phenotype, assuming HiQ controls are drawn from the normal distribution (+/- 2 SD from 

the mean) and HiQ cases are sampled from 4 SD above the mean, consistent with IQ > 160 

in 99% of the cohort 17. The NCP of the Sniekers cohort (N = 78 308) was 78.4, while the 

NCP of the HiQ cohort was 21.6, suggesting the HiQ cohort contributes equivalently to a 

population cohort of ~21 000 individuals (calculated as ~1000 x NCP), increasing the 
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effective sample size of Sniekers et al (2017) by 27%. Only variants present in both cohorts 

were retained for analysis.

Following association analysis, genome-wide significant loci were defined via clumping in 

PLINK2 24. Index variants (p < 5x10-4) were merged into loci if in linkage disequilibrium 

(r2 > 0.1 within 500kb) with a variant with a lower p-value. Loci within 50kb of each other 

were merged. Manhattan and QQ plots were generated using FUMA 25. Annotation of 

genomic results with: data from the EBI GWAS catalog; OMIM; GENCODE genes; genes 

previously implicated in autism and in intellectual disability; copy-number variants 

previously implicated in psychiatric disorders; and mouse knockout phenotypes was 

performed with RegionAnnotator version 1.63 (https://github.com/ivankosmos/

RegionAnnotator). Summary statistics will be made available at [link available upon 

publication].

Heritability and partitioned heritability

The heritability of intelligence accounted for by common variants was estimated using LD 

Score, limited to the HapMap3 variants and pre-computed LD scores provided with the 

package 26. Heritability was then partitioned across the 53 genomic annotations provided 

with the package 27, with the addition of 5 annotations: open chromatin regions (ATAC and 

ATAC Bryois extend 500, which increases the window around the region by 500 bases in 

both directions), the intersection between ATAC and conserved regions of the genome 

(ATAC-conserved) and regions present in the Neanderthal genome (Neanderthal and 

Neanderthal extend 500 28, 29). Regions of open chromatin were identified in prefrontal 

cortical tissue from 135 schizophrenic individuals and 137 controls using ATAC sequencing, 

which identifies stretches of DNA free of nucleosomes and other DNA-binding proteins 28, 

30.

Gene-wise analyses

Results from the meta-analysis were filtered to retain only single nucleotide variants (SNPs) 

present in the European superpopulation of 1000 Genomes Phase 3 31. SNPs were annotated 

to a gene using MAGMA v1.06, assigning SNPs to genes if they lay between 35kb upstream 

and 10kb downstream of the gene location (as supplied on the MAGMA website, build 37 

32). Gene-wise p-values were obtained from MAGMA as the aggregate of the mean and 

smallest p-value across all SNPs annotated to the gene. MAGMA accounts for possible 

confounders such as gene size, gene density, linkage disequilibrium and minor allele count, 

with reduced type 1 error compared to alternative software 33. The threshold for genome-

wide significance was defined as p = 2.65 x 10-6, the Bonferroni correction for the 18 839 

genes tested. Genes passing genome-wide significance were defined as coming from the 

same locus if their locations were within 50kb of each other, or if they lay within clumped 

loci from the single variant analysis. Significant genes were cross-referenced to the 

intellectual disability (ID) gene list provided with RegionAnnotator. The significance of the 

observed overlap was quantified as a hypergeometric test in R 34, using as background 1 

366 ID/DD genes in 18 839 autosomal genes.
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Tissue- and cell-specific gene expression

Tissue-specific and cell-type specific proportions of gene expression were calculated 

following the method described in detail in the Supplementary Methods and in 16. Tissue 

expression data was drawn from the GTEx Consortium 18, and brain cell-type expression 

data was drawn from scRNAseq data from mouse brain (KI mouse superset) 16. For each 

gene with a 1:1 homolog between mouse and human (Supplementary Methods) in each cell-

type (or tissue), an enrichment score was calculated by dividing the mean Unique Molecular 

Identifier (UMI) counts for all cells in the cell-type by the summed mean UMI counts across 

all tissues 16. Unique molecular identifier counts are an absolute count of transcripts (rather 

than a relative count), and so can be compared directly across cells 16. Differences in the 

number of cells assessed of each type does not considerably bias the score, because it is 

reflective of the average, rather than of the total expression.

Associations between gene-wise p-values from the meta-analysis and cell-type specific (or 

tissue-specific) gene expression were calculated using two methods, implemented in 

MAGMA 32 and in LD Score 26. In MAGMA, genes were grouped into 40 equal bins by 

ranked enrichment score within the cell-type (0-2.5th centile, 2.5-5th centile, up to 

97.5th-100th centile) plus an additional bin for genes not expressed in the cell-type. Bin 

membership was regressed on gene-wise association with intelligence in the meta-analysis 

(For these analyses, gene-wise association was defined as the mean p-value across all SNPs 

assigned to the gene.) In LD Score, the 10% of genes with the highest enrichment score 

within each cell-type were used as a gene set for partitioned heritability analysis. That is, 

variants were annotated to genes in the top 10% (as described above for performing gene-

wise association analyses). Heritability enrichment of this partition was calculated (in LD 

Score) by dividing the proportion of common-variant heritability captured by the variants by 

the proportion of all SNPs included in the annotation 27. The significance of this enriched 

was determined by a block jackknife approach 27. Results were considered significant if the 

association p-values were smaller than the relevant Bonferroni threshold for both methods. 

Accordingly, in order for a cell-type to be declared significant, genes associated with 

intelligence must be enriched roughly linearly with bin membership (MAGMA analyses) 

and enriched in the top 10% compared to the whole distribution (LD Score). These two 

criteria mean that the observed enrichment has to be robust to the complexity of gene 

expression in the cell-type.

Conditional cell-specific analyses were performed as a secondary analysis to test whether 

each enriched cell-type observed was independent of all others. Full details of the method 

implemented are provided in Skene et al., 2017. In brief, for each enriched cell-type in turn 

(the target cell-type), z-scores from gene-wise association analyses with intelligence were 

randomly resampled without replacement. The mean z-score within each expression-

specificity decile of the target cell-type was held constant, but the mean z-score of each 

specificity decile of other cell types was randomized. Empirical p-values were derived for 

each of the other cell-types, and this procedure was repeated 10 000 times. Expression in 

each of the other cell-types is considered to be associated with intelligence independently of 

expression in the target cell type if the observed p-value is lower than the 500th empirical p-

value (i.e. 95% of the empirical distribution 16).
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Predicted tissue-specific gene expression

Results from the variant-level meta-analysis were used to predict gene expression using 

MetaXcan and genomic and transcriptomic reference data from the brain regions assayed in 

the GTEx project 18, 35. Associations between predicted gene expression levels and 

intelligence were calculated. Significance was set at 1.60x10-6, the Bonferroni correction for 

the 31303 gene-tissue pairs tested 35. Significant genes were cross-referenced to the 

intellectual disability gene list provided with RegionAnnotator.

Pathway analysis

A pathway matrix P was generated with elements Pg,p = 1 if gene g was in pathway p and 

Pg,p = 0 otherwise. The elements in the matrix were multiplied by binned gene expression 

weights obtained from GTEx data (as in the foregoing section on tissue-specific expression) 

for 13 brain regions and 32 tissues, generating 45 weighted gene/pathway matrices. Only 

genes with expression data were taken into account. Association between these tissue-

weighted pathways and gene-wise associations with intelligence was computed using 

MAGMA. 13 564 pathways were drawn from OpenTargets (downloaded January 2017 36), 

GO ontologies, canonical pathways drawn from MSigSB v5.2 C2 and C5 datasets 37, and 

biological pathways related to psychiatric disorders found in various scientific publications 

(a link to each pathway source is provided in Supplementary Table 4). The pathways 

assessed by this approach are related to each other in a complex fashion; GO pathways are 

hierarchical and MSigDB and OpenTargets pathways capture related gene sets. Accordingly, 

in order to control for multiple testing, the effective number of pathways tested was 

established by computing the number of principal components accounting for 99.5% of 

explained variance in the pathway similarity matrix, obtained by computing the Tanimoto 

similarity between pathways. This results in a Bonferroni-corrected threshold of p = 

5.34x10-6 for 9 361 effectively independent tests for each matrix. A more stringent threshold 

was applied secondarily, taking into account all tissue-specific pathway matrices for a total 

for 9 361 x 46 tests and threshold p = 1.16x10-7.

Conditional gene set enrichment

Gene sets of interest were drawn from the results of pathway analyses. Specifically, the 

human postsynaptic density proteome gene set 38 was used to capture the effects of synaptic 

and neuronal pathways. Gene sets of RBFOX and CELF4 targets were included as they 

showed enrichment that appears to be driven by brain-specificity, and have been previously 

implicated in other brain-related traits 16, 39, 40. ID/DD gene sets were tested as they are of 

specific interest to the study of intelligence. To assess whether the enrichment of these gene 

sets is independent of gene expression in somatosensory pyramidal neurons, conditional 

analyses were performed following the method described above for conditional cell-type 

analyses, modified for the use of gene sets 16.

Code availability

All analyses used publicly available software that were not modified for use.
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Results

Meta-analysis

The genetic correlation between Sniekers et al. (2017) and HiQ was 0.92 (SE: 0.07) and was 

sufficiently high to justify meta-analysis. 25 loci met genome-wide significance with 

intelligence (i.e., p < 5 x 10-8; Table 1, Figure 1a). Of these, 13 were genome-wide 

significant in Sniekers et al. (2017) and 12 were novel (Table 1; Supplementary Table 1). 

The single locus previously identified in the HiQ sample was not genome-wide significant in 

this analysis (p = 0.00595 17).

Assessment of genome-wide inflation yielded a median λGC of 1.24. The LD score 

regression intercept was 1.004 (SE: 0.01). A λGC substantially greater than 1 indicates 

genome-wide inflation, which can result from confounding factors such as population 

stratification and batch effects, or from real effects distributed across multiple variants 

(polygenicity). In contrast, an LD Score regression intercept greater than 1 is indicative of 

confounding only (as polygenicity contributes to the slope of the regression, not the 

intercept) 26. As such, these results taken together suggest that this inflation is caused by 

polygenicity rather than confounding (Figure 1b) 26.

Annotation of specific genomic loci to databases of interest suggested overlapping loci 

between intelligence and a variety of phenotypes (Supplementary Table 2). The largest 

overlap was observed with educational attainment (14/25 loci), but overlap at multiple loci 

was widespread, including with age at menarche, height, body mass index, autoimmune 

disease, and schizophrenia. Genes previously implicated in intellectual disability or 

developmental delay (ID/DD) were present within 9/25 loci.

Heritability and partitioned heritability

LD Score regression yielded a SNP-heritability estimate of 0.221 (SE: 0.01) in line with the 

previously reported SNP-heritability in Sniekers et al (2017). Partitioning this heritability 

across 58 functional SNP annotations identifies conserved regions as significantly enriched 

contributors to the heritability of intelligence (proportion of heritability = 0.340, enrichment 

= 13.3 fold, p = 3.26 x 10-8), consistent with previous reports in a subset of our meta-

analyzed cohorts 41. Four extended annotations were also significantly enriched (p < 8.62 x 

10-4; Figure 2), suggesting that genetic variation located in the vicinity of conserved regions, 

enhancers (specifically H3K4me1 elements) and open chromatin in brain dorsolateral 

prefrontal cortex 28 and fetal cells) are enriched in heritability for intelligence.

Gene-wise analyses

93 genes at 41 loci were identified at genome-wide significance (p < 2.65 x 10-6, Bonferroni 

threshold for 18 839 genes; Table 2, Supplementary Figure 1). 28 of these genes (20 loci) 

were also identified in Sniekers et al. (2017). 11 of the 93 genes were previously implicated 

in intellectual disability or developmental delay, although this overlap does not significantly 

from what is expected under the null hypothesis of no enrichment (p = 0.073, 

hypergeometric test; Table 2).
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Tissue- and cell-specific gene expression

Tissue-specific enrichment analysis identified an enrichment of genes with high brain-

specific expression associated with intelligence (pMAGMA = 4.43 x 10-9, pLDSC = 4.23 x 

10-6; Figure 3a, Supplementary Table 3a). Across 10 brain regions in GTEx18, stronger gene 

associations with intelligence were associated with increased specificity of gene expression 

to the frontal cortex (pMAGMA = 0.00305, pLDSC = 2.66 x 10-4; Figure 3b, Supplementary 

Table 3b).

In the KI level 1 (broad cell groups) cell-type specific analyses, both linear regression 

(MAGMA) 32 and heritability enrichment-based analyses (LD Score) 27 supported 

enrichment of genes with high specificity to pyramidal neurons in the somatosensory 

neocortex (pMAGMA = 1.41 x 10-6, pLDSC = 5.81 x 10-4) and in the CA1 region of the 

hippocampus (pMAGMA = 9.08 x 10-5, pLDSC = 1.12 x 10-3), as well as to midbrain 

embryonic GABAergic neurons (pMAGMA = 9.47 x 10-5, pLDSC = 1.61 x 10-3; Figure 3c, 

Supplementary Table 3c). Level 2 analyses (narrowly-defined cell types) suggested 

significant enrichment of genes with high specificity to type pyramidal cells of the CA1 

region (pMAGMA = 2.16 x 10-4, pLDSC = 1.19 x 10-4), although considerable variability was 

observed between methods at this level of granularity (Figure 3d, Supplementary Table 3d).

Cell-type specific analyses were repeated conditioning on each enriched cell-type in turn. 

When controlling for gene expression in pyramidal neurons of the somatosensory neocortex, 

the previously observed enrichment in CA1 pyramidal cells is lost. In contrast, the patterns 

of enrichment observed when conditioning on expression in CA1 pyramidal cells or in 

midbrain embryonic GABAergic neurons were consistent with those observed without 

conditioning (Figure 4).

Predicted tissue-specific gene expression

Across the 10 GTEx brain tissues, results from MetaXcan suggested significant effects on 

the expression of 16 genes (p < 1.60x10-6; Table 3). Eight of these genes are situated at 

locus 11 (Chr3, 48.7-50.2 Mb). Genetic variation was predicted to upregulate 6 genes and 

downregulate 10 genes, with both single-region (9 genes) and multiple-region (7 genes) 

patterns of altered expression implied. Three genes (NAGA, TUFM and GMPPB) have 

previously been implicated in ID.

Tissue-specific pathway analysis

Tissue-specific pathway analyses identified 32 nested pathways with p ≤ 5.34x10-6 

(Bonferroni correction for 9 361 effectively independent pathways), of which 29 contained 

genes that were significant in the gene-wise analysis (Supplementary Table 4; 

Supplementary Figure 2). 7 pathways remained significant after further correcting for all 

tissue-specific tests: "self-reported educational attainment", "modulation of synaptic 

transmission", "neurodegenerative disease", "neuron spine", "schizophrenia", "rare genetic 

neurological disorder", and "potentially synaptic genes" (Table 4).
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Conditional gene set enrichment

Results from tissue-specific and gene-set analyses identified a number of gene sets 

associated with intelligence. Of specific interest were synaptic genes (post-synaptic density 

proteome list 37), RBFOX family binding partners 40, CELF4 binding partners, and 

previously reported intellectual disability genes. Additional analyses were performed to 

assess whether the association of these gene sets was independent of the enrichment for gene 

expression in pyramidal cells of the somatosensory cortex. Bootstrapped analyses confirmed 

the association of each gene set prior to conditional analysis (empirical p < 0.05; 

Supplementary Table 5). Conditioning on expression in gene expression in pyramidal cells 

of the somatosensory cortex, the enrichment for synaptic genes is no longer significant, 

indicating that this enrichment is not independent of that observed in the pyramidal neurons. 

This effect was not observed for RBFOX or CELF4 targets. Intellectual disability genes 

were weakly enriched prior to conditioning, and conditioning had little effect on enrichment. 

However, subdividing ID/DD genes into those associated with severe and those associated 

with moderate ID/DD indicated that the enrichment stemmed predominantly from moderate 

ID/DD genes, and this was not altered by conditioning on somatosensory pyramidal neuron 

gene expression (Supplementary Table 5).

Discussion

The overall power of our GWAS meta-analysis was equivalent to a sample size of ~99 000 

individuals due to the inclusion of the extreme trait HiQ sample, which contributes 

equivalently to a population cohort of ~21 000 individuals, and is likely to be enriched for 

alleles associated with intelligence in the normal range. We mapped results from our GWAS 

to tissue and cell-type specific gene expression data, identifying enrichment of specificity at 

multiple levels: in the brain, the frontal cortex, midbrain embryonic GABAergic neurons and 

pyramidal neurons, especially those in the somatosensory cortex. A number of genes 

previously implicated in intellectual disability or developmental delay are predicted from the 

GWAS results to show differential gene expression for normal range IQ in different brain 

regions, and are associated with variation in intelligence in the normal range from gene-wise 

analyses.

RNA sequencing data suggests that, as expected, genes more strongly associated with 

intelligence are enriched for brain-specific expression in general. While the dominance of 

brain-specificity over other body tissue specificity is pronounced, assessing differences 

within the brain is more difficult. Genes more strongly associated with intelligence showed 

higher specificity for frontal cortical expression, but the differences in cell composition 

between brain tissues means that cell-type analyses may be more informative. This can be 

seen within our results, in that pyramidal neurons of the somatosensory cortex were 

significant in the cell-type specific analysis, but the cortex as a whole is not significant in the 

GTEx brain-tissue analysis. This is perhaps due to the fact that the cortex is a highly 

heterogeneous mixture of cell-types. Our results suggest expression in pyramidal neurons in 

one area of the cortex is relevant in intelligence, but expression in the other cell-types and 

areas of the cortex may not be 42. A further caveat to this interpretation is that the full 
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cellular composition of the cortex (and the brain overall) is not reflected in the KI mouse 

superset, and as such our conclusions about wider effects must be constrained.

Genes with higher specificity to pyramidal neurons were enriched for associations with 

intelligence. However, the location of the most interesting neuron population is not yet clear. 

Observed enrichment in the pyramidal cells of the CA1 region of the hippocampus was lost 

when accounting for gene expression in pyramidal cells of the somatosensory cortex. An 

uncaptured population of pyramidal neurons (for example, in the frontal cortex) may exist 

that similarly overlaps in expression with the somatosensory pyramidal neurons, and 

accounts for the enrichment observed in the latter population. While the KI superset is the 

largest brain scRNAseq resource to date, it covers a limited set of regions and developmental 

stages 16.

Tissue and cell-specific analyses were performed using related but distinct approaches, 

namely linear regression of binned specificity and heritability enrichment analysis of the top 

10% of specific genes. Linear regression tended to give smaller p-values than heritability 

enrichment analysis (Supplementary Table 3). While this may be a statistical artefact 

generated by the differing assumptions of the methods, this could also result from the pattern 

of enrichment. For example, a small set of genes associated with intelligence, all with very 

high specificity to a given tissue would result in a lower p-value from heritability enrichment 

than if the association with intelligence was spread more broadly across genes with 

generally enriched tissue-specificity.

Increased specificity of expression of genes associated with intelligence was identified 

across a number of cell-types and tissues. However, increased specificity of expression does 

not demonstrate a functional role for these genes in these cell-types. Conversely genes with 

similar expression profiles between tissues might differ in their action in functionally-

relevant ways. As such, our results are suggestive of cell-types and tissues of interest for 

further study, but are by no means a conclusive explanation of the biological action of 

intelligence-associated genes.

The results of analyses in the KI mouse superset for intelligence can be contrasted with 

those for schizophrenia 16. Both phenotypes initially demonstrate enrichment for the same 

hippocampal and somatosensory pyramidal neuron populations. However, conditional 

analyses in schizophrenia demonstrated significant differences in the results between 

schizophrenia and intelligence - the enrichment observed in the somatosensory cortex in 

schizophrenia could be fully explained by that in the hippocampus, while the opposite 

pattern was observed in intelligence. Additionally, unlike in schizophrenia, genes implicated 

in intelligence also showed specificity in midbrain embryonic cells. Analyses in 

schizophrenia implicated more level two cell types than were significant in our analyses. 

Such differences may reflect differences in the common-variant contribution to variance in 

intelligence and schizophrenia; despite a similar effective sample size to the schizophrenia 

GWAS (40 675 cases, 64 643 controls, Neff ~ 100K), this GWAS identified only 25 loci 

compared with the 140 associated with schizophrenia 43. This highlights that intelligence is 

potentially more polygenic than schizophrenia, despite similar estimates of heritability 

captured by common variants.
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There is not a direct link between heritability and the molecular genetics of a trait (beyond a 

non-zero heritability implying that overall genetic similarity is correlated with phenotypic 

variance). Heritability alone is not informative about the potential biological consequences 

of statistical associations, except in placing a limit on explanatory power. In this GWAS, 

common variants explained 22% of the variance in intelligence (and gene-wise associations 

will only capture a portion of that). A considerable proportion of variance in intelligence is 

not captured in our analyses, and therefore it should be noted that our conclusions drawn on 

only one part of the genetic and non-genetic correlates of this trait.

The KI mouse superset has a number of strengths; it is the largest and broadest scRNAseq 

dataset to date, captures extra-nuclear as well as nuclear transcripts, and was generated using 

identical methods (Supplementary Note 16). However, there are also limitations to the use of 

this dataset. One issue is that the expression data used is derived from mice rather than 

humans. Gene expression in the brain is conserved across mammals, such that the principal 

axes of variation in comparative studies of gene expression capture inter-tissue, rather than 

inter-species, variance 44. Furthermore, there is a high degree of conservation of gene 

expression between mouse and human brains specifically 16, 45, 46. Previous analyses using 

the KI mouse superset have made extensive comparison between mouse and human gene 

expression and found high concordance in mapping mouse to human genes 16. Further 

discussion of the use of mouse-derived data, including references for data access, is included 

in the Supplementary Note and in 16.

Nevertheless, cell types which are not enriched for genes associated with intelligence in this 

study should not be prematurely excluded, as some cell-types are not present in the dataset 

and others will have dissimilar functions or have been exposed to different evolutionary 

pressures in mouse and in human. Intelligence is a major characteristic that differentiates 

humans from other mammals 47. As such, it may be the case that genes with higher 

specificity to regions dissimilar between humans and mice could be enriched for 

associations with intelligence, which would not be captured by this approach.

Our results highlight potential insights beyond those gleaned from tissue-specific expression 

patterns. Several genes previously implicated in ID/DD were present in loci associated in the 

GWAS. An example of this is GMPPB (GDP-Mannose Pyrophosphorylase B), which is in 

locus 11 of the GWAS results, and was genome-wide significant in gene-wise analyses. It is 

a member of the "rare genetic neurological disorder" gene set (significantly enriched, 

specifically in neural tissues), and the expression of GMPPB was predicted to be 

downregulated in the cortex of individuals with higher intelligence. Rare loss of function 

mutations in the GMPPB gene have been identified as causal mutations in tens of individuals 

with muscular dystrophies and myasthenias, many of which present with mild to severe ID 

48–52. The product of this gene is important for the glycosylation of a-DG (alpha-

dystroglycan - the dystroglycan gene DAG is also present in locus 11 and is a significantly 

associated gene in this analysis 48). Glycosylation is required for the interaction of a-DG 

with extracellular ligands, with a variety of consequences including the organization of axon 

guidance 53. Our results, in the context of the medical genetic literature, suggest the effects 

on axon guidance by glycosylated a-DG may be an area worthy of further exploration to 

understand the biology of intelligence. Specifically, we might tentatively hypothesize that 
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GMPPB acts via a gradated effect, in which too little or no expression of the gene causes 

intellectual disability, whereas an optimal amount may lead to higher intellectual ability, 

while too much results in a (mild) decrease in intellectual ability. This hypothesis would 

require neurobiological evidence to test.

However, the observed overall overlap of all ID/DD genes with loci from the GWAS does 

not differ from that expected by chance. This lack of significant enrichment is partly 

reflected in the pathway analysis - there are several overlapping gene sets designed to 

capture ID/DD genes. Of these, only "rare genetic neurological disorder" was significantly 

enriched following correction. Further insight is obtained from conditional gene-set analyses 

- although the overall "intellectual disability" gene set is only nominally associated with 

intelligence, stratifying this gene set demonstrates considerable enrichment of mild 

intellectual disability genes, independent of gene expression in somatosensory pyramidal 

neurons. The presence of genes causative of ID/DD in loci associated with intelligence in 

the normal range, and the enrichment of specific pathways and gene sets derived from the 

ID/DD literature, may indicate shared biology between ID/DD and normal intelligence. 

However, the lack of broad enrichment of all such genes suggests that there may also be 

distinct pathways contributing to normal intelligence that are not commonly affected in 

ID/DD. ID/DD is not a single condition, but a group of disorders with differing etiologies - 

our results are still consistent with a two-group model of ID/DD etiology 54–56.

The meta-analysis results presented herein extend previous findings 4. The results are 

largely consistent with those previously reported, which is unsurprising. More genes were 

identified in our gene-wise analysis due to an analytical decision to extend the boundaries by 

which each gene is defined 35kb upstream and 10kb downstream of the coding region 57, 

58. Defining genes using this boundary (as opposed to no boundary extension) captures 

additional transcriptional elements - these may be specific to the target gene, but may also 

capture elements with more distal regulatory effects.

Deriving testable biological hypotheses from the statistical associations of GWAS results is 

one of the central challenges for the immediate future of complex genetics 3, 15. The 

provision of high-quality reference datasets encompassing genetic information from 

variation to translation, and the integration of genomic data to such reference data is 

invaluable to this aim 16, 18. We have demonstrated that some insights into the biology of 

intelligence can be derived from GWAS, and have suggested potential avenues for further 

exploration. Our results could indicate that intelligence represents optimal pyramidal neuron 

functioning. Cognitive tests are highly correlated with general intelligence (g), which may 

depend on pyramidal neuron function 7.

Understanding how biology underlies variation in intelligence is an active area of research 

that is beginning to yield results. Unifying these new genetic results with data from multiple 

approaches, can increase the power of each approach, has the potential to yield greater 

understanding of the biology of intelligence, which in turn could inform the study of many 

health-related phenotypes with which intelligence is correlated.

Coleman et al. Page 12

Mol Psychiatry. Author manuscript; available in PMC 2019 August 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
a) Manhattan plot and b) QQ plot of meta-analysis results.
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Figure 2. 
Heritability enrichment of genomic annotations (dots) +/- 1 standard error (bars). Horizontal 

line is p = 8.62x10-4, Bonferroni-corrected threshold for 58 annotations. Vertical line is 

enrichment = 1 (that is, no enrichment).
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Figure 3. 
Results of tissue- and cell-specific analyses. a) Whole-body analyses; b) Brain tissue 

analyses; c) KI level 1 cell analyses; d) KI level 2 cell analyses (only those significant in 

MAGMA competitive analyses after correction for multiple testing shown). Vertical lines are 

the Bonferroni threshold for each analysis. Results shown are from MAGMA analyses - 

tissues and cell-types also significant in LDSC analyses are indicated with †. Full results are 

shown in Supplementary Table 3.
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Figure 4. 
Conditional cell-type enrichment analysis. X-axis lists target cell-types. Y-axis lists other 

cell-types. Colors correspond to the enrichment probability of the other cell type after 

conditioning (P). Values of log(P) approaching zero indicate no enrichment after 

conditioning. Barplot on the right shows the minimum value of P for each cell-type across 

all conditional analyses (excluding analyses of the target cell-type with itself); the vertical 

line marks p=0.05. Red box highlights the loss of significant enrichment in CA1 pyramidal 

neurons when conditioning on somatosensory (SS) neurons.
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Table 1

Genome-wide significant variants from single-variant association analyses. Loci significant in Sniekers et al. 

(2017) are in bold.

FreqA1 = A1 frequency in non-Finnish samples from the 1000 Genomes project.

Dir = direction of effect in Sniekers and in TIP.

Locus Chr Locus BP Index SNP Pos A1 A2 Dir FreqA1 Z p

1 1 22354246-22470115 rs7526484 22451845 T C ++ 0.257 5.46 4.82x10-8

2 1 41748897-41850182 rs12744310 41773502 T C -- 0.208 -5.51 3.63x10-8

3 1 98149785-98660622 rs72737821 98581337 A T ++ 0.712 5.48 4.37x10-8

4 1 103548734-103703521 rs6577362 103632361 A G -- 0.666 -5.77 8.05x10-9

5 2 71434829-71701353 rs6745907 71609073 A G -- 0.433 -5.82 5.78x10-9

6 2 100576304-101031561 rs13010010 100852734 T C ++ 0.390 6.57 5.09x10-11

7 2 144152539-144272229 rs13428598 144250487 T C ++ 0.375 5.85 4.95x10-9

8 2 161903399-162071338 rs10930013 162070325 A G -- 0.475 -5.55 2.87x10-8

9 2 217286343-217397419 rs13411858 217306698 T G -- 0.843 -5.57 2.60x10-8

10 3 23839884-24207650 rs7646501 24079291 A G ++ 0.749 6.67 2.62x10-11

11 3 49381898-50247824 rs1987628 49399259 A G ++ 0.319 5.49 4.01x10-8

12 4 106066982-106316427 rs2647257 106199505 A T ++ 0.636 5.54 2.98x10-8

13 5 176855627-176898619 rs2545797 176864202 T C ++ 0.455 5.53 3.12x10-8

14 6 98310291-98591810 rs12206087 98582900 A G ++ 0.504 6.8 1.05x10-11

15 6 108856378-109020032 rs768023 108876002 A G ++ 0.564 7.2 5.84x10-13

16 7 32209459-32399658 rs10236197 32291761 T C ++ 0.654 6.03 1.61x10-9

17 7 32472099-32831680 rs6949851 32493807 T G ++ 0.675 5.45 4.97x10-8

18 7 133130940-133727497 rs4728302 133630463 T C -- 0.582 -5.66 1.48x10-8

19 9 23344737-23407386 rs11794152 23345347 A G -- 0.589 -6.23 4.72x10-10

20 9 72014104-72213799 rs11138902 72103314 A G ++ 0.537 6.02 1.77x10-9

21 13 106580722-106688603 rs2251499 106639856 T C ++ 0.250 6.85 7.60x10-12

22 14 103987140-104018455 rs10149470 104017953 A G -- 0.486 -5.49 4.04x10-8

23 16 28490517-28917746 rs12928404 28847246 T C ++ 0.663 5.59 2.26x10-8

24 20 47413079-47938626 rs6095360 47532536 A G -- 0.693 -6.16 7.26x10-10

25 22 51089716-51151631 rs5770820 51150473 A G -- 0.209 -5.63 1.82x10-8
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Table 2

Genome-wide significant genes from gene-wise association analyses. Genetic loci is that identified in single-

variant analyses, or the genomic region otherwise. P value from competitive test in MAGMA. Loci in bold 

were significantly associated in Sniekers et al. (2017). Genes in italics have previously been implicated in 

developmental delay or intellectual disability.

Locus Gene Names Chr Pos SNPS P

1 CDC42
WNT4

1 22347138-2479067 188
197

5.32x10-7

6.33x10-7

2 FOXO6 1 41431939-41830086 130 1.86x10-8

Chr1:71.8-72.8 Mb NEGR1 1 71861623-72748417 1424 1.09x10-6

4 COL11A1 2 103403088-103773269 1027 4.25x10-7

5 ZNF638
DYSF

2 71381822-71702582 492
621

1.41x10-8

3.48x10-7

7 ARHGAP15 2 144151161-144356509 1088 2.10x10-7

8 DPP4 2 161868668-162319725 100 1.25x10-6

Chr3:16.8-17.2 Mb PLCL2 3 16844159-17132086 712 2.30x10-9

10 THRB
RPL15

3 23961762-24190184 818
86

1.12x10-8

3.04x10-7

11 TCTA
AMT

RHOA
DAG1
NICN1
TRAIP
BSN

GPX1 CTD-2330K9.3
AMIGO3
GMPPB
IP6K1
MST1

MON1A
CAMKV
RNF123

FAM212A
CDHR4
MST1R
UBA7
RBM6
GNAT1
APEH
USP4

SEMA3F

3 48725014-50125108 68
60
127
132
60
70
173
51
57
53
53
116
50
77
52
72
59
60
54
52
256
66
52
104
93

2.03x10-9

8.39x10-9

1.88x10-8

3.26x10-8

3.78x10-8

3.97x10-8

5.25x10-8

5.86x10-8

7.08x10-8

1.50x10-7

1.50x10-7

1.58x10-7

1.65x10-7

1.66x10-7

1.91x10-7

2.13x10-7

2.25x10-7

2.52x10-7

2.81x10-7

3.69x10-7

4.33x10-7

9.27x10-7

9.76x10-7

1.25x10-6

1.46x10-6

12 TET2 4 106044468-106428563 289 2.22x10-6

Chr5:139.5-139.6 Mb CYSTM1 5 139554227-139661637 214 1.45x10-6

13 DBN1
GRK6

F12
PRR7

5 176848019-176909800 35
45
23
44

6.60x10-9

1.19x10-8

1.31x10-7

2.07x10-7

Chr6:26.5-26.6Mb BTN1A1 6 26501449-26510650 139 1.74x10-6

15 FOXO3 6 108856378-109020332 211 1.35x10-12
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Locus Gene Names Chr Pos SNPS P

17 PDE1C 7 32259273-32858489 1634 1.75x10-9

Chr7:86.2-86.5 Mb GRM3 7 86273230-86494200 424 1.13x10-6

18 EXOC4 7 132950174-133734597 1171 9.61x10-8

20 APBA1 9 72014104-72213075 365 7.88x10-9

Chr10:64.9-65.3 Mb JMJD1C 10 64926981-65225722 525 1.99x10-6

Chr10:94.0-94.2 Mb MARCH5 10 94050920-94113721 110 1.55x10-7

Chr11:133.7-133.9 Mb IGSF9B 11 133778459-133826880 170 1.50x10-6

Chr11:123.9-124.1 Mb OR10D3
VWA5A

11 123986069-124056952 136
184

1.92x10-6

2.24x10-6

Chr11:124.1-124.2 Mb OR8D2 11 124189134-124190184 113 2.16x10-6

Chr12:49.3-49.5 Mb PRKAG1
KMT2D

DDN
RHEBL1

12 49388932-49463808 36
60
30
42

4.33x10-7

4.43x10-7

5.76x10-7

2.48x10-6

Chr12:93.1-93.4 Mb EEA1
PLEKHG7

12 93115281-93323107 351
155

5.69x10-8

1.54x10-6

Chr12:123.4-123.7 Mb PITPNM2 12 123468027-123634562 174 2.46x10-6

Chr14:69.5-69.7 Mb DCAF5 14 69517598-69619867 190 1.37x10-6

22 CKB
BAG5

14 103833065-104186052 75
73

2.47x10-6

2.64x10-6

Chr15:82.4-82.6 Mb EFTUD1
FAM154B

15 82422571-82577271 414
154

4.08x10-8

4.09x10-8

Chr16:12.9-13.4 Mb SHISA9 16 12995477-13334272 952 5.33x10-7

23 ATXN2L
TUFM
SH2B1

ATP2A1

16 28298418-29008079 47
57
92
66

2.27x10-8

7.72x10-8

1.87x10-7

5.37x10-7

Chr16:72.0-72.1 Mb DHODH 16 72042487-72058954 202 9.60x10-8

Chr17:34.5-35.0 Mb GGNBP2
DHRS11
MYO19

TBC1D3H
TBC1D3G

17 34581086-34957235 85
28
112
4
4

7.38x10-7

8.31x10-7

1.57x10-6

2.28x10-6

2.28x10-6

Chr18:12.9-13.0 Mb SEH1L 18 12947132-12987535 181 2.35x10-6

Chr18:49.8-51.1 Mb DCC 18 49866542-51057784 3737 5.86x10-8

Chr19:31.7-31.9 Mb TSHZ3 19 31765851-31840453 166 3.64x10-7

24 CSE1L
STAU1

ARFGEF2
PREX1
DDX27

20 47422577-47933479 206
213
364
658
156

1.14x10-10

5.86x10-10

7.58x10-10

8.50x10-8

4.65x10-7

Chr22:31.7-31.8 Mb LINC01521 22 31742875-31744670 72 1.69x10-6

Chr22:42.3-42.5 Mb WBP2NL
SEPT3

FAM109B
SMDT1

22 42372276-42480288 157
143
50
45

1.78x10-7

6.95x10-7

1.56x10-6

1.78x10-6
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Locus Gene Names Chr Pos SNPS P

25 SHANK3
ACR

22 51083118-51155826 162
66

2.22x10-8

7.08x10-7
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Table 3

Genes predicted to be upregulated (+) or downregulated (-) in specific tissues. Genetic loci is that identified in 

single-variant analyses, or the genomic region otherwise. Genewise = genome-wide significant in gene-wise 

analyses. Genes in italics have previously been implicated in developmental delay or intellectual disability.

Locus Gene Tissues Direction P Genewise?

11 RNF123 Putamen basal ganglia
Nucleus accumbens basal ganglia

Frontal cortex
Cerebellar Hemisphere

-
-
-
-

5.77x10-7

3.98x10-10

1.84x10-7

6.37x10-7

No

11 NPRL2 Cortex + 1.06x10-7 No

11 MST1 Hypothalamus + 1.33x10-7 Yes

11 MST1R Cerebellum
Cerebellar Hemisphere

-
-

2.25x10-7

8.98x10-7
Yes

11 RBM6 Frontal cortex + 2.28x10-7 Yes

11 FAM212A Cerebellar Hemisphere - 4.40x10-7 Yes

11 AMIGO3 Cortex - 1.31x10-6 Yes

11 GMPPB Cortex - 1.38x10-6 Yes

Chr12: 58.3-58.4 Mb XRCC6BP1 Nucleus accumbens basal ganglia
Hypothalamus

Cortex
Caudate basal ganglia

+
+
+
+

1.15x10-6

1.50x10-6

9.27x10-7

9.33x10-7

No

15 FOXO3 Nucleus accumbens basal ganglia - 4.93x10-10 Yes

23 TUFM Putamen basal ganglia
Nucleus accumbens basal ganglia

-
-

4.89x10-7

1.38x10-7
Yes

23 NPIPB6 Caudate basal ganglia - 1.33x10-6 No

Chr17:34.9-35.0 Mb DHRS11 Putamen basal ganglia
Nucleus accumbens basal ganglia

Caudate basal ganglia

-
-
-

3.75x10-7

1.39x10-6

1.09x10-6

No

Chr18:12.9-13.2Mb CEP192 Cortex + 9.41x10-8 No

Chr22:42.4-42.5 Mb NAGA Putamen basal ganglia
Cerebellum

Cerebellar Hemisphere

-
-
-

1.29x10-7

2.67x10-7

2.19x10-7

No

Chr22:42.5-42.6 Mb CYP2D6 Hypothalamus + 5.70x10-7 No
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Table 4

Pathways significantly enriched for genes associated with intelligence after correction for all tissue-effective 

pathways tests. Genes in italics have previously been implicated in developmental delay or intellectual 

disability.

Pathway Name Tissues significant Significant genes Min p [Tissue]

Self Reported Educational 
Attainment

Adipose, Artery, Bladder, Brain, 
Breast Mammary Tissue, Cells 

Transformed fibroblasts, Cervix, 
Colon, Fallopian Tube, Liver, Lung, 
Nerve Tibial, Ovary, Unweighted, 
Small Intestine Terminal Ileum, 
Spleen, Uterus, Whole Blood, 
Amygdala, Anterior cingulate 
cortex (BA24), Caudate (basal 

ganglia), Cortex, Frontal Cortex 
(BA9), Hippocampus, 

Hypothalamus, Nucleus accumbens 
(basal ganglia), Putamen (basal 

ganglia), Spinal cord (cervical c1)

ATXN2L, RNF123, NEGR1, DPP4, BTN1A1, 
JMJD1C

1.03 x 10-9

[Frontal Cortex 
(BA9)]

GO:Neuron Spine Artery, Bladder, Cells 
EBVtransformed lymphocytes, 

Cervix, Esophagus, Lung, Minor 
Salivary Gland, Unweighted, 

Uterus, Vagina, Cerebellar 
Hemisphere, Cerebellum, 

Hypothalamus

ARFGEF2, SHANK3, EEA1, GRM3 5.29 x 10-8

[Cerebellum]

GO:Modulation Of Synaptic 
Transmission

Artery, Bladder, Cells 
EBVtransformed lymphocytes, 

Cervix, Esophagus, Ovary, Thyroid, 
Uterus, Vagina, Hippocampus

STAU1, PLCL2, DBN1, SHANK3, SHISA9, 
GRM3, IGSF9B

2.77 x 10-8

[Uterus]

Schizophrenia Brain, Pituitary, Testis, Cortex, 
Frontal Cortex .BA9.

FOXO3, ARFGEF2, PLCL2, DBN1, APBA1, 
AMT, THRB, GRK6, FOXO6, SHANK3, 

GPX1, DCC, EXOC4, F12, CDC42, SHISA9, 
NEGR1, GRM3, DPP4, IGSF9B

5.57 x 10-8

[Pituitary]

Rare Genetic Neurological 
Disorder

Brain, Nerve Tibial, Pituitary FOXO3, CSE1L, ARFGEF2, PDE1C, DBN1, 
AMT, THRB, GRK6, ZNF638, FOXO6, 

RHOA, SHANK3, ATXN2L, DAG1, TRAIP, 
BSN, EEA1, GPX1, DCC, TUFM, DHODH, 
EXOC4, F12, GMPPB, MARCH5, SH2B1, 

MST1R, DYSF, TSHZ3, COL11A1, 
PRKAG1, KMT2D, CDC42, ATP2A1, DDN, 

WNT4, ACR, APEH, GRM3, DPP4, 
CYSTM1, SEMA3F, JMJD1C, TET2, CKB

9.09 x 10-8

[Brain]

Neurodegenerative Disease Testis FOXO3, CSE1L, ARFGEF2, PDE1C, DBN1, 
APBA1, THRB, GRK6, ZNF638, SHANK3, 
ATXN2L, DAG1, BSN, EEA1, GPX1, DCC, 

TUFM, EXOC4, F12, MARCH5, DYSF, 
COL11A1, KMT2D, CDC42, ATP2A1, ACR, 

APEH, NEGR1, GRM3, DPP4, CYSTM1, 
SEMA3F, JMJD1C, VWA5A, SEH1L

4.75 x 10-8

[Testis]

Potentially Synaptic All Brain FOXO3, CSE1L, ARFGEF2, PDE1C, PLCL2, 
DBN1, APBA1, THRB, ZNF638, FOXO6, 

RHOA, SHANK3, ATXN2L, EFTUD1, BSN, 
EEA1, GPX1, DCC, TUFM, PREX1, EXOC4, 
IP6K1, SH2B1, CAMKV, PRR7, ARHGAP15, 

TSHZ3, RBM6, KMT2D, CDC42, SHISA9, 
ATP2A1, DDN, SEPT3, NEGR1, GRM3, 
USP4, DPP4, DCAF5, IGSF9B, JMJD1C, 
TET2, VWA5A, SEH1L, PITPNM2, CKB

1.16 x 10-7

[Brain]
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