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Abstract

Bacterial growth presents many beautiful phenomena that pose new theoretical challenges to 

statistical physicists, and are also amenable to laboratory experimentation. This review provides 

some of the essential biological background, discusses recent applications of statistical physics in 

this field, and highlights the potential for future research.

1 Introduction

Consider the following scenario: a small number of pathogenic bacteria (perhaps 10-100) 

enter the human body and cause an infection. An antibiotic is prescribed to fight off the 

infection. Assuming that the bacterial infection is initially sensitive to the antibiotic, what 

are the chances of curing the infection, and how likely is it that the infection eventually 

becomes resistant to the antibiotic? Given the increasing global health issue posed by 

antibiotic resistant infections, this is an important and timely problem [1, 2, 3, 4, 5]. Clearly, 

understanding the growth of bacterial infections and the potential for emergence and spread 

of antibiotic resistance within them requires collaboration between scientists from different 

disciplines. Do statistical physicists have a role to play here? Furthermore, thinking more 

broadly, could our understanding of other processes mediated by bacterial growth, such as 

global biogeochemical cycles [6], human gut health [7], and wastewater treatment [8], also 

profit from a statistical physics-like approach?

Statistical physicists find inspiration in systems where complex macroscopic behaviour 

arises from a simple set of underlying microscopic dynamical rules. Living systems 

obviously belong to this class, and statistical physics has a long history of applications to 

biological problems. Examples include determination of mutation rates by analysis of 

mutant number statistics [9, 10], the totally asymmetric exclusion process [11], which was 

originally proposed as a model for protein production from messenger RNA in biological 

cells [12], models for noise in gene regulation [13, 14], lattice models of growing 

populations [15, 16, 17], models for collective flocking and swarming behaviour [18, 19, 20] 

and non-equilibrium phase transitions in populations of self-propelled "swimmers" [21, 22, 

23, 24, 25].

In this review we argue that the dynamics of growing bacterial populations provides another 

class of systems to which the methods of statistical physics can naturally be applied. To 
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briefly illustrate this, we notice that the above example of the growth of an antibiotic-

resistant infection involves stochastic phenomena on scales ranging from macroscopic to 

molecular. Specifically:

Macroscopic level: population expansion in space

In many real-world scenarios, including infections, bacterial populations spread in space 

(e.g. through an infected tissue). This process could be modelled using the Fisher-

Kolmogorov equation,

∂n x, t
∂t = D∂2n x, t

∂x2 + rn x, t 1 − n x, t /K , (1)

where n(x, t) is the population density of bacteria in space and time, r is the maximal growth 

rate, D is a diffusion constant that accounts for bacterial motility and K represents a maximal 

population density. Section 4 will discuss applications of this equation, and other 

approaches, to bacterial populations growing in heterogeneous environments.

Microscopic level: bacterial replication processes

The growth dynamics of a population containing a mixture of antibiotic-sensitive and 

antibiotic-resistant bacterial cells, which replicate stochastically with rates rS and rR, could 

be described by the following simple master equation:

dP S, R
dt = rR R − 1 P S, R − 1 + rS S − 1 P S − 1, R − rR + rS P S, R , (2)

where S and R are the numbers of sensitive and resistant cells. This type of equation can be 

solved using methods developed by statistical physicists to study processes such as random 

walks, birth-death processes and coalescence processes, as we shall discuss in Section 3.

Molecular level: gene expression

Resistance to an antibiotic can be caused by genetic changes in the bacterial DNA 

(mutations), or by changes in how the bacterium expresses its genes. To express a gene, the 

DNA sequence is first transcribed, or copied, into an mRNA transcript molecule, which is 

then translated into protein (see section 2.1). To model this process we can use a set of 

Langevin equations:

dx/dt = kx − γxx + ηx t , (3)

dX /dt = kXx − γXX + ηX t , (4)

Allen and Waclaw Page 2

Rep Prog Phys. Author manuscript; available in PMC 2019 January 12.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



where x and X are the concentration of the mRNA and protein respectively, kx and kX are 

the transcription and translation rates, γx and γX are decay rates, and ηx(t) and ηX(t) 
represent Gaussian noise. These equations are similar to those encountered in other 

statistical physics problems.

In this review, we discuss how statistical physics models can be applied to problems in 

bacterial population dynamics. The purpose of this review is to encourage interest in these 

problems, and to provide some of the basic biological background that is needed to 

appreciate the field. Physics and biology are of course very different in their language, 

philosophy, background and culture, and full immersion into the world of bacteria comes 

with considerable challenges. Nevertheless, we hope to show here that bacterial population 

growth phenomena can provide considerable inspiration for the development of new and 

interesting statistical physics models.

All the models that are discussed in this review are idealized and abstract descriptions of 

complex biological processes. It is often necessary to formulate coarse-grained models for 

biological systems, because many of the underlying details (e.g. interactions or rate 

constants) are simply not known. The most difficult aspect of the problem may not be how 

to solve the model, but how to formulate it so that it is coarse-grained enough to provide 

useful insight, but takes account of the essential biology, allowing it to give useful 

predictions. In many cases, the "right" physical or mathematical model of a biological 

system depends on the question that one is trying to answer.

We begin by introducing the reader to some basic microbiology, and to some interesting 

collective phenomena exhibited by bacterial populations. We do not aim at a comprehensive 

introduction, but rather we try to provide just enough information to follow the topics 

discussed later in the review – more detailed background material is available in excellent 

textbooks [26, 27, 28]. The remainder of this review is devoted to a more detailed 

description of bacterial growth phenomena which present interesting challenges for 

statistical physicists, and examples of how statistical physics has been applied to these 

problems. This is divided into two parts, which cover growth phenomena in well-mixed 

systems and in spatially heterogeneous systems, respectively. Finally, we present our own 

perspectives on the potential of this field, and on the relationship between statistical physics 

and microbiology. For lack of space, we do not consider in this review the fascinating and 

important topic of bacterial evolution, where statistical physicists have also made major 

contributions (for example to understanding the structure of fitness landscapes). Here, we 

refer the reader to the excellent review by De Visser and Krug [29].

2 Background

In this section we give a very brief introduction to the basics of bacteria and their growth. 

We also introduce the reader to several different types of stochastic collective behaviours 

that are exhibited by bacterial populations. Table 1 contains useful numbers relating to some 

of the topics that we discuss in the text.
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2.1 Basic microbiology for statistical physicists

From a statistical physicist’s point of view, a bacterium can be viewed as a microscopic 

particle, or cell, which is bounded by a pair of membranes with a stiff wall in between them 

(specifically, this is the case for a large class of bacteria that are known as Gram negatives; 

Gram positive bacteria have a thicker wall and lack the outer membrane). The interior of the 

bacterial cell contains a “soup” of DNA (encoding the bacterial genome), RNA, proteins, 

and other molecules (Fig. 1). The materials that make up the bacterium are generically 

referred to as “biomass”. Bacterial cells come in different shapes: from rods, to spheres, to 

spirals (Fig. 1), and sizes: from ~100nm to ~100μm. Escherichia coli, the “workhorse" of the 

microbiology lab, is a spherocylindrical Gram negative bacterium whose cells are ~ 0.8 

− 1μm in diameter and ~ 2 − 4μm in length [32, 26].

Bacterial growth consists of the conversion of chemical nutrients into biomass. Nutrients 

enter the bacterium through pores in its membrane and undergo a series of chemical 

transformations, converting them into new cellular components; these chemical 

transformations are collectively known as metabolism [26, 27]. The increase in biomass is 

accompanied by an increase in cell size and by replication of the bacterial DNA, possibly 

with some errors (mutations). Eventually, the cell divides into two daughter cells, in a 

process called binary fission. The cell size at which division occurs is dependent on the 

growth conditions [40, 41, 42] (with cells growing on richer nutrients being larger). 

However, the exact process by which cell division is triggered remains somewhat 

mysterious, even after half a century of research [43, 44, 45, 46, 47]. Bacteria are able to 

reproduce at impressive rates: E. coli can double its population every 20 minutes, under 

optimal conditions. This means that very large population sizes can be achieved within a few 

hours in the lab; population densities of ~ 109 cells per ml of culture medium are usual in lab 

experiments.

Protein molecules make up a major component of biomass: typically, ~55% of the dry mass 

of a bacterial cell consists of protein [27]. The bacterial DNA sequence contains several 

thousand genes (~ 4000 for E. coli), each of which encodes a specific protein molecule. 

Gene expression is the process by which the DNA-encoded instructions for making a 

particular protein are first transcribed into a messenger RNA molecule, which is then 

translated, i.e., used to build a chain of amino acid molecules that folds into a protein 

molecule. In response to changes in environmental conditions, or signals, a bacterial cell can 

turn on or off the production of particular protein molecules; this is known as gene 

regulation. Interestingly, some proteins, known as transcription factors, turn on or off genes 

that encode other proteins. This leads to networks of interactions among genes, the 

properties of which (such as modularity [48]) have attracted significant interest among 

statistical physicists. Gene regulatory networks are especially interesting because the 

transcription factors that control them are often present in only a few molecules per cell, 

leading to stochasticity in the behaviour of the regulatory network (e.g. switching between 

alternative stable states [49, 50]; for theoretical models see, e.g. [51, 52, 53, 54, 55, 56]).

Many bacterial cells can also engage in self-propelled motion, which is mediated by various 

appendages external to the cell. For example, bacteria may swim in liquid media by rotation 

of whip-like flagella, or crawl on solid surfaces using needle-like appendages called pili [57, 
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58, 59, 27, 28]. Bacterial motility has already attracted much interest among physicists; 

topics of particular focus have included the statistics of suspensions in which bacteria 

stochastically change direction in response to chemical gradients or local density [60, 25] 

and the hydrodynamics of bacterial swimming motion [61]. Bacterial motion has also 

inspired a recent surge of work on the collective behaviour of self-propelled colloidal 

particles [62, 24, 63, 64].

2.2 Statistical physics of bacterial growth

Bacterial growth is of interest to statistical physicists for several reasons. First, the process 

of division into daughter cells is a branching process with somewhat stochastic timing; the 

time between successive bacterial divisions is a random variable with a rather broad 

distribution [45, 47, 65, 66]. For E. coli, this causes a loss of synchrony between division 

events in sister lineages within about 10 generations [67, 68]. Stresses such as exposure to 

some antibiotics or to ultraviolet radiation can interfere with the division process, leading to 

long, filamentous cells. Even in the absence of stress, bacterial populations can contain small 

sub-populations of non-growing cells, or "persisters", which tend to be resistant to antibiotic 

treatment [69, 70].

Second, growth of bacteria in close proximity to one another leads to mechanical 

interactions, which can be thought of as pushing, or excluded volume effects. This is 

relevant when bacteria grow in dense populations such as colonies on semi-solid surfaces or 

biofilms on solid surfaces (see Section 4). Mechanical interactions between bacteria lead to a 

number of interesting phenomena, including phase separation of cells with different surface 

properties [71], segregation of an expanding population into sectors of genetically identical 

bacteria [72, 73, 74], quasi-nematic ordering [75] and competition for space between 

lineages [76]. Mechanical interactions between bacteria and their environment can also lead 

to interesting effects [77], for example a transition from 2d to 3d growth as a bacterial 

colony grows on a semi-solid agar gel [78].

Third, because bacteria reproduce rapidly, they also undergo rapid genetic evolution. The 

process of evolution involves the random generation of cells with mutations in their DNA, 

due to mistakes in DNA replication, and their proliferation within the population, starting 

from initially very small numbers. Bacterial evolution is now widely recognised as an 

important testbed for evolutionary theory, since it allows lab experiments to be carried out 

on short timescales (typically days-weeks) [79, 80]. Understanding how bacterial 

populations evolve is also a pre-requisite for our ability to mitigate against the emergence of 

antibiotic-resistant infections [81].

In the remainder of this review, we highlight in more detail a number of interesting 

phenomena that are associated with various modes of bacterial growth, and for which 

statistical physics models have been developed. We divide this discussion into two parts: in 

section 3 we consider growth in a homogeneous, well-mixed environment, while in section 4 

we discuss growth in spatially structured environments.
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3 Bacterial growth in a spatially homogeneous environment

3.1 Bacterial growth experiments and population dynamic equations

In the laboratory, bacteria are often grown in liquid suspension under well-mixed conditions. 

Here we give a brief overview of the typical experimental techniques involved and the types 

of equations used to describe the resulting population dynamics.

3.1.1 Growth in a batch culture—Fig. 2A illustrates a typical setup for what is known 

as a “batch culture” growth experiment. A small number of bacteria are inoculated into a 

well-shaken container filled with liquid nutrient medium (Fig. 2B shows a large-volume 

flask; Fig. 2C shows a 96-well microplate which can be used to perform multiple 

simultaneous smaller-volume experiments). Over a period of ~1 day, the density of bacteria 

n(t) is measured (usually by determining the turbidity of the suspension ‡) and the results are 

plotted as a function of time t. Typical results are shown in Fig. 2D. These “growth curves” 

have a characteristic shape: an initial period, known as the lag phase, in which no growth is 

detected, followed by a period of exponential growth (known as the exponential phase), 

followed by a slowing down and eventual cessation of net growth, known as the stationary 

phase. It is generally stated that the lag phase happens because the bacteria need to adjust to 

the liquid medium (having typically been stored under different conditions), while stationary 

phase happens when the population exhausts its nutrient supply, or builds up waste products. 

However, the details of what happens during the lag and stationary phases remains a topic of 

active research [83, 84].

Simple equations can be used to describe the results of a batch culture growth experiment. 

Assuming initially that the nutrients are unlimited, the dynamics of the bacterial population 

can be modelled as

dN t
dt = rN t , (5)

where N(t) is the number of bacteria at time t and r is the per-bacterium replication rate. Eq. 

(5) predicts that the population grows exponentially

N t = ertN 0 = 2t /TN 0 , (6)

where T = ln 2/r is the doubling time, defined by N(t + T) = 2N(t). For E. coli under optimal 

conditions (rich nutrient broth, 37°C), T ≈ 20 min which gives r ≈ 2.1 h−1. Eq. (5) is 

appropriate for relatively large populations (≫ 103 cells). For smaller populations, it may be 

important to consider that replication is not a continuous process but occurs as discrete 

events which may be synchronous §. In some cases, it may be more convenient to use as the 

dynamical variable the total biomass of the population rather than the number N of bacteria. 

‡For a bacterial suspension, turbidity is usually referred to as “optical density”, or OD. The OD has been shown to correlate well with 
the biomass density in the sample [82]. Other techniques to measure bacterial density include spreading the suspension on an agar gel 
of nutrient media, incubating and counting the resulting colonies, or direct counting of cells using a Coulter counter or flow cytometer.
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The total biomass obeys an identical equation to Eq. (5), but it is a continuous quantity 

which is unaffected by discrete cell division events [85].

Equation (5) provides a good model for the exponential phase of growth of a bacterial 

population, as we show in Fig. 2E. However, it does not capture the transition to the 

stationary phase, where the population saturates. A simple way to capture this saturation is 

to use instead a logistic growth equation [86]

dN
dt = rN 1 − N /K , (7)

where K is the maximal population size (or carrying capacity) and the term (1 − N/K) 

decreases the effective growth rate when N becomes large, mimicking the effect of nutrient 

depletion or toxic waste product buildup. The solution of Eq. (7), N(t) = N(0)ert/[1 + 

(N(0)/K)(ert − 1)], does indeed saturate, as we show in Fig. 2F. This model is in quite good 

agreement with measured growth curves for experiments in simple nutrient media (Fig. 2F) 
‖.

Saturating population growth can also be modelled in a more biologically consistent way by 

including the dynamics of the nutrient explicitly in the equations. The classic equation for 

the nutrient-concentration dependent growth of a bacterial population is:

dN
dt =

rmaxs
Ks + s N, (8)

where s is the nutrient concentration, rmax is the maximal per-cell growth rate and Ks is the 

nutrient concentration at which the growth rate is half-maximal. In Eq. (8), the per-cell 

growth rate is described by a “Monod function” [92]:

g(s) = rmaxs/ Ks + s , (9)

which depends linearly on the nutrient concentration s for low nutrient concentrations, but 

becomes independent of the nutrient as s → ∞. This captures the fact that for high nutrient 

concentration, growth is limited by the bacterium’s capacity to import and use the nutrient, 

rather than by the availability of the nutrient in the environment. Eq. (8) must be coupled 

with a dynamical equation for the nutrient concentration:

§In a population starting from a single bacterium, division events in different cells occur quasisynchronously for about the first 10 
generations [67, 68].
‖The sharp-eyed reader will note that the solution of the logistic equation (7) is not in perfect agreement with the MOPS growth curve 
from Fig. 2F, and cannot replicate the LB growth curve from Fig. 2D. The shapes of growth curves can in general be more 
complicated than suggested by these simple models, especially where there is more than one growth-limiting nutrient [31, 87]. More 
complicated models, such as those that use density-dependent growth functions [88, 89, 90, 91], have been developed to try to achieve 
better fits.
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ds
dt = − γ

rmaxs
Ks + s N, (10)

where γ is a yield coefficient, describing the number of units of nutrient that are consumed 

to produce one bacterium (divided by the volume).

Numerical solution of Eqs. (8) and (10) predicts that the bacterial population size saturates 

as the nutrient runs out. This solution agrees well with experimental data (Fig. 2F), although 

it is typically not significantly better than the solution of the logistic growth equation (7) ¶.

3.1.2 Growth in a chemostat—The batch culture setup shown in Fig. 2 is not the only 

way to perform a well-mixed bacterial growth experiment. An alternative approach is to use 

a chemostat: a well-mixed vessel in which fresh nutrient medium is supplied from a 

reservoir at a constant flow rate, and the contents of the vessel (bacteria and spent medium) 

are removed at the same rate, so as to keep the volume constant (Fig. 3A and B). In the 

chemostat, one achieves a steady-state population in which the rate of bacterial replication is 

matched by the rate of removal of bacteria.

The dynamics of bacterial growth in a chemostat can be modelled by making minor 

modifications to Eqs (8) and (10) to account for the inflow of nutrient and the outflow of 

bacteria plus medium. The resulting equations are [98]:

dN
dt =

rmaxs
Ks + s N − Nd, (11)

ds
dt = − γ

rmaxs
Ks + s N + s0d − sd, (12)

where d is the rate of fluid flow into and out of the chemostat and s0 is the concentration of 

nutrient in the reservoir. These equations have the following steady-state solution:

N* =
rmaxs0 − d(Ks + s0)

γ(rmax − d) , (13)

¶In addition, the Monod relation (8) has the rather unsatisfactory feature that it is an ad hoc function, rather than being derived from 
any underlying model of the cell’s biochemistry. Because of this, attempts have been made over many years to develop more complex 
nutrient-dependent growth equations, which take into account features such as population-size dependence [93], temperature [94], 
multiple nutrients [95], pH [96], and the thermodynamic driving force for the biochemical growth reaction [97].
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s* =
dKs

rmax − d , (14)

for d < dcrit = (rmaxs0)/(Ks + s0), and N* = 0, s* = 0 if the flow rate is larger than dcrit. 

Therefore, growth in the chemostat is possible only if the flow rate is lower than the 

maximum growth rate of the bacteria+. Fig. 3C shows example plots of the bacterial density 

and the nutrient as a function of time, predicted by Eqs. (11) and (12) for two values of d, 

above and below dcrit.

The chemostat equations (11) and (12) can be extended to predict the dynamics of multiple 

competing or cooperating populations (see Section 3.2), populations preyed on by viruses, 

evolving populations, etc [99, 100, 101, 102], providing a well-founded mathematical model 

for a host of ecological scenarios. Many of these models have mathematically interesting 

solutions (showing, for example, oscillatory dynamics [98, 103]).

3.1.3 Growth of small populations—The models which we have discussed so far are 

all deterministic; they represent the dynamics of large bacterial populations, for which 

fluctuations in the population size are negligible. Recently, however, it has become possible 

to study the dynamics of small bacterial populations using microfluidic devices coupled with 

microscopy [104, 69, 105]. For example, microfluidic chemostats have been constructed in 

which the population size is 102 − 104 bacteria [106, 107]. Here, fluctuations in population 

size become important and stochastic models are needed. The birth-death process provides a 

natural way to model such a population. If we assume that bacterial reproduction and death 

(removal from the system) are Poisson processes with rates r and d, then we can write the 

following Master equation for the probability P(N, t) that N bacteria are present at time t:

dP(N, t)
dt = − (r + d)NP(N, t) + r(N − 1)P(N − 1, t)

+d(N + 1)P(N + 1, t) .
(16)

The statistical properties of such birth-death processes have been well studied [108, 109, 

110]. One can think of this process as a biased random walk in the space of N, the 

population size, with the strength of the bias being given by r − d. If r < d then the removal 

rate exceeds the birth rate and one expects the population to become extinct within a finite 

time (i.e. to reach the absorbing state at N = 0). On the other hand, if r > d, then on average 

+The same effect of “washing out” of the population with a high dilution rate can also be observed in a simpler, logistic-like model 
without explicit nutrients:

dN
dt = rN(1 − N /K) − dN, (15)

which has steady state solution N* = K(1 − d/r) for d < r, and N* = 0 otherwise.
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the population increases exponentially, N ~ exp[(r − d)t], but in any given realisation of the 

dynamics there is a non-zero probability

ρN0
= (r /d)

N0 (17)

that the population will become extinct. This probability decreases exponentially with the 

initial size N0 of the population since each of the initial cells can go extinct with probability 

ρ1 = r/d [110]. In the critical case where r = d the population fluctuates randomly (as an 

unbiased random walk in N) and will eventually become extinct, but the average time to 

extinction is infinite.

Branching and birth-death processes similar to that of Eq. (16) have been applied to model 

bacterial evolution. A classical example is the Luria-Delbrück model [9], or, more precisely, 

its stochastic version by Lea and Coulson [10]. This model predicts the distribution of the 

small number of mutant bacteria in a large growing population of wild-type (unmutated) 

bacteria. Comparing the experimentally observed distribution for this quantity with the 

model prediction is a standard method for estimating mutation probability in bacteria (this is 

known as a “fluctuation test”, see [10]). For recent developments in this field, see e.g. Ref. 

[111].

In the next two sections, 3.2 and 3.3, we review several pieces of recent work in which the 

models described above are extended to study more complex situations: specifically, noise-

driven oscillations in small bacterial populations, and populations of bacteria that switch 

stochastically between different states.

3.2 Example 1: Noise-driven oscillations in bacterial populations

The chemostat, described in Section 3.1.2, is designed to achieve a steady state of growth for 

a large bacterial population, by supplying fresh medium at the same rate as spent medium 

(plus bacteria) is removed. In the natural environment, however, bacteria may experience 

conditions that are very different to those of a chemostat. The population size may be small, 

as discussed above (e.g. for bacteria inhabiting the spaces between soil granules, or growing 

inside a human or animal host cell), nutrient supply may be unpredictable, and bacteria may 

be removed from the system not just by dilution but also by death due to viral predation or 

host immune response. Bacteria may also be retained in the system if they adhere to a 

surface. Extending the chemostat equations (11) and (12) to include these factors reveals 

interesting predictions, one of which is that noise-driven stochastic oscillations may be a 

common feature of small bacterial populations in the natural environment [102].

To see this, let us start by analysing the deterministic chemostat equations (11) and (12), 

modified to allow for unequal rates of nutrient supply and removal, and for bacterial death. 

These are:
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dn
dt = f n, s = g s − d n, (18)

ds
dt = h n, s = − Γ g s n + b − Rs, (19)

where n = N/V is the bacterial density (with N being the number of cells and V the 

chemostat volume), s is the nutrient concentration, the growth rate g(s) ≡ rmaxs/(Ks + s), d is 

the rate of bacterial removal from the system (by death or dilution), b is the rate of nutrient 

supply, R is the rate of nutrient removal and Γ ≡ Vγ is the yield coefficient. Equations (18) 

and (19) have a single (non-trivial) fixed point at n* = (b − RdKs/(rmax − d))/(Γd) and s* = 

dKs/(rmax −d). This solution is independent of the volume of the system because the model 

described by Eqs. (18) and (19) is deterministic. Linear stability analysis reveals how the 

system approaches this fixed point [112]. If the eigenvalues of the Jacobian matrix J

J = ∂ f / ∂n ∂ f / ∂s
∂h/ ∂n ∂h/ ∂s

= g s − d n dg/ds
− Γ g s − Γ n dg/ds − R

, (20)

evaluated at the fixed point (n*, s*), are real and negative, then we expect the system to relax 

monotonically to its fixed point. In contrast, if the eigenvalues are complex with a negative 

real part then we expect exponentially decaying damped oscillations as the system 

approaches the fixed point. The matrix J evaluated at (n*, s*) is given by

J∗ = d
0 β/X

− Γ −β − X
, (21)

where we have defined β ≡ (Γn*/d)(dg/ds)s=s* = (Γn*/d) × [rmaxKs/(Ks + s*)2], and χ ≡ 

R/d. The eigenvalues λ of J* are given by 2λ/d = − β + χ ± β + χ 2 − 4β . If χ ≥ 1, i.e. the 

nutrient removal rate R is greater than the bacterial removal rate d (e.g. because bacteria 

adhere to a surface), then λ is real and negative for any value of β, and we expect the system 

to approach the fixed point monotonically. However, if χ < 1, i.e. bacteria are removed faster 

than nutrient (e.g. due to death), then the eigenvalues are complex with negative real part, for 

β values in a range such that (β + χ)2 < 4β. This implies that transient oscillations can 

happen as the system approaches the fixed point. The frequency Ω of the oscillations is given 

by the imaginary part of the eigenvalues λ: 2Ω/d = 4β − β + X 2 . Fig. 4A shows that 

numerical simulations of Eqs. (18) and (19) indeed predict significant oscillations for a set 

of parameters corresponding approximately to E. coli growing on glucose (see figure caption 

for details) [31, 26, 113].
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What causes these transient oscillations? Intuitively, they happen because the system builds 

up surpluses and deficits of nutrient, relative to the bacterial population density. When there 

is a surplus of nutrient, the bacterial population grows rapidly and overshoots the amount of 

available nutrient, leading to a sudden deficit of nutrient, upon which the population 

decreases rapidly and eventually undershoots the nutrient concentration, leading to a nutrient 

surplus. A transient nutrient surplus can only happen if excess nutrient is allowed to 

accumulate in the system without being washed away; thus the requirement for χ < 1. One 

can also explain the requirement for an intemediate value of β, such that (β + χ)2 < 4β. The 

parameter β measures the responsiveness of the bacterial growth rate to changes in the 

nutrient concentration. For very small values of β, the growth rate does not respond to 

changes in nutrient, so transient nutrient surpluses will not translate into bacterial population 

oscillations. For very large values of β, the population tracks the nutrient concentration 

closely, preventing nutrient surpluses or deficits from building up.

This analysis suggests that, in some situations in the natural environment, bacterial 

populations whose dynamics is deterministic may undergo transient (damped) oscillations, 

eventually reaching a non-oscillating steady state. But what happens for very small 

populations? It turns out that for small populations stochastic fluctuations due to the birth 

and death/removal of individual bacteria (demographic noise) drive sustained oscillations in 

the population density and the nutrient concentration.

The effects of demographic noise in small bacterial populations can be modelled in various 

ways. If the fluctuations due to the noise are expected to be large, then individual birth and 

death events should be modelled explicitly – typically these would be modelled as Poisson 

processes, and simulating using a kinetic Monte Carlo scheme such as the Gillespie 

algorithm [114, 115]. However, if the fluctuations are expected to be small, they may be 

approximated by adding stochastic noise terms to the deterministic equations (18-19). This 

is the approach taken by Khatri et al [102], leading to a set of Langevin equations of the 

form

dx
dt = a + B 1/2η t . (22)

Here, x ≡ (n, s), a ≡ (f(n, s), g(n, s)) describes the deterministic dynamics, and η(t) is a 

vector of independent, Gaussian-distributed random numbers with zero mean and variance 

scaling with the inverse of the system volume (thus, the effects of noise are more important 

for small system volume). The matrix B is given by

B =
ng s + dn − Γ ng s

− Γ ng s Γ2 ng s + b + Rs
. (23)

This takes account of the fact that fluctuations in the bacterial population are coupled to 

fluctuations in the nutrient concentration, and vice versa. Equation (22) can be derived via a 

Kramers-Moyal expansion [116]; briefly, one expresses the model as a set of chemical 
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reactions, writes down the corresponding master equation, and Taylor expands it under the 

assumption that changes in the number of molecules/bacteria due to firing of a single 

reaction are small [102, 116]. The use of Gaussian noise to model demographic stochasticity 

is particularly convenient in problems like this one, where the nutrient is represented 

explicitly. This is because the number of molecules of nutrient is typically far larger than the 

number of bacteria – thus the nutrient essentially behaves deterministically. Use of a kinetic 

Monte Carlo scheme would require one either to simulate nutrient molecules discretely 

(which would be highly inefficient), or to adjust the kinetic Monte Carlo algorithm to take 

account of a time-varying, continuous, nutrient concentration (similar to [117]).

Fig. 4B shows the results of numerical simulations of Eq. (22), for the same parameter set as 

in Fig. 4A (representing E. coli growing on glucose), but for a system volume of 1ml. These 

parameters represent a very low bacterial density (similar to that found in drinking water), so 

that the absolute numbers of bacteria present are ~ 104 (blue curve) or ~ 103 (red curve). It is 

immediately clear that demographic stochasticity has an important effect: the transient 

oscillations of the deterministic model (Fig. 4A) have been converted into sustained 

oscillations in the stochastic model. The presence of these oscillations is also clearly visible 

in the power spectrum [102]. This effect may be widespread for very small bacterial 

populations; for example, it also happens in a model of a nutrient-cycling bacterial 

ecosystem with two species which feed on each others’ waste products [102].

These stochastic oscillations are an example of a very general mechanism that was 

discovered by McKane and Newman in the context of predator-prey models [118], and later 

found by other statistical physicists in a wide range of models [119, 120, 121, 122, 123, 124, 

125, 126]. In this mechanisms, the underlying oscillatory modes of a deterministic 

dynamical system are excited by a source of intrinsic noise (in this case demographic noise), 

leading to sustained oscillatory dynamics in the stochastic version of the system, whereas 

the deterministic system shows only damped oscillations. Thus, this example shows how 

insights from statistical physics can be important in understanding the behaviour of bacterial 

populations.

Despite the possible ubiquity of this mechanism, demographic-noise induced oscillations 

have not yet been observed for bacterial populations. One difficulty is that the effect is 

strong only if number of bacteria is very small (e.g. Fig. 4 shows predictions for ~ 103 − 104 

bacteria). The predictions are also for a well-mixed system, while rules out typical 

experimental methods where small populations are grown as microcolonies on agar plates 

(see section 4). However, well-mixed conditions for small bacterial populations are starting 

to be achieved using in microfluidic chemostats [106] or microfluidic droplets [127]. These 

techniques should eventually reveal a host of interesting fluctuation-driven dynamical 

phenomena.

3.3 Example 2: Switching bacteria in a switching environment

Up to now, we have mostly assumed that all cells within a bacterial population are identical. 

However, in many cases, genetically identical bacteria within a population can show 

variation in their levels of gene expression (see, e.g., Fig. 5). In the most striking cases, 

individual bacteria switch stochastically between very distinct states of gene expression, 
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such that the population contains subpopulations with very different behaviours [129, 130]. 

The biological function of this stochastic switching is in general not known (and may differ 

in different cases) [131]: suggestions have included evasion of host immune responses [130, 

132, 133], avoidance of evolutionary fitness valleys [134], division of labour among cells in 

the population [135] or “bet hedging” to ensure survival of the population in an 

unpredictable environment [136, 137]. The challenge of explaining the function of stochastic 

switching in bacteria has motivated the development of a host of theoretical models, of 

varying degrees of complexity [138, 139, 140, 141, 142, 143, 144, 145, 133]. Here, we 

review perhaps the simplest of these, the case of randomly switching cells in a switching, 

unresponsive environment [138, 139, 140, 141, 142, 143]. An elegant statistical physics 

model for this case was presented by Thattai and van Oudenaarden [140]; here we follow 

their approach, even though it is rather idealistic from a biological point of view.

We suppose that individual bacteria in a population can be in either of two states: a fast-

growing state which we label 1 and a slower-growing state, which we label 0. Bacteria 

switch stochastically between the two states, with a rate k0 of switching from the fast- to the 

slow-growing state (1 → 0) and a rate k1 of switching from the slow-to the fast-growing 

state (0 → 1). This scenario can be described by the following equations for the bacterial 

population dynamics:

dN0
dt = − k1N0 + k0N1 + γ0N0, (24)

dN1
dt = + k1N0 − k0N1 + γ1N1 . (25)

Here, N0 and N1 denote the numbers of bacteria in each of the two states, and we have 

assumed that these are large enough to be treated as continuous variables. The first two 

terms in each equation describe switching between states, and the third term describes 

growth.

Equations (24) and (25) can be reduced to a single, nonlinear dynamical equation by 

defining the fraction f of the bacterial population which is in the faster-growing state 1 as f = 

N1/N, where N = N0 + N1. This leads to [140]

d f
dt = k1 + f [ Δ γ − k1 − k0] − f 2 Δ γ, (26)

where ∆γ = γ1 −γ0 is the difference in growth rate between the two states. The variable f is 

useful because it provides a measure of the growth rate of the total population, as we can see 

by summing Eqs. (24) and (25):
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dN
dt = (γ1 + f Δ γ)N . (27)

Since γ1 and ∆γ are constants, measuring f is equivalent to measuring the total population 

growth rate. For this reason, f has been referred to as a measure of the “fitness” of the 

population [140, 133]. Equation (26) predicts that the variable f increases in time until it 

reaches a plateau value which corresponds to the positive root of the quadratic equation k1 + 

f [∆γ−k1−k0]−f2∆γ = 0. Thus, although the total population size increases exponentially in 

time (Eq. (27)), the fraction of the population that is in state 1 approaches a steady state.

Now let us suppose that the bacterial population lives in a changing environment: 

specifically, the environment can flip, such that bacteria in the the slow-growing state 

become fast-growing and vice versa. Thus, the fraction f1 of bacteria that are in the fast-

growing state undergoes a jump: f1 → 1 − f1. The environment can flip either periodically, 

or stochastically with a fixed rate [138, 139, 140, 141, 142, 143]. The environment is 

assumed to be “unresponsive”, in the sense that its behaviour is not coupled to the state of 

the bacterial population.

This simple and highly idealized model leads to some interesting results. In particular, one 

can ask what is the optimal bacterial switching strategy, i.e. the strategy which maximises 

the total population growth rate. Under what circumstances should bacteria stochastically 

switch into a slower-growing state, sacrificing fitness in the current environment, in order to 

be prepared for a change in the environmental state?

For a periodic environment, it is possible to obtain an analytical solution for the average 

“fitness” 〈f〉, as a function of the model parameters [140]. For a stochastically switching 

environment one has to turn to simulations. In either case, it turns out that for a certain a 

range of parameters (k0, k1, γ0, γ1) bacterial switching out of the fast-growing state is 

favourable; thus bacteria can increase their fitness by entering a slow-growing state, in 

readiness for the next environmental change. Fig. 6A shows the results of numerical 

simulations of Eq. (26), in an environment that switches at rate 1, either stochastically (as a 

Poisson process) or periodically. When the rate k1 of switching into the faster growth state is 

very small, the average fraction 〈f(k0)〉 of slowly-growing cells is peaked at a non-zero value 

of k0. This implies that it is favourable for cells to switch into the slower growth state at 

some non-zero rate, whether the environment is stochastic or periodic. However for a larger 

value of k1, switching into the slower growth state is favourable only in the periodic 

environment. For even larger values of k1, switching becomes unfavourable even in the 

periodic environment [140].

It also turns out that, in regions of parameter space where bacterial switching is favoured, the 

optimal switching rate matches the switching rate of the environment [140]. This prediction 

has in fact been tested experimentally by Acar et al. [146], although using cells of the yeast 

Saccharomyces cerevisiae rather than bacteria. In these experiments, yeast cells were 

engineered to switch stochastically between two states, in which expression of an enzyme 

for metabolising the nutrient uracil was either on or off. Importantly, the rate of switching 
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could be controlled by addition of a chemical inducer. The yeast cells were grown in a 

turbidostat (a setup similar to a chemostat, but where nutrient is supplied when the culture 

reaches a predefined cell density rather than continuously), in which the environment either 

contained uracil (such that ON cells were fitter than OFF cells) or a toxic analogue of uracil 

(such that OFF cells were fitter than ON cells). Fig. 6B illustrates this setup: the 

environment was maintained in state E1 for time T1 before being switched to state E2 for 

time T2. Yeast cells switched between the two phenotypic states at (controllable) rates rON 

and rOFF and proliferated at rates (here labelled γ) that depended on both the phenotypic 

state and the environment. Fig. 6C and D show results of experiments for a "fast" 

environment, in which T1 and T2 are relatively short (Fig. 6C) and a "slow" environment, in 

which T1 and T2 are long (Fig. 6D). In the fast environment, rapidly switching cells, with 

high rates rON and rOFF (red data points) have, on average, a faster growth rate than slow-

switching cells, with lower rates rON and rOFF (blue data points). The situation is reversed, 

however, for the slow environment.

This example shows that even the relatively simple case in which the switching behaviour of 

the cells and of the environment is uncoupled can produce non-trivial results, which go some 

way to explaining the possible advantages of stochastic switching. Real infections or 

environmental scenarios are of course more complex, and other models have been developed 

that reflect different aspects of this complexity. For example, statistical physicists have 

considered the case of an environmental switch which is triggered when the state of the 

population reaches a threshold (mimicking an immune response) [133]. With some 

approximations, this case can be treated analytically and reveals a new possible role for 

stochastic switching, in which the population composition is modulated so as to avoid 

triggering the environmental response. In other work, looking at the topic from a different 

perspective, statistical physics models have been used to investigate the relative benefits of 

“blind” stochastic switching compared to “responsive” switching, in which cells detect the 

state of the environment and respond accordingly [144]. A scenario in which stochastic 

phenotype switching is advantageous even in a fixed environment has also been considered, 

in Ref. [134].

4 Spatially structured bacterial populations

In nature, bacterial populations rarely exist as well-stirred, homogeneous, liquid cultures. 

Instead, imperfect mixing, combined with spatial heterogeneity of the environment (e.g. 

gradients of food, oxygen, temperature), leads to the emergence of populations which are 

spatially structured, both genetically and phenotypically [147, 148]. These structured 

populations often take the form of dense conglomerates in which bacterial cells interact 

mechanically with each other. An example is a bacterial biofilm, which is a dense mat of 

cells attached to a surface [149, 150]. This might be a solid surface such as a rock or soil 

particle, or a semi-solid matrix such as food, animal or plant tissue. Biofilms are a source of 

concern in both medicine and industry because they can cause chronic infections when they 

form on medical implants, and biofouling when they form on industrial devices [151, 152].

In the microbiological lab, dense, spatially structured bacterial populations are often 

encountered in the form of "colonies". These colonies arise when individual bacterial cells 
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are dispersed across the surface of a layer of nutrient-containing semi-solid agar gel and 

allowed to proliferate in an incubator for a day or so (Fig. 7A)*. The colonies are visible by 

eye as small spots of size ~ 0.5 − 5mm on the agar surface; each one contains ~ 108 or more 

bacteria, all of which are progeny of a single founder cell (Fig. 7B-D). While Fig. 7 shows 

colonies formed by E. coli, Fig. 8 shows those formed by several genetic variants of the 

bacterium Pseudomonas aeruginosa (PAO1 strain). These variants show strong differences in 

colony appearance due to differences in their production of extracellular polymers which 

affect cell-cell and cell-surface interactions. More generally, the shape and size of a bacterial 

colony depend on factors such as the nutrient concentration and the agar gel stiffness as well 

as the bacterial strain that is used [153, 154].

From a physicist’s point of view, the growth of biofilms and bacterial colonies are beautiful 

examples of self-assembly processes, in which the structural properties of the population are 

closely coupled with local gradients of nutrient (or, potentially, of signalling molecules or 

toxic substances such as antibiotics) [81, 155, 156, 157]. As with many other statistical 

physics models, the inclusion of space in models for bacterial population growth leads to 

many interesting new phenomena.

Biofilm and colony self-assembly are particularly interesting from a statistical physics 

perspective because of their connection with the well-established field of interface growth 

models [158]. Interface growth models fall into a small number of universality classes, with 

well-defined scaling exponents for the interface roughness as a function of time and system 

size [159]. Frustratingly, though, there are few experimental systems [160, 161, 162, 163] 

for which these theoretically-predicted scaling exponents can be measured. The edge of an 

expanding bacterial colony or the surface of a growing biofilm could provide an excellent 

system to measure such exponents and may stimulate research into models that involve non-

local interactions between remote regions of the interface. Such long-range interactions can 

happen in bacterial populations due to the interplay between growth and nutrient/waste 

diffusion, and the dynamics behind the front caused by physical interactions between 

growing cells [78, 164].

4.1 Modelling spatially structured bacterial populations

Many different approaches can be used to model spatially structured bacterial populations, 

depending on the system being studied and the desired level of physical and biological 

realism.

4.1.1 Connected habitats and Fisher-KPP waves—Perhaps the simplest approach 

is to construct a model that consists of connected well-mixed compartments, between which 

bacteria can migrate (mimicking motility, diffusion or flow). The dynamics of the bacterial 

population in each compartment can be described using the same type of equations as in 

section 3.1, with the additional of coupling terms to describe migration of bacteria between 

compartments. This kind of approach is appropriate for situations where the local 

*Agarose is a polymer of agarobiose monomers, whereas agar is a natural product produced by algae that contains a mixture of 
agarose and agaropectin. Agar is cheaper and is used in plating experiments; agarose is more expensive but is often preferred for 
microscopy.
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environment of the bacterial population is liquid-like, and the lengthscale over which the 

environment varies is large. It is often used, for example, in large-scale models of ocean 

plankton dynamics [165], and in macro-scale models for the treatment of infections with 

antibiotics [166].

As a specific example, let us consider a population of bacteria growing in a chain of M 
connected compartments (Fig. 9, top). We assume that the bacterial growth dynamics with 

each compartment can be described by the logistic model (Eq. (7)), and that the migration 

rate per bacterium between neighbouring compartments is constant. This leads to the 

following set of differential equations:

dNi/dt = rNi(1 − Ni/K) + m(Ni + 1 + Ni − 1 − 2Ni), for 1 < i < M

dN1/dt = rN1(1 − N1/K) + m(N2 − N1),
dNM /dt = rNM(1 − NM /K) + m(NM − 1 − NM),

(28)

where Ni denotes the number of bacteria in compartment i = 1, … , M, r is the replication 

rate, K is the carrying capacity and m is the migration rate. Let us suppose that bacteria are 

initially present only in compartment i = 1. In this case, the population spreads in a wave-

like manner to the other compartments, as we show by numerical simulation in Fig. 9 

(bottom). In the limit of many compartments, assuming a small distance ∆x between 

compartments, and setting m/(∆x)2 → D, we can rewrite Eq. (28) as a partial differential 

equation:

∂n
∂t = D∂2n

∂x2 + rn 1 − n
K′ , (29)

where x denotes spatial position, n(x, t) is the local density of bacteria and K′ = K/V (with 

units of bacterial density; here V is the volume of one compartment). This is an example of a 

Fisher-Kolmogorov-Petrovsky-Piscounov (FKPP) equation [86]; its solutions are travelling 

waves similar to those observed for the discrete case (Fig. 9). Stochastic versions of the 

FKKP equation have also been studied [167, 168], and these may provide a good description 

of bacterial population dynamics in some circumstances [169]. Related approaches have also 

been used to model more complex situations, including the spatial expansion of several 

interacting bacterial populations [170] and the evolution of resistant bacteria in a drug 

gradient [171, 172].

4.1.2 Continuum models for dense populations—The situation is different when 

bacteria grow in a densely packed assembly such as a colony or a biofilm, in which 

individual cells do not migrate freely. Here, physical interactions between bacteria are likely 

to be important, and there are also likely to be steep local gradients of nutrient or other 

chemicals, making it necessary to model chemical concentration fields explicitly. In such 

cases, one can still use a continuum approach, in which both chemical concentrations and 
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the bacterial population density are represented as continuous fields (as in the FKPP 

equation), but the equations must be formulated differently [174, 164].

As an example, let us consider the growth of a biofilm on a solid surface, as shown in Fig. 

10A. If we suppose that the bacterial cells are densely packed then it is reasonable to assume 

the bacterial density n is constant within the biofilm. If we also assume the biofilm is flat 

(even though this is clearly not a good assumption for the biofilm of Fig. 10A!), then the 

problem becomes 1-dimensional and the bacterial density as a function of the vertical 

coordinate is a step function of height h(t) (Fig. 10B). As the biofilm grows, h(t) increases to 

accommodate the increase in biomass. The dynamics of h(t) can be written as

∂h(t)
∂t = ∫

0

h(t)
ng(s(z, t))dz (30)

where g(s) is the growth rate, which depends on the local nutrient concentration s, for 

example via a Monod function (Eq. (9)). The dynamics of the nutrient concentration s(z, t) is 

governed by diffusion into the biofilm and consumption by the bacteria:

∂s(z, t)
∂t = D∂2s(z, t)

∂z2 − Γ ng(s(z, t)) Θ (h(t) − z) . (31)

Here, D represents the diffusion constant of the nutrient (assumed to be the same inside and 

outside the biofilm, for simplicity), Γ is a yield coefficient (nutrient consumed per unit of 

biomass created) and Θ is the Heaviside step function. Depending on the boundary 

conditions for the nutrient field s(z, t), the choice of growth function g(s) and the parameters 

D and Γ, this model can predict linear growth: h(t) ∝ t, growth that slows down in time: 

h(t) ∼ t, or exponential growth: ln[h(t)] ~ t [155, 175, 164].

In the above example, we have assumed a flat biofilm, which allows us to reduce the 

problem to one dimension. In reality, however, most biofilms have rough surfaces when 

grown in the typical laboratory flow cell setup (e.g. Fig.10A) [176]; some even have 

“mushroom”-like protrusions [177]. More realistic continuum models take surface 

roughness into account by representing the biofilm in two or three dimensions, and also 

account for spatially varying bacterial density and local pressure within the biofilm [155, 

175, 178]. Such models can show interesting phenomena including a “fingering instability” 

[155, 175, 179], as we discuss in more detail in section 4.2. “Active nematics” models that 

take into account orientation of non-spherical cells inside the biofilm can also explain 

features of bacterial colonies such as the existence of nematic-like defects and micro-

domains of locally-aligned cells [180, 181].

4.1.3 Individual-based models, on and off-lattice—In some situations, it is not 

appropriate to treat a spatially structured bacterial population as a continuous field; one 

requires instead detailed spatial resolution at the level of individual cells. This is the case, for 

example, if one is interested in small populations, heterogeneous populations (e.g. 
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stochastically switching cells, as in section 3.3), or population-level processes that are 

triggered by single-cell events (as we shall see in section 4.3). Models in which the position 

and state of each bacterial cell is tracked in time are known as individual-based models or 

agent-based models.

The simplest form of an individual-based model of a bacterial population is a lattice-based 

one, in which bacteria occupy sites on a lattice and reproduce into neighbouring lattice sites 

according to certain rules. A classic example is the Eden model [15] (Fig. 11A). In the Eden 

model, lattice sites are either empty or occupied, and an occupied site, or “cell”, can 

reproduce if empty sites are available in the neighbourhood (different variants of the Eden 

model make different assumptions about how the replication rate depends on the number of 

empty neighbours [182, 183, 184]). Starting from a single occupied lattice site, the Eden 

model produces a cluster of occupied sites (Fig. 11B) whose interfacial properties fall into 

the Kardar-Parisi-Zhang (KPZ) universality class [185]. A particularly important descriptor 

of an interface is its roughness, defined as the standard deviation of its height fluctuations. If 

we consider for simplicity a system with the geometry shown in Fig. 11C (an infinitely long 

slab of width L sites), then the interface roughness W is given by

W =
∑i hi − h 2

L , (32)

where hi is the vertical height of the cluster of cells at horizontal position i. The roughness 

scales as W ~ tβ for short times and W ~ Lα for long times, with the two critical exponents 

being α = 1/2 and β = 1/3 for the two-dimensional Eden model. The same critical exponents 

are obtained in an off-lattice version of the Eden model [74].

How well does the Eden model capture the behaviour of real bacterial populations? To our 

knowledge, interfacial growth exponents have not been measured for flow-cell biofilms like 

that of Fig. 10A. For bacteria growing as colonies on agar gel surfaces, however, surface 

roughness W has been measured under conditions where the bacteria are non-motile [186, 

187]. The results are somewhat mixed: some experiments have produced exponents α and β 
that are different from those of the KPZ universality class (with various suggested 

explanations [186, 187, 158]), while other experiments have produced exponents consistent 

with KPZ [188]. It seems that the jury is still out on whether at least some bacterial colonies 

fall into the KPZ universality class. For colonies of motile bacteria, or under conditions of 

low nutrient concentration, more complicated, fractal-like colony structures can arise [153, 

189, 190, 191] and the interfacial growth exponents α and β are very different to that of the 

KPZ universality class (and correspondingly the Eden model).

The most serious limitation of the Eden model and similar lattice models is that growth is 

restricted to cells that are at the boundary of the cluster, and hence the centre of the cluster is 

static. This is not a good representation of most bacterial colonies. While bacteria in the 

centre of a colony do become starved due to insufficient nutrient penetration as the colony 

becomes large, growth typically occurs in the outer parts of the colony in a layer of 

considerable thickness (tens of cellular diameters), and within this growing layer elongation 
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and proliferation of bacteria behind the colony edge lead to pushing forces on bacteria that 

are closer to the edge. A similar picture holds for bacterial biofilms. One can devise lattice 

models that are somewhat more realistic, by allowing cells in the centre to replicate and push 

away surrounding cells [17]. However, off-lattice individual-based models offer a much 

greater level of realism. Such models can account for physical interactions between 

neighbouring bacterial cells and between bacteria and their environment, as well as the 

dynamics of nutrients, intra-cellular chemical signals, toxins, etc.

In off-lattice individual-based models, individual bacteria (usually modelled as disks in 2D, 

or spheres in 3D, although rod-shaped cells can also be modelled) move in continuous space 

and interact via physical mechanisms (e.g. elastic repulsion, friction etc). These simulations 

are somewhat analogous to molecular dynamics or Brownian dynamics simulations in 

condensed matter physics. For example, the dynamics of two-dimensional rod-shaped 

bacteria whose motion is opposed by viscous-like friction can be described by the following 

equations [164, 192]

dri/dt = Fi/(ζli), (33)

dϕi/dt = 12τi/(ζli
3), (34)

where li is the length of bacterium i, ri is the position of its centre of mass, ϕi is its angular 

orientation, Fi and τi are the total force and torque acting on it, and ζ is the friction 

(damping) coefficient. The dependence on li comes out from the assumption that every 

infinitesimally thin section of the rod experiences a friction force proportional to the local 

velocity. The model must also account for bacterial growth (here, increase in li with time) 

and division. The rate of growth typically depends on a local nutrient concentration field 

which is represented on a grid and is updated at each timestep according to a reaction-

diffusion equation accounting for diffusive transport and bacterial consumption:

∂s
∂t = D∇2s − γ∑

i
g(s(ri)) . (35)

A variety of models of this type have been developed and used to simulate bacterial colonies 

and biofilms [193, 194, 164, 78, 77, 71, 195]; they differ in their choices of which physical 

interactions to include (and how to include them), as well as in how they account for 

biological details such as bacterial shape and metabolism.

In the next three sections, 4.2, 4.3 and 4.4, we discuss three examples of interesting 

phenomena produced by bacterial growth in spatially structured environments: fingering 

instabilities at the edges of colonies and biofilms, the transition from 2-dimensional to 3-

dimensional colony growth and the emergence of genetically segregated sectors during 

expansion of a colony. In choosing these examples, we focus on phenomena that are 
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unconnected with bacterial motility, since motility-induced collective phenomena in 

bacterial populations, and in general, have been extensively described elsewhere (see, e.g. 

[196, 197, 198, 23, 25, 18, 19, 20]).

4.2 Example: Fingering instabilities at the interfaces of bacterial colonies and biofilms

As we have already mentioned, the expanding edge of a growing bacterial colony, and the 

surface of a growing biofilm, are examples of growing interfaces. Depending on the growth 

conditions, the interface can be smooth, rough or feature long finger-like shapes (for 

colonies) or “mushrooms” (for biofilms) [153, 154, 158, 177, 186, 191, 187, 189]; see Fig. 

12A-C.

Various theoretical approaches have been used to model the shape of these interfaces, 

ranging from continuum equations [175, 178] to individual-based models [74, 164, 192]. 

Rather than describing these in detail here, we will instead use a simple toy model to 

illustrate some basic factors that can affect the shape of the growing edge of a bacterial 

population. Although the model that we will present here is unrealistic in many ways, it has 

the advantage of allowing a simple mathematical analysis.

Let us imagine a two-dimensional population of bacteria which expands in the z direction 

and is confined between two walls in the x-direction (Fig. 12E). This could represent a 2D 

bacterial colony or a 2D section of a biofilm; here we will refer to it as a biofilm. The 

interface of the growing biofilm has profile z = h(x, t) at time t. We assume that bacteria 

grow only in a narrow zone of width b, close to the interface because nutrient does not 

penetrate far into the biofilm. This assumption is based on simulations like that shown in 

Fig. 12D, in which both bacteria and nutrients are modelled explicitly; here the bacteria 

shown in bright green, which are close to the nutrient, are able to replicate, while the 

bacteria shown in dark green, which are far from the nutrient, are not able to replicate. 

Although we do not model the nutrient concentration field explicitly here, we will assume 

that parts of the interface that protrude in the z direction experience a higher nutrient 

concentration because they are closer to a nutrient source (this would be the case in a typical 

biofilm flow setup [176]). Thus, the local growth rate depends on the height of the interface: 

g x, t = f h x, t − h t , where h t  is the average height at time t (Fig. 12E). We also suppose 

that the interface has a “stiffness”, or a tendency to be flat. This is an ad hoc assumption, but 

it mimics, to some extent, adhesion between the bacteria. The dynamics of the interface can 

then be described approximately as

∂h
∂t = b f h x, t − h t ζ ∂2h

∂x2 + 1 . (36)

In Eq. (36), the term ζ∂2h/∂x2 accounts for the surface stiffness by favouring growth in 

concave regions of the interface (troughs) and disfavouring growth in convex regions 

(peaks).

To see how this model can produce interesting behaviour, let us make a small perturbation 

around an initially flat interfacial profile:
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h x, t = h t + ϵ t eikx . (37)

Inserting this into Eq. (36) and expanding to first order in the magnitude of the perturbation, 

ϵ ≪ 1, we obtain the following equation for ϵ(t):

d ϵ t
dt = b ϵ t f ′ 0 − ζk2 f 0 , (38)

where f′(0) is the derivative of the growth function f h − h , evaluated for h = h . Thus, ϵ is 

predicted to grow in time for perturbations whose wavenumber k obeys

k2 < f ′ 0 / ζ f 0 . (39)

This condition is equivalent to stating that interfacial “bumps” of dimension Λ = 2π/k will 

tend to grow if Λ > 2π ζ f 0 / f ′ 0 . This means that the interface will be unstable to the 

growth of finger-like protrusions, provided the width of the system L is large enough to 

allow such protrusions to develop, i.e. for systems of size L > 2π ζ f 0 / f ′ 0  (Fig. 12F). 

Thus, a transition from a smooth to a fingered front is predicted to occur for a growing 

bacterial population if (i) the spatial extent L of the population is big enough, (ii) the 

stiffness ζ of the interface is small enough and (iii) the growth function f depends strongly 

enough on the height - e.g. due to rapid nutrient consumption or slow nutrient diffusion 

[164].

This toy model is of course highly simplistic – among other deficiencies, it does not account 

for the dynamics of the nutrient, or for changes in the thickness of the growing layer as the 

colony expands. Nevertheless it illustrates how instabilities can arise from the coupling 

between the shape of the growing colony/biofilm interface and the local availability of 

nutrient. Similar phenomena, driven by the same interface-nutrient coupling, also arise in 

more realistic models [155, 175, 178, 173, 157].

4.3 Example: 2D to 3D transition in bacterial colony growth

Another interesting feature of bacterial colony or biofilm growth is the transition from 2D to 

3D growth. Starting from a single cell seeded on an agarose gel surface, a colony initially 

spreads as a 2D layer of cells on the surface, but it later develops into a 3D structure. If the 

agarose gel surface is covered by a glass coverslip (with the bacteria sandwiched between 

the agarose and the coverslip), then the colony becomes 3-dimensional by growing into the 

agarose layer. However, if there is no bounding coverslip, the colony instead expands into 

the space on top of the agarose layer. Biofilm growth on a solid surface also often starts with 

the proliferation of flat microcolonies, which later expand vertically. This 2D to 3D 

transition has parallels in the growth of some cancer tumours [199] and in embryonic 

development [200].
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Experimental work on E. coli colonies growing on agarose suggests that mechanical forces 

are likely to play an important role in the 2D to 3D transition [77, 78, 201]. In a setup where 

bacteria are sandwiched between the agar and a glass coverslip, microscopic tracking of the 

growth of colonies from single cells reveals a well-defined “buckling transition” at which 

bacteria start to invade the agarose, leading eventually to 3D growth (Fig. 13A-C) [78]. In 

this transition, the first cells to invade the agarose are usually located close to the centre of 

the 2D colony. Moreover, the average size of the 2D colony at the moment when this 

transition happens depends non-monotonically on the concentration (and hence the stiffness) 

of the agarose gel: it happens later (i.e. at larger colony area) for intermediate agarose 

stiffness. Using individual-based simulations, Grant et al. [78] could match these 

experimental results, under the assumption that the friction coefficient between the bacteria 

and the agarose has a particular non-linear dependence on the agarose stiffness.

While Grant et al.’s simulations were quite complex, the basic physics that may control the 

invasion transition can be illustrated with a much simpler model (Fig. 13D). Let us imagine 

a 1D chain of bacteria, extending from x = −L/2 to x = L/2. The bacteria elongate at rate g 
and so the chain length L(t) = L0 exp(gt) increases with time. As the bacteria grow, they 

exert outward pushing forces on each other and experience inward forces due to friction with 

the surrounding medium (here assumed to be agarose). This produces a local stress σ(x, t) 
within the chain. Because the frictional forces are transmitted along the chain of bacteria, we 

expect σ(x, t) to be largest at the centre of the chain, x = 0, and to increase in time as the 

chain elongates. This stress may cause the chain to buckle (Fig. 13D); we denote the stress-

dependent rate at which a bacterium buckles as w(σ). We suppose that w is small for small 

stress σ, but increases strongly for large σ. One form of w(σ) consistent with this 

expectation is w(σ) = w0 exp [bσ], where b is some constant; for illustrative purposes we 

will assume this form here (although it is not motivated by any mechanistic understanding of 

the buckling process).

Focusing on a particular position x along the chain, the probability that the chain has not 

buckled at this position by time t is exp −∫0

t
w σ x, t′ dt′ , and the probability that the chain 

has not buckled at any position by time t is exp −∫0

t∫−L t′ /2

L t′ /2
w σ x, t′ dxdt′ . Therefore, the 

probability P(t) that a buckling event has happened by time t is

P t = 1 − exp −∫
0

t∫
−L t′ /2

L t′ /2
w σ x, t′ dxdt′ . (40)

Now let us assume a particular form for the stress function: σ(x, t) = k[L(t)/2 − x] for x > 0 

and σ(x, t) = k[L(t)/2 + x] for x < 0. This simply describes a linear decrease in stress from 

the centre to the edge of the chain, with the constant k being related to the friction 

coefficient. This form of σ might be expected if the frictional force generated by bacterial 

motion is equal for all bacteria, and the contributions of each bacterium sum up along the 

chain.
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Changing variables to y = L/2 − x, using the symmetry of σ(x, t) about x = 0 and substituting 

in the chosen form of w, we obtain

P t = 1 − exp −2∫
0

t∫
0

L t′ /2
w ky dydt′

= 1 − exp −
2w0
bk ∫

0

t
exp bkL(t′)/2 − 1 dt′ .

(41)

We now use the fact that L = L0 exp (gt) to replace time t by the chain length L. The 

probability Q(L) that the chain has not buckled by the time it reaches length L is

Q(L) = 1 − exp −
2w0
bkg∫0

L exp(bkl/2) − 1
l dl

= 1 − exp −
2w0
bkg −γ + Shi bkL

2 + Chi bkL
2 − log bkL

2 ,
(42)

where γ is the Euler-Mascheroni constant and Shi and Chi are the sinh and cosh integral 

functions. The dependence of the probability Q(L) on the length of the bacterial chain L 
arises only from terms in the combination bkL. This leads to our first important observation: 

the critical size at which the buckling transition happens is expected to scale approximately 

as 1/(bk): i.e. it decreases with increasing friction/adhesion k and increasing growth rate b. 

The most likely length L of the chain at which the transition happens can be determined 

from

2w0
bkg −γ + Shi bkL

2 + Chi bkL
2 − log bkL

2 ≈ 1. (43)

To relate the predictions of this simple model to experimental results such as those of Grant 

et al., the coefficient k in the model must be related to the friction coefficient κ between 

bacteria and the agarose / glass surfaces, and the stress p that pushes a bacterium against the 

glass surface, due to elastic compression of the agarose (Fig. 13D). Dimensional analysis 

suggest that k = κp/L0. Fig. 13E shows the resulting predictions of this simple model for the 

chain length at the onset of buckling, as a function of κ, for g = 2h−1, L0 = 1μm, and with the 

parameters b = 107Pa−1 and w0 = 10−7h−1 chosen so that the result is comparable with the 

experimentally observed buckling diameter (≈ 50μm) of a 2D colony for κ = 0.7 and p = 

105Pa [78]. The model predicts that the size of the colony upon buckling decreases with the 

friction coefficient κ which characterises the strength of cell-agarose interactions. One can 

also use similar arguments to show that the average position at which the chain buckles is 

very close to its centre, in agreement with the experimental results [78].

This model, while it is undoubtedly simplistic, provides some insight into the effects of 

friction on the 2D to 3D transition. More generally, understanding the 2D to 3D transition in 

bacterial colonies presents a host of interesting challenges. These include analysing simple 
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statistical physics models like the one described here, developing individual-based 

simulations that explicitly include interactions with the surrounding elastic medium, and 

carrying out experimental measurements of the frictional and adhesion forces between 

bacteria and agarose and glass surfaces. It is also important to note that the buckling 

transition that we have discussed here is only the first stage the development of a 3D 

bacterial colony. Once buckling has happened, the subsequent development from a two-

layered structure to a larger 3D colony also presents beautiful and interesting phenomena 

which remain to be explained [201].

4.4 Example: Formation of clonal sectors in growing bacterial colonies

A very interesting feature of the growth of bacterial colonies and biofilms is the spatial 

distribution of lineages within the population – or in other words, the locations of the 

descendants of a particular “founder cell”. Fig. 14A shows the outcome of a simple 

experiment in which a bacterial colony is initiated not from a single cell, but from a droplet 

containing a mixture of two strains of E. coli which are identical except that they produce 

different-coloured fluorescent proteins (here shown red and green). The area covered by the 

initial droplet appears yellow, indicating a mixture of red and green cells. In the surrounding 

regions, however, where the population has expanded out from the initial droplet, a striking 

pattern of red and green sectors is visible. This implies genetic segregation: the descendants 

of different cells within the founder population occupy different regions of space [72]. The 

same phenomenon occurs for other microorganisms [73, 202], and for colony growth in 

different geometries [73, 203].

The emergence of sectors is closely connected with the fact that (after an initial period of 

exponential growth) only bacteria that are close to the expanding edge of the colony are able 

to replicate; deeper in the colony nutrient becomes depleted and waste products may 

accumulate. Demographic fluctuations at the growing colony front can cause a bacterial 

lineage to become “trapped” behind the front, in which case it cannot proliferate further. 

Thus, a stochastic process is at play, in which some lineages come to dominate the growing 

front (i.e. form sectors) while others are buried behind the front.

To better understand this process, we follow Ref. [73] and imagine that the growing layer is 

infinitely thin and circular symmetric, such that the proliferating bacteria are located on the 

perimeter of a circle of radius R = vt expanding with constant velocity v. Let us suppose that 

the initial radius of the circle (i.e. the radius of the drop of bacteria that is deposited on the 

agar) is R0. We divide the perimeter into sectors, and we track the positions of the sector 

boundaries on the perimeter of the circle ♯. As time goes on, the bacteria within each sector 

proliferate, or become lost behind the growing front, in a stochastic process. While the size 

of a sector will increase on average as the colony expands, at any given moment in time it 

may fluctuate either upwards or downwards. A sector may even contract so much that it 

vanishes altogether, representing loss of the lineages of the bacteria within that sector. This 

stochastic dynamics can be modelled by the following Langevin equation for the arc length 

w occupied by a sector:

♯In this calculation we do not specify the number of bacteria in each sector as this turns out not to be important.
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dw
dR = w

R + 4Dη(R) . (44)

with the initial condition w(R0) = w0. Note that because the colony radius R increases 

linearly with t, tracking the dynamics as a function of R is equivalent to tracking it as a 

function of time t. In Eq. (44), the first term on the right hand side accounts for the radial 

expansion of the colony, which “stretches” the sector. The second term accounts for 

stochasticity in the replication events and local movements of bacteria at the front; here D is 

an effective diffusion constant and η(R) represents uncorrelated Gaussian noise with zero 

mean and unit variance. The lack of scaling of η(R) with R is due to inter-sector competition 

assumed to occur only at sector boundaries of constant width. We stress that Eq. (44) defines 

an idealized mathematical model of a circular-symmetric, infinitesimally-thin edged colony; 

sector dynamics in real colonies may deviate from it due to edge roughness (see Secs. 4.1.3, 

4.2, and Ref. [169]). In the absence of the noise term, Eq. (44) predicts that w increases 

deterministically as w(R) = w0R/R0. For D > 0, however, the arc length w follows a biased 

random walk with a time-dependent diffusion constant. This is illustrated in Fig. (14)B in 

which we plot trajectories of sector boundaries, simulated using Eq. (44).

To proceed further, we introduce the angular size of the sector, ϕ = w/R. In this coordinate, 

Eq. (44) becomes

dϕ
dR = 4D

R η(R) . (45)

Thus, we see that the magnitude of the angular fluctuations decreases as the colony radius 

increases. Eq. (45) can be translated into a Fokker-Planck equation [204]:

∂P(ϕ, R ϕ0, R0)
∂R = 2D

R2
∂2P(ϕ, R ϕ0, R0)

∂ϕ2 , (46)

where P(ϕ, R|ϕ0, R0) is the probability that a sector has angular size ϕ when the colony 

radius is R, given that its size was ϕ0 at R0. If a sector shrinks to angular size ϕ = 0 then we 

assume it cannot recover (since the lineage becomes lost behind the growing layer): this 

implies the boundary condition P(0, R|ϕ0, R0) = 0. We also set P(∞, R|ϕ0, R0) = 0 because 

sectors cannot become arbitrarily large††. With these boundary conditions the solution of 

Eq. (46) is

††Actually, ϕ cannot be larger than 2π but we expect most sectors to be much smaller than this if the initial number of sectors is large. 
Assuming an absorbing boundary at ϕ → ∞ simplifies the calculations.
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P(ϕ, R |ϕ0, R0) = 1
2πσ2e

−
ϕ + ϕ0

2

2σ2
e

2ϕϕ0
σ2

− 1 , (47)

where σ2(R) = 4D (R0
−1 − R−1) . This result can be obtained using the method of images and 

taking a Fourier transform of Eq. (46) [205]. For small initial sector size ϕ0 ≪ 2π we can 

expand Eq. (47) to first order in ϕ0,

P(ϕ, R |ϕ0, R0) ≅ 2/π
ϕϕ0
σ3 exp − ϕ2

2σ2 . (48)

From an experimental point of view, one can easily measure the sizes of sectors in relatively 

large colonies (e.g. R ~ a few mm), but it is much harder to measure sectors in very small 

colonies. Therefore we would like to use Eq. (48) to predict the distribution of sizes of 

surviving sectors, in the large colony limit R → ∞. We first normalize Eq. (48) to obtain the 

distribution Psurv(ϕ, R|ϕ0, R0) of sector sizes, conditioned on sector survival:

Psurv(ϕ, R |ϕ0, R0) ≅ ϕ
σ2exp − ϕ2

2σ2 . (49)

The mean angular sector size in the limit R → ∞ is thus

ϕ R ∞ = ∫
0

∞
ϕPsurv(ϕ, R ∞|ϕ0, R0)dϕ = πσ2 R ∞

2

= 2πD
R0

,
(50)

where we have used σ2(R → ∞) = 4D/R0. The average number of sectors is thus

Nsectors(R ∞) = 2π
ϕ(R ∞) =

2πR0
D . (51)

Interestingly, this theory predicts that the number of sectors in the large colony limit is finite, 

showing that coexistence between different lineages is possible. Note that Nsectors(R → ∞) 

is independent of the initial number of sectors, as long as this initial number is large (small 

ϕ0), but it depends on the initial radius R0 of the colony. Individual-based simulations of 

colony growth and experiments with bacteria growing on agar plates confirm this prediction 

[74, 193, 188, 192] and show that it remains qualitatively true if the growing layer has finite 
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thickness. Simulations and extensions of the theory can also be used to predict what happens 

when the colony contains mixtures of bacteria with different growth rates [73, 188], when 

the bacteria are able to undergo horizontal gene transfer between neighbouring cells [206, 

207], or when the growing population encounters obstacles [208].

This theoretical analysis provides an example of the use of statistical physics to understand a 

complex biological phenomenon. However it does not explain what features of the growth 

process control the diffusion constant D, which plays a critical role in determining the 

number of sectors. Indeed, the number of sectors has been observed to differ between 

different organisms: fewer sectors are observed for the yeast S. cerevisiae than for E. coli, 
and also, intriguingly, fewer sectors are observed for a spherical mutant of E. coli than for 

the usual rod-shaped E. coli cells [72, 73]. Individual-based simulations have an important 

role to play in explaining these observations; these simulations have already pointed to 

mechanical interactions between cells and the surface on which they grow as major players 

in determining D [192].

Genetic segregation within an expanding bacterial population, as described in this example, 

has important evolutionary implications, since it significantly affects the “surfing 

probability”, or the probability that a mutant arising at the front of an expanding population 

forms a macroscopic sector [188]. This is relevant, for example, to the evolution of antibiotic 

resistance in bacterial biofilms. A similar problem arises in the evolution of drug resistance 

in cancer tumours [17].

5 Conclusions and outlook

The primary purpose of this review has been to illustrate the rich array of beautiful and 

interesting phenomena displayed by growing bacterial populations. These phenomena are 

intrinsically non-equilibrium and many of them lend themselves naturally to analysis using 

the tools of statistical physics.

Research at the interface between microbiology and statistical physics can have great 

benefits for both fields. Statistical physics models can cut through biological detail and 

provide insight into basic biological mechanisms, when they are properly constructed with 

knowledge of the underlying biology. The application of statistical physics to biological 

problems can also generate new non-equilibrium models that drive further development in 

statistical physics. Fruitful interplay between statistical physics and biology is nothing new: 

examples include the totally asymmetric exclusion process [11], which was introduced as a 

model for cellular protein production [12] and has since become a paradigm for non-

equilibrium transport processes. What we aim to highlight here is the attractiveness of 

bacterial populations, specifically, as subjects for statistical physics models. We believe that 

this is a timely topic, from the point of view of both physics and biology. From a physics 

point of view, new non-equilibrium physics is emerging from the study of active systems, 

which have up to now been mainly focused on motile particles (“swimmers”) [196, 197, 

209, 210, 211]. Yet bacteria are also active in many other ways: they grow, divide, secrete 

signals and macromolecules, and interact chemically and mechanically in a complex way. 
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The statistical physics of these behaviours, especially growth in dense assemblies of 

bacteria, has just started to be explored.

From a biological point of view, the growing threat of antimicrobial resistance, increasing 

awareness of the role of biofilms in infection, and the growing understanding of the 

importance of microbes in gut health have raised the profile of microbiology in recent years. 

There has also been a resurgence in interest among microbiologists in both fundamental 

growth phenomena and in the use of mathematical models to explain them. Thus, statistical 

physics models of bacterial growth have the potential to make a significant impact.

We would also like to highlight here the importance of experiments. Many (although not all) 

of the bacterial growth phenomena discussed in this review arise in rather simple 

microbiological experiments. Our own experience is that even a brief immersion into 

experimental work with bacteria can greatly improve one’s ability to develop relevant, 

realistic and interesting statistical physics models. Moreover this is often a fun experience! 

We therefore advocate spending some time in the lab to even the most hardened theoretician, 

if it is at all possible.
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Figure 1. 
(A) Schematic illustration of the structure of a typical Gram-negative bacterium, reproduced 

from Todar’s Online Textbook of Bacteriology. (B) Scanning electron micrograph of 

Escherichia coli cells on a silicon surface, reproduced from Ref. [37]. (C) Scanning electron 

micrograph of Staphylococcus aureus cells, reproduced from Ref. [38]. (D) Scanning 

electron micrograph of Treponema pallidum cells (the causative agent of syphilis), adhering 

to a human brain epithelial cell, reproduced from Ref. [39]. In panels B-D, the scale bars 

represent 2μm.
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Figure 2. 
(A) Sketch of a typical batch culture bacterial growth experiment. (B-C) Containers used to 

grow bacteria: a large-volume flask (100ml), and a microtiter plate with 96 individual 

culture wells of volume ~ 400μl. (D) Measured growth curves for E. coli strain MG1655 in 

simple- (“rich” MOPS: glucose, aminoacids, nucleotides, salts (blue curve)) and complex-

nutrient medium (LB broth, yellow curve). "OD" is a measure of the turbidity of the 

suspension; see footnote to main text. The MOPS medium was created by mixing 100ml 

M2101, 100ml M2103, 200ml M2104 (Teknova), 10ml 0.132M K2HPO4, 1g glucose, and 

double-distilled, autoclaved water to a total volume of 1000ml. The LB medium consists of 

25g of LB powder (Fisher): tryptone, yeast extract and NaCl, dissolved in 1000ml of 

distilled water and autoclaved. 200μl of the medium was added to each well of a 96-well 

plate (panel C), inoculated with 1μl of PBS-washed overnight culture of E. coli, and 

incubated at 37C in a BMG FLUOstar plate reader for 24h. OD was measured every 2mins 

with shaking for 20s prior to each measurement. (E) The exponential growth model (Eq. (5), 

black curve) fits the experimental MOPS curve from panel D for low bacterial densities. 
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Fitting to the data in the range t = 1.5 … 3.5h gives an exponential growth rate r = 1.94h−1. 

(F) Comparison between different models and an experimental growth curve for growth in 

rich MOPS: the logistic growth model (Eq. (7)) is shown by the green line and the Monod 

growth model (Eq. (10)) is shown by the red line. The best-fit maximum growth rate is 2.2h
−1 (logistic growth) and 2.1h−1 (Monod growth).

Allen and Waclaw Page 41

Rep Prog Phys. Author manuscript; available in PMC 2019 January 12.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Figure 3. 
(A) Schematic illustration of a chemostat. (B) Photograph of a simple chemostat consisting 

of a glass flask with tubing for media delivery, aeration, and waste removal, and a magnetic 

bead for stirring the flask contents. (C) Example curves N(t), s(t) (black and green, 

respectively), obtained by numerical simulation of Eqs. (11) and (12) for γ = 1, Ks = 0.1, s0 

= 1, rmax = 2 and d = 1 (solid lines) and d = 3 (dashed lines). The simulations are initiated 

with N(0) = 0.5 and s(0) = 1 (in arbitrary concentration units). dcrit = 1.82 for this set of 

parameters. For the solid lines, d < dcrit and a stable bacterial population is maintained in the 

chemostat (the solid black line reaches a non-zero steady state); for the dashed lines, d > dcrit 

and the population is “washed out” (the dashed black line goes to zero).
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Figure 4. 
Dynamical predictions for the population density of E. coli bacteria growing on glucose, 

with parameters rmax = 1hr−1, d = 0.5hr−1, Ks = 1μM and Γ = 1.8 × 1010 glucose molecules 

per bacterium. The nutrient inflow rate b is varied, such that we have β = 0.1, χ = 0 

(corresponding to b = 0.1μMh−1 and R=0; such that s* = 1μM and n* ≈ 107 bacteria per 

litre) and β = 0.01, χ = 0 (corresponding to b = 0.01μMh−1 and R=0; such that s* = 1μM 

and n* ≈ 106 bacteria per litre). Panel A shows results for the deterministic model, Eqs. 

(18-19). Panel B shows results for the stochastic model, Eq. (22), for a system volume of 

1ml; i.e. for approximate absolute bacterial numbers of 104 (red) and 103 (blue). Note the 

different time axes in the two panels. In these simulations, the bacterial densities are much 

lower than in a typical microbiology lab experiment, and are 1-2 orders of magnitude lower 

than the bacterial density in seawater, but they are similar to the bacterial density that might 

be found in drinking water.
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Figure 5. 
E. coli cells show variability in the expression of a gene encoding a fluorescent protein. A 

population of E. coli cells (strain RJA003, created by P1 transduction from strain MRR [13] 

into MG1655) was grown in a 1 litre chemostat with dilution rate 0.5h−1 on Evans media 

[128] supplemented with 50mM glucose. The bacteria expressed cyan fluorescent protein 

(CFP) from a constitutive (unregulated) promoter (the PR promoter from phage λ). After 

sampling from the chemostat, cells were kept on ice for ~ 1h prior to being spread on the 

surface of a 1% agarose pad and imaged in an epifluorescence microscope. (A) Fluorescence 

image in the CFP channel showing that individual cells show different levels of 

fluorescence. (B) Histogram of fluorescence intensities per area, obtained from analysis of 

many such images (units are arbitrary). The width of the histogram, relative to the mean, 

provides a measure of the population heterogeneity in gene expression. Data shown courtesy 

of Joost Teixeira de Mattos, Alex ter Beek, Martijn Bekker and Tanneke den Blaauwen.
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Figure 6. 
(A) Predicted average value of f as a function of the rate k0 of switching into the less 

favourable state 0. These results were obtained by numerical solution of Eq. (26), for an 

environment that switches stochastically as a Poisson process (with average rate 1), or 

periodically (once per time unit). When the environment switches, we set f → 1 − f in the 

simulation, keeping all other parameters fixed. When the rate k1 of switching into the faster 

growth state is very small, the function 〈f(k0)〉 is peaked at a non-zero value of k0, implying 

that it is favourable for cells to switch into the slower growth state at some non-zero rate, 

whether the environment is stochastic or periodic. However for the larger value of k1 

simulated here, switching into the slower growth state is favourable only in the periodic 

environment. For even larger values of k1, switching becomes unfavourable even in the 

periodic environment [140]. (B-D) Experiments with a stochastically switching strain of 

yeast cells, performed by Acar et al. [146] (images reproduced from Ref. [146]). (B) 

Schematic illustration of the experimental setup. Yeast cells can be in either of two states, 

labelled ON and OFF. Cells randomly switch between the states at rates rON and rOFF which 

can be tuned by the experimenter. The environment is maintained in state E1 for time T1 

before being switched to state E2, which is maintained for time T2. The proliferation rates γ 
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of the two cell types depend on the environment; the ON cell type proliferates faster in E1 

while the OFF cell type proliferates faster in E2. (C-D) Growth rates measured as a function 

of time during such an experiment, for cells that switch fast (red; rON ~ 0.047h−1, rOFF ~ 

0.035h−1) or slow (blue; rON ~ 0.004h−1, rOFF ~ 0.007h−1). Panel C shows results for an 

experiment with T1 = 20h, T2 = 37h; here the fast-switching cells have on average a higher 

growth rate. Panel D shows results for T1 = 96h, T2 = 96h; here the slow-switching cells 

have a higher growth rate on average.
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Figure 7. 
(A) A colony of E. coli growing on the surface of an agarose gel in a Petri dish. The colony 

is about 7mm wide and less than 1mm thick. (B-D) Successive closeups of a fragment of the 

colony’s rough border. In (D), individual bacteria may be seen.
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Figure 8. 
(A-C) Colonies formed by genetic variants of Pseudomonas aeruginosa strain PA01 on the 

surface of a nutrient agar pad. Images courtesy of Yasuhiko Irie, University of Dayton. (A) 

A colony formed by the standard (non-mutated) version of this strain. (B): A “mucoid” 

colony formed by a strain that overproduces extracellular polymeric substances. (C) A 

“rugose” colony formed by a “rugose small colony variant” (RSCV) strain. RSCV strains 

often show increased levels of the intracellular signalling molecule cyclic di-GMP.
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Figure 9. 
Top: Schematic illustration of a model in which a spatially structured bacterial population is 

represented as a chain of well-mixed sub-populations connected by migration. In this model, 

bacterial growth in each compartment is assumed to follow the logistic model (Eq. (7)), and 

the migration rate per bacterium between neighbouring compartments is assumed to be a 

constant, m. Bottom: The model predicts the emergence of travelling waves of bacteria. The 

plot shows the results of numerical simulations of Eq. (28), for M = 24, r = 1, m = 0.1 and 

any K > 0, in which bacteria are initially present only in compartment i = 1. The curves 

correspond to times t = 0, 7.5, 15, 22.5, 30 (from left to right).
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Figure 10. 
(A) Confocal laser scanning microscope image of a biofilm formed by P. aeruginosa PAO1 

grown for 24 hours in a flow cell. Image reproduced from Ref. [173]. (B) Illustration of a 

simple model of a growing biofilm with a flat boundary. The position of the boundary is 

given by z = h(t) and the nutrient profile is s(z).
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Figure 11. 
(A) The Eden model on a two-dimensional lattice. Cells that are completely surrounded and 

cannot replicate are shown in yellow. The bright green cell illustrates the replication rules: it 

can replicate to a neighbouring empty lattice site (including the diagonal ones in this variant 

of the model) but not to an occupied one. (B) A snapshot of a simulation of the two-

dimensional Eden model in which a cluster of cells (N = 65536) has grown from a single 

initial cell. (C) Simulation snapshot for a two-dimensional Eden model in a domain of width 

L = 250 that is semi-infinite in the vertical dimension, with periodic boundaries in the 

horizontal dimension.
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Figure 12. 
(A-C) Examples of E. coli colonies (on 2mm-thick, 2% agarose infused with LB) with 

different roughness of the colony boundary: smooth (A), rough (B), and branched (C). These 

different shapes have been obtained by using different strains (MG1655 for B, 

MG1655∆fimA∆fliF for A), or incubating colonies of MG1655 for different amounts of 

time at 37C (B = short time, C = long time). (D) Boundary of a simulated colony (simulation 

details as in Ref. [192]). The nutrient concentration is shown as different shades of red 

(brightest colour = highest concentration). Replicating cells are shown in bright green, 

whereas stationary cells with no access to nutrients are shown in dark green. (E) Schematic 

illustration of the model from Eq. (36). (F) Interface profiles h(x, t) obtained by numerically 

solving Eq. (36) for L = 4, ζ = 0.02, b = 1, f(h) = 1/(1 + e−h), and t = 0, … , 10. The initial 

condition is a superposition of two sine functions with periods 4 and 1. The oscillation with 

period 1 is damped (1 < Λ = 2π ζ f (0)/ f ′(0) ≈ 1.256), whereas the one with period 4 grows 

in time.
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Figure 13. 
(A-C) 2D to 3D transition in bacterial colonies. The arrows indicate locations where the 

colony has invaded the agarose and a second layer of cells has begun to form. (A) An image 

taken just before the transition. (B) An image of the same colony taken just after the 

transition. (C) An image taken when the second layer of cells is already well-developed. (D) 

A simple model of the “buckling” transition, for a 1D chain of bacteria (see main text). (E) 

Length of the bacterial chain at the onset of the buckling transition, as a function of the 

friction coefficient κ. The parameters are g = 2h−1, L0 = 1μm, b = 107Pa−1, w0 = 10−7h−1, p 
= 105Pa.
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Figure 14. 
(A) An expanding population of fluorescently-labelled E. coli cells, growing on the surface 

of a nutrient agar pad. The population was initiated from a drop containing a 50:50 mixture 

of cells labelled in two different colours (here shown red and green). The population is 

mixed (appears yellow) in the region of the initial drop, but has segregated into clonal 

sectors at its expanding edge. Image courtesy of Diarmuid Lloyd. (B) Results of a simulation 

in which sector boundaries are modelled as annihilating random walks, as described by Eq. 

(44) with D = 0.02, R0 = 1, R = 3. The simulation starts with 50 random walkers.
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Table 1

Useful numbers for modelling bacterial growth and evolution. All data refers to the bacterium E. coli. If no 

reference is given, the values come from in-house experiments for the MG1655 strain of E. coli. We also refer 

the reader to bionumbers [36] - an excellent source of biology-related numbers.

Parameter Value

size typical width 1μm, typical length 2-5μm

exponential growth rate maximum: ~2h–1, sub-optimal conditions: 0.3–1.5 h–1

minimum doubling time ~ 20 min

elongation rate 0.1 – 0.2μm/min (on rich medium)

maximum density ~ 1–5 ×109 cells per ml (LB medium, stationary phase)

mutation rate ~ 2 × 10–10 per bp per replication [30]

glucose molecules consumed to make 1 cell ~ 1.8 × 1010 [26,31]

weight 280 fg per cell [32]

protein molecules per cell 2.35 × 106 (1850 distinct protein molecules) [32]

mRNA molecules per cell 1380 [32]

genome size 4.5 × 106 bp

genome copy number 1 (slow growth) to 8 (fast growth) [33]

abundance of RNA polymerase ~ 1% of total protein mass [34]

abundance of ribosomes (growth rate dependent) ~20-40% of total mass [32]; ~ 7000-70,000 per cell

DNA replication rate 580 - 1,190 bp/s [34]

mRNA elongation rate (transcription) 39-56 nucleotides/s [34]

peptide elongation rate (translation) 13-22 amino acids/s [34]

intracellular concentration of ATP (growth in glucose-fed chemostat) 9.6mM [35]

intracellular concentration of a typical metabolite 0.1-100mM [35]

total intracellular metabolite concentration ~300mM [35]

plasmid size ~2-500kbp

plasmid copy number ~1-200 per cell

minimal inhibitory concentration,

- ampicillin (inhibits cell wall synthesis) ~ 8μg/ml (LB medium)

- rifampicin (RNA synthesis inhibitor) ~ 3μg/ml (LB medium)

- ciprofloxacin (DNA gyrase inhibitor) ~ 20ng/ml (LB medium)
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