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Abstract

The molecular complexity of triple-negative breast cancers (TNBCs) provides a challenge for 

patient management. We set out to characterise this heterogeneous disease by combining 

transcriptomics and genomics data, with the aim of revealing convergent pathway dependencies 

with the potential for treatment intervention. A Bayesian algorithm was used to integrate 

molecular profiles in two TNBC cohorts, followed by validation using five independent cohorts (n 
= 1,168), including three clinical trials. A four-gene decision tree signature was identified which 

robustly classified TNBCs into six subtypes. All four genes in the signature (EXO1, TP53BP2, 

FOXM1 and RSU1) are associated with either genomic instability, malignant growth, or treatment 

response. One of the six subtypes, MC6, encompassed the largest proportion of tumours (~50%) in 

early diagnosed TNBCs. In TNBC patients with metastatic disease, the MC6 proportion was 

reduced to 25%, and was independently associated with a higher response rate to platinum-based 

chemotherapy. In TNBC cell line data, platinum-sensitivity was recapitulated, and a sensitivity to 

the inhibition of the phosphatase PPM1D was revealed. Molecularly, MC6-TNBCs displayed high 

levels of telomeric allelic imbalances, enrichment of CD4+ and CD8+ immune signatures, and 

reduced expression of genes negatively regulating the mitogen-activated protein kinase (MAPK) 
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signalling pathway. These observations suggest that our integrative classification approach may 

identify TNBC patients with discernible and theoretically pharmacologically tractable features that 

merit further studies in prospective trials.
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Introduction

Triple-negative breast cancers (TNBCs), defined by the lack of oestrogen receptor (ER), 

progesterone receptor (PgR) and human epidermal growth factor receptor 2 (HER2) 

expression, display remarkable molecular complexity and heterogeneous clinical behaviour 

(1). The overall prognosis of women with TNBC after metastatic relapse is significantly 

poorer when compared to that of women with other breast cancer subtypes (2). 

Chemotherapy remains the only systemic therapeutic approach for TNBC patients. Although 

subpopulations can be identified that are more responsive to chemotherapy, such as those 

with BRCA1 mutations, its effectiveness remains limited in an unselected TNBC population. 

Many agents are presently in clinical development, including PARP inhibitors and platinum 

salts (3–5), MEK inhibitors (6), and immunological agents (7). For some, predictive 

biomarkers have been recognised, while for others appropriate molecular features enabling 

optimal patient selection are still lacking (8,9).

Several studies have sought to take advantage of molecular profiling to classify TNBCs and 

subsequently provide clinically relevant information (10–13). One of the most recent 

classifications, TNBCtype-4, is based on gene expression and classifies TNBC into four 

subtypes. Among those, basal-like 1 (BL1) TNBCs were shown to achieve significantly 

higher pathological complete response (pCR) rates (49%) compared to all other subtypes 

(31%) when treated with neoadjuvant chemotherapy. However, classification approaches 

making use of multi-omics data are warranted to identify patients that may benefit from 

treatment beyond the standard-of-care (12).

TNBCs are characterised by extensive genomic instability (14,15). Measures capturing 

overall levels of genomic instability, like a chromosomal instability gene signature (CIN70), 

are informative for outcome prediction in ER-negative breast cancer patients (16). Similarly, 

genomic signatures, including Scars of Chromosomal Instability measures (SCINS) (17), 

Number of Telomeric Allelic Imbalance (NtAI) (18), the Homologous Recombination 

Deficiency (HRD) score (19), and HRDetect (20), are indicative of BRCAness and 

predictive of response to chemotherapy, particularly in the neoadjuvant setting (21). In 

metastatic TNBC trials (TNT (22) and TBCRC009 (23)), these methods were not able to 

identify patients specifically responding to platinum-based chemotherapy, suggesting some 

refinement of such approaches are required.

Here, we developed a four-gene decision tree signature based on integrated transcriptomics 

and genomics data that robustly classifies TNBC into 6 subtypes across 1,168 TNBCs. In 

TNBC patients with metastatic disease, our classification identified a subgroup of tumours 
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sensitive to platinum-based chemotherapy. Molecular characteristics of this subgroup 

included increased number of allelic imbalanced aberrations in their telomeres, decreased 

inactivation of MAPK signalling, and enrichment of CD4+ and CD8+ immune signatures.

Materials and methods

Clinical sample data

TNBCs from the previously described Guy’s TNBC (E-MTAB-5270 and E-MTAB-2626) 

(24) were selected based on IHC status of HER2, ER and PgR. For 88 TNBCs, patient 

matched Affymetrix GeneChip Human Exon 1.0ST gene expression and Affymetrix SNP 

6.0 copy number data were available.

METABRIC TNBC is a subset of the METABRIC study (EGAD00010000164) (10). Triple-

negative status was based on IHC-assessed ER and HER2 status. Patient matched Illumina 

Human HT-12 v3 gene expression and Affymetrix SNP 6.0 copy number data were available 

for 112 TNBCs and processed, as reported previously (24).

A triple-negative subset of TCGA BRCA (25) was used as the TCGA TNBC cohort. For 95 

TNBCs, defined by ER and HER2 status, gene expression was available on the Agilent 

244K Custom Gene Expression array.

The TNBC616 cohort is a compilation of 24 different breast cancer cohorts (Supplementary 

Table S1). A total of 3,495 breast cancers were obtained, of which 616 were defined as 

triple-negative based on HER2, ER and PgR status. Details are provided in the online 

Supplementary Information.

Clinical trial data

The PrECOG 0105 cohort comprised 80 patients enrolled in a single-arm, phase II, early-

stage study assessing the efficacy of neoadjuvant treatment using gemcitabine and 

carboplatin plus iniparib (26) (NCT00813956) (5). Response to treatment was stratified 

using the residual cancer burden (RCB) index (27). Patients with RCB > 1 were considered 

treatment-unresponsive; those with an RCB of 0 were deemed to have pCR, while those with 

an RCB of 1 had a partial response. Affymetrix HuGene 1.0st microarray gene expression 

was available and processed using the affy Bioconductor package (28) following RMA 

normalisation (29).

Sanofi Phase II (NCT00540358) (3) and Sanofi Phase III (NCT00938652) (4) are both two-

arm clinical trials in TNBC patients with metastatic disease testing the efficacy of 

gemcitabine and carboplatin, with or without iniparib. A total of 123 and 519 patients in 

Phase II and Phase III, respectively, were randomly assigned to either arm. From the 74 

(Phase II) and 319 (Phase III) patients for which gene expression data from the primary 

lesions were obtained, objective response was available for 61 and 224 patients. Gene 

expression was available on the Affymetrix Human Genome U133 Plus 2.0 microarray and 

was processed similarly to the PrECOG 0105 data.
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Affymetrix SNP 6.0 copy number data

Raw Affymetrix SNP 6.0 data was normalised, allele-specific signal intensity measures were 

generated, and log R-ratio and B-allele frequencies were obtained using PennCNV-Affy 

(30,31). Allele specific copy number data was obtained using the ASCAT algorithm (32).

Cancer cell lines data

Transcriptomics and drug response data for TNBC cell lines (n = 16) was acquired from the 

Genomics of Drug Sensitivity in Cancer (GDSC) (33). The area under the dose response 

curve (AUC) values represent the relative sensitivity (low AUC) and resistance (high AUC) 

for each drug within each cell line. Associations between drug response and MC6 were 

assessed using Mann-Whitney U tests.

Statistical methods

Detailed information on the integrative analysis and statistical methods are described in the 

online Supplementary Information. In brief, genomics and transcriptomics data was 

integrated independently in Guy’s TNBC and METABRIC TNBC using the COpy Number 

and EXpression In Cancer (CONEXIC) algorithm (34). The identified four-gene signature 

required for TNBC subtyping was normalised before applied to additional cohorts.

Results

Integrative analysis of transcriptomics and genomics data identifies a four-gene decision 
tree signature

To determine if combined transcriptomics and genomics data could lead to a robust TNBC 

classification, we applied the previously published CONEXIC algorithm (34) to two 

independent TNBC cohorts; Guy’s TNBC (n = 88) (24) and TNBCs from the METABRIC 

study (METABRIC TNBC; n = 112) (10) (Figure 1A and Supplementary Table S2). 

CONEXIC constructs gene sets, defined as groups of genes which share similar expression 

patterns across all samples. As a next step, CONEXIC builds decision trees for each of these 

gene sets, using gene expression levels of copy number driven genes (modulators, copy 

number >=5). Within Guy’s TNBC and METABRIC TNBC, CONEXIC identified 38 and 

36 gene sets with decision trees, respectively (Supplementary Tables S3-S6). We next sought 

to identify concurrent gene sets between the 38 Guy’s and 36 METABRIC gene sets by 

comparing all 1,368 possible gene set combinations for overlapping genes (Figure 1B) and 

identified 92 sets with statistically significant concurrent genes (Figure 1C, grey squares), 

including 3 gene sets that shared a common modulator in their respective decision trees, 

namely EXO1 (Figure 1C, black squares, and Figure 1D). In Guy’s-set 33 (Supplementary 

Table S7) and METABRIC-set 15 (Supplementary Table S8), genes involved in the 

inactivation of the mitogen-activated protein kinase (MAPK) pathway were significantly 

enriched. As no overlapping GO-terms were identified between Guy’s-set 27 
(Supplementary Figure S9) and METABRIC-set 15, we focused on Guy’s-set 33 and 

METABRIC-set 15 (Supplementary Figure S1).

A four-gene decision tree signature consistently classifies TNBCs into six 
subtypes in test cohorts—We applied both decision tree signatures to a total of 1,168 
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TNBCs, including (i) 95 TNBCs of TCGA BRCA (25); (ii) TNBC616 (see Supplementary 

Table S1 and online Supplementary Information); (iii) PrECOG 0105 (n = 64) (5), and both 

a phase II and a phase III trial in TNBC patients with metastatic disease; (iv) Sanofi Phase II 

(n = 74) (3) and (v) Sanofi Phase III (n = 319) (4) (Figure 1A). Transcriptomics data in each 

of the trials was derived from treatment naïve primary breast cancer tissue.

The classification defined by the decision tree of Guy’s-set 33, which is based on the 

expression levels of five genes (ST8SIA1, EXO1, NEK2, C8orf46 and MMS22L), 

nominated TNBCs in some cohorts, such as TCGA BRCA and Sanofi III, mostly as one 

class (Supplementary Figure S2) and could not be tested in TNBC616 as expression levels 

for MMS22L and C8orf46 were not available for assessment. Further investigations based 

on the Guy’s-set 33 decision tree were therefore not performed. In contrast, applying the 

METABRIC-set 15 decision tree signature based on the expression levels of four genes 

(TP53BP2, EXO1, FOXM1 and RSU1), established six subtypes, named MC1 to MC6, 

including one large subtype and five of varying sizes (Figure 2). The most frequent subtype 

(MC6) comprised 44.6%, 47.7%, 46.6% and 56.8% of all patients in METABRIC TNBC, 

Guy’s TNBC, TNBC616 and TCGA TNBC, respectively. In the PrECOG 0105 trial, the 

proportion of the MC6 subtype increased to 64%, whereas in TNBC patients with metastatic 

disease (Sanofi Phase II and III), its proportion reduced to ~24%. In contrast, the frequency 

of MC1-TNBCs increased from ~7.2% in the non-trial cohorts to ~22.4% in the metastatic 

setting. No difference in overall survival or risk of developing metastasis was observed when 

the four genes were tested separately in a univariate or multivariate Cox survival analysis, 

neither do the different MC subtypes demonstrate any association with increased or 

decreased overall and progression free survival or risk of developing metastasis 

(Supplementary Table S10-S13).

Molecular characterisation of MC subtypes

MC subtypes are non-synonymous with other breast cancer classifications—
Currently, TNBCs are classified by TNBCtype-4 (12), the PAM50 subtypes (35–37) and the 

IntClust breast cancer classification (10). We sought to evaluate if the four-gene decision 

tree classification converges to these ones (Figure 3A and Supplementary Table S14 and 

S15). MC6-TNBCs consisted exclusively of PAM50 basal-like cases (100%, P = 2e-08, 

Fisher’s exact test), although only 57% of the basal-like TNBCs were classified as MC6. 

MC1-TNBCs were enriched for Luminal A (36%, P = 3e-04, Fisher’s exact test) and 

Normal-Like (36%, P = 3e-03, Fisher’s exact test), and MC2-TNBCs for HER2-enriched 

(57%, P = 2e-03, Fisher’s exact test). TNBCs of the remaining three MC subtypes fell across 

all PAM50 subtypes. Except for three TNBCs, MC6-TNBCs belonged to the IntClust 10 

group (78%, P = 1e-02, Fisher’s exact test), whereas TNBCs of other MC subtypes were 

classified mostly as IntClust 4, 5, 3 and 1, although no significant enrichments were 

observed. MC6-TNBCs were found to be enriched for the BL1 subtype (61%, P = 1e-06, 

Fisher’s exact test), whereas MC1-TNBCs and MC2-TNBCs were primarily of the LAR 

subtype (86% and 67%, P = 1e-04 and 1e-02, respectively, Fisher’s exact test). Thus, the 

MC subtypes diverged from established breast cancer classifications
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MC subtypes differ in their immune gene enrichment—Based on Lehmann’s 

immunomodulatory (IM) classification (12), 37% of the MC6-TNBCs were IM-positive, 

MC1- and MC2-TNBCs were exclusively IM-negative, and MC3-, MC4- and MC5-TNBCs 

were mostly IM-negative (74%) (Figure 3A). Next, we performed a gene set enrichment 

analysis (38) on gene expression data from METABRIC TNBC to further deconvolute 

immune cell enrichment across the MC subtype. Using 28 different immune gene sets (39), 

activated CD4+ and CD8+ immune signatures were found enriched in MC6-TNBCs (Q = 

3e-08, and 1e-04, respectively, Mann-Whitney U test), and low in MC1-TNBCs (Q = 2e-05 

and 1e-05, Mann-Whitney U test) (Figure 3A and Supplementary Table S16). MC6-TNBC 

had lower mastocytes and CD56dim natural killer cell activation in comparison to other MC 

subtypes (Q = 5e-03, and 3e-02, respectively, Mann-Whitney U test). In MC3-TNBCs, 

increased central memory CD8+, effector memory CD8+ and immature dendritic cells 

expression levels were observed (Q = 4e-02, 4e-02 and 4e-02, respectively, Mann-Whitney 

U test). MC2-TNBCs had reduced expression of the memory B cell signature (Q = 4e-02, 

Mann-Whitney U test), whereas in MC1-TNBCs, Th1 expression was reduced (Q = 4e-02, 

Mann-Whitney U test). This clearly demonstrates a variety of immune cell features across 

the MC subtypes.

Pathway deregulation in MC subtypes—DUSP4, DUSP5, DUSP6, DUSP10 and 

SPRED2 were amongst the METABRIC-set 15 gene set (Figure 1D and Supplementary 

Table S8) and are involved in the negative regulation of the MAPK signalling pathway. We 

investigated their expression levels across the MC subtypes and found that MC6-TNBCs had 

the lowest expression of these genes in comparison to the other subtypes (P < 0.05, Mann-

Whitney U test) (Figure 3B and Supplementary Figure S3A). Genomic regions 

encompassing DUSP4, DUSP5 and DUSP6 were deleted (Supplementary Table S17), 

potentially resulting in decreased expression levels. To further corroborate the lack of 

negative regulation of MAPK inactivation, a set of genes previously reported under control 

of this inhibitory mechanism (40) was interrogated in the MC subtypes and found increased 

in MC6-TNBCs compared to TNBCs of other MC subtypes (P < 0.05, Mann-Whitney U 

test) (Figure 3B and Supplementary Figure S3B). These results demonstrate the highly 

selective features of MC6-TNBCs.

In MC5-TNBCs, genes highly expressed were enriched for ErbB signalling (Q = 6e-03, 

Hypergeometric test), particularly through the epidermal growth factor receptor pathway (P 
= 1e-02, Fisher’s exact test). MC4-TNBCs were enriched for PI3K/Akt signalling (Q = 

5e-03, Hypergeometric test) and DNA replication (P = 2e-02, Fisher’s exact test). Although 

not enriched for Lehmann’s IM classification, many genes upregulated in MC3-TNBCs are 

involved in innate and adaptive immune response (P = 7e-04 and 1e-03, respectively, 

Fisher’s exact test), and chemokine signalling (Q = 3e-03, Hypergeometric test). MC2-

TNBCs were enriched for metabolic processes (Q = 2e-28, Hypergeometric test), and MC1-

TNBCs for steroid hormone mediated signalling (P = 3e-02, Fisher’s exact test), particularly 

oestrogen and androgen receptor signalling (P = 7e-04 and 2e-02, respectively, Fisher’s 

exact test). The unique pathway activities underlying the MC subtypes further demonstrate 

the molecular complexity of TNBC and further strengthen our TNBC classification.
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Increased levels of telomeric allelic imbalanced aberrations in MC6-TNBCs—
Next, we investigated the levels of genomic instability. MC6-TNBCs showed significantly 

higher levels of chromosomal instability (P < 0.05, Mann-Whitney U test) (Figure 3C and 

Supplementary Figure S3C) as defined by the CIN70 gene expression signature (16,41). 

MC1-TNBCs had the lowest levels of chromosomal instability. To further decipher this 

genomic instability, we investigated diverse genomic instability measurements based on 

copy number data (17,18). MC6-TNBCs displayed a high burden of allelic imbalanced 

aberrations in their telomeres (P = 9e-07, Mann-Whitney U test) (Figure 3C). MC5-TNBCs 

exhibited a medium burden. In contrast, the remaining MC subtypes did not harbour specific 

types of copy number aberrations.

MC6 identifies TNBCs responsive to platinum-based chemotherapy in Sanofi 
Phase III clinical trial—Given the selective features of MC6-TNBCs, we next assessed 

whether this subtype carried any predictive value in treatment response to DNA damaging 

agents. Using three clinical trials (Figure 1A), TNBCs from each cohort were dichotomised 

as either being MC6-TNBCs or non-MC6 (referred to as remaining TNBCs). We included 

the TNBCtype-4 classification as a comparator, as BL1-TNBCs were previously shown to be 

responsive to neoadjuvant chemotherapy (12). In the neoadjuvant PrECOG 0105 trial, the 

RCB 0/I pathological response rate in BL1-TNBCs (11/17, 65%) was similar to that of 

MC6-TNBCs (25/41, 61%) (Figure 4A). However, out of the 64 patients enrolled in the 

PrECOG 0105 trial, the MC6 subtype identified 39% of the responders with an accuracy of 

55%, in contrast to the BL1 subtype, identifying 17%, with an accuracy of 41%. In the 

metastatic TNBC Sanofi Phase II trial, neither the BL1 nor the MC6 subtype was predictive 

of the overall response rate (ORR) (Figure 4B and Supplementary Table S18). However, in 

the metastatic TNBC Sanofi Phase III trial, the MC6 subtype was a significant predictor of 

treatment response in a multivariate model (OR = 2.41, CI = 1.01 to 5.81, P < 0.05), with an 

ORR in MC6-TNBCs of 46% (28/61), compared to an ORR of 30% (49/163) in the 

remaining TNBCs (Figure 4C). The ORR in BL1-TNBCs was 41% (23/56), as compared 

with 32% (54/168) in the remaining TNBCs. In contrast to BL1, the MC6 subtype did reach 

significance in the univariate and in the multivariate model (OR = 1.78, CI = 0.76 to 4.19, P 
= 0.18) (Supplementary Table S19).

MC6 cell lines are sensitive to cisplatin—To test the hypothesis that MC6-TNBCs are 

responsive to platinum-based chemotherapeutics, we exploited drug sensitivity profiles of 16 

TNBC tumour cell lines generated as part of the GDSC project (33). We found that the 

median AUC of cisplatin in the MC6 TNBC cell lines (n = 4) was 0.89, compared to 0.92 in 

cell lines from other MC subtypes (n = 11) (P = 5.6e-02, Mann-Whitney U test), suggesting 

an enhanced sensitivity to platinum salts in the MC6 subtype. With the aim of identifying 

novel alternative therapeutic sensitivities, we also assessed the associations between >200 

GDSC drug response profiles and the MC6 subtype (Supplementary Table S20). We found 

that amongst the GDSC drug sensitivity profiles, MC6 TNBC cell lines displayed the 

greatest sensitivity to CCT007093 (42), a small molecule inhibitor of the DNA-damage 

activated phosphatase, PPM1D (43) (P = 7.7e-03, Mann-Whitney U test, Supplementary 

Figure S4).
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Discussion

With the purpose of classifying molecular heterogeneous TNBCs into clinically relevant 

subtypes, our multi-omics integrative approach differs from previously published methods 

(10–13). Our classification was constructed using data exclusively from TNBCs, 

strengthening the exploration of their molecular complexity in more detail. Robustness of 

our approach was increased by applying the CONEXIC algorithm (34) to two independent 

TNBC cohorts to then identify concurrent gene sets and modulatory genes. Guy’s-set 33 and 

METABRIC-set 15 shared similarities in both their gene set and modulatory genes. The 

latter represented well known cancer-associated genes potentially contributing to tumour 

progression, and thereby substantiating our analytical approach to identify candidate drivers 

with effects on gene expression patterns. However, upon validation of both decision trees, 

only METABRIC-set 15 was taken forward due to the consistently reproducible MC 

subtypes. Of note, the molecular features of primary tumours of patients that will be 

developing metastasis seem to be distinct, as was reflected by the change in proportion of 

the MC1 and MC6 subtype between non-trial genomic and metastatic TNBC cohorts. The 

MC6 subtype identified metastatic TNBC patients who showed improved response to 

platinum-based chemotherapy in the Sanofi Phase III, but not in the neoadjuvant PrECOG 

0105 trial (5). In early stage TNBCs, which are more likely to respond to platinum-based 

chemotherapy, the MC6 subtype is not able to differentiate between those that do, and do not 

respond to this treatment. However, in the metastatic setting, where patients are less 

responsive to platinum-based chemotherapy, MC6 appears to be more discriminative as a 

predictor. In contrast, genomic signatures lack predictive value in the metastatic setting 

(22,23).

The four-gene decision tree signature consists of TP53BP2, RSU1, FOXM1 and EXO1. The 

expression of TP53BP2, a known regulator of apoptosis and cell growth, has been reported 

to be copy number dependent, and associated with poor response to chemotherapy in TNBC 

(14). RSU1, Ras suppressor-1, is involved in the RAS signal transduction pathway and was 

proposed as a biomarker for metastasis in breast cancers (44). The proto-oncogenic 

transcription factor FOXM1 has frequently been shown to mediate cell proliferation, 

survival, migration, progression and tumourigenesis in TNBC (45); can modulate cisplatin 

sensitivity by regulating the expression of EXO1 in ovarian cancer (46); and is part of a 

recently identified KRAS-associated signature in colorectal cancer (47). All four genes 

provide biological rationales for being good candidates for classification approaches.

To further substantiate the finding that MC6-TNBCs were more sensitive to platinum-based 

chemotherapeutics, cisplatin drug response profiles were assessed across 16 TNBC cell lines 

categorised by MC subtypes. In line with findings from Sanofi Phase III, MC6 cell lines 

appeared overall more sensitive to cisplatin than those of other subtypes. In addition, MC6 

TNBC cell lines were found to exhibit enhanced sensitivity to CCT007093, a chemical 

inhibitor of PPM1D (42). In parallel, MC6 TNBC cell lines displayed lower expression of 

DUSP10 and SPRED2 as a part of the MAPK inactivation signature; both are negative 

regulators of p38. Loss of DUSP4, DUSP5 and DUSP6 in TNBC has been previously 

reported by others (48–50). Thus, we hypothesise that the sensitivity to CCT007093 may be 

a result of p38-dependent cell death, thereby pointing to a potential PPM1D dependency for 
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this group of TNBCs. Given that PPM1D modulates the activity of a series of substrates 

including p38, ATM, CHK1 and CHK2 (43), this association further demonstrates the 

connectivity between genomic instability and TNBC.

The proposed decision tree is an ideal classification approach to be performed with relative 

ease using other platforms, including qPCR and NanoString, due to the small number of 

genes required. However, there are some limitations, as in its current form, the four-gene 

decision tree signature relies on the distribution of each of the four genes and careful 

standardisations experiments would need be implemented. Further validation of our 

classification across independent clinical trials are warranted to investigate if association 

with treatment effect to platinum-based chemotherapy is specific or rather reflects a 

combinatorial effect with gemcitabine in Sanofi Phase III.

The management of TNBC, especially in the metastatic setting, can be complex. With 

single-agent chemotherapy still considered the standard-of-care, targeted therapeutic 

strategies are required, which will rely on appropriate biomarkers for optimal patient 

selection. The unique molecular features of the MC subtypes reflect the intrinsic 

heterogeneity of TNBC and revealed targetable pathways, such as the p38 MAPK signalling 

pathway in MC6-TNBC. The same subset also showed elevated levels of genomic instability 

in telomeric regions, a type of genomic instability which may be the result of escaping from 

telomere crisis. EXO1, a modulatory gene, may further contribute to this process (51,52). 

Further characterisations of the MC subtypes are warranted to establish their association 

with genomic signatures from whole-genome sequence data (53,54).

In conclusion, we sought to decipher the complex nature of TNBC, with the goal of 

informing patient selection for current and future treatment strategies. We showed that a 

four-gene decision tree signature based on copy number dependent genes classifies TNBCs 

into six subtypes. Given the current lack of selection criteria for TNBC patients with 

metastatic disease, this classification warrants further testing in randomised metastatic 

TNBC trials, such as TNT (22).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Identification of concurrent cancer gene sets with CONEXIC. (A) Research design and 

workflow. After selecting a decision tree, a molecular characterisation of the subtypes was 

performed in two discovery and five validation sets. Treatment response to DNA damaging 

agents was assessed in three clinical trials. (B) The number of gene sets, decision trees and 

modulators identified by the CONEXIC algorithm in Guy’s TNBC and METABRIC TNBC. 

Overlap in gene set composition between the two cohorts was assessed using a one-sided 

Fisher’s exact test. (C) Level plot of concurrent gene sets between Guy’s TNBC and 

METABRIC TNBC. Dark grey boxes indicate gene sets with significantly overlapping 

genes. Black boxes, as dark grey boxes, in addition to overlapping modulators. Gene sets are 

ordered by size, as indicated by the scales. (D) Venn diagram depicting the number of 

common genes between Guy’s-set 27, Guy’s-set 33, and METABRIC-set 15.
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Figure 2. 
TNBC cohorts classified using the METABRIC-set 15 four-gene decision tree signature. Pie 

charts illustrating the proportion of the MC subtypes in four primary invasive TNBC 

cohorts, namely METABRIC TNBC, Guy’s TNBC, TNBC616 and TCGA TNBC, as well as 

three clinical TNBC studies, including Sanofi Phase II, Sanofi Phase III and PrECOG 0105. 

The total number of tumours in each cohort is listed in brackets. The percentage for each 

subgroup is shown next to the respective pies.
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Figure 3. 
Molecular characterisation of the MC subtypes in METABRIC TNBC. (A) The four-gene 

decision tree underlying the MC subtypes is shown, followed by a heat map representing the 

expression levels of the four modulatory genes. The coloured bars represent sample-specific 

characteristics, including PAM50, IntClust, TNBCtype-4, CIN70 signature and the 

immunomodulatory status. The heatmap at the bottom illustrates the enrichment of immune 

gene signatures. (B) (left) MAPK inactivation scores, calculated by summarising the 

expression levels of DUSP4, DUSP5, DUSP6, DUSP10 and SPRED2, in MC6-TNBCs 

(magenta) and the remaining TNBCs (grey). Significance was assessed using Wilcoxon 

rank-sum tests. (right) Z-scores for the DUSP6 gene set were obtained using ssGSEA. 

Significance was assessed using a Wilcoxon rank-sum test. (C) Boxplots displaying the 

CIN70 signature (left) and NtAI (right) in MC6-TNBCs (magenta) and the remaining 

TNBCs (grey). Significance was assessed using Wilcoxon rank-sum tests.
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Figure 4. 
Response rates for the MC6 and BL1 subtypes in clinical trials. (A) Response to 

neoadjuvant platinum-based chemotherapy, as assessed by the RCB index, in BL1-TNBCs 

and MC6-TNBCs obtained from the PrECOG 0105 clinical trial. (B) ORR in Sanofi Phase II 

and (C) Sanofi Phase III. Response rates are dichotomised by being BL1 or not (left), and 

MC6 or not (right). Subtypes were assessed as predictors of treatment response using a 

multivariate logistic regression, by including age and race for Sanofi II, and age, race, and 

grade for Sanofi III into the models.
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