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Abstract

Volatile anesthetics are widely used in human medicine and generally considered to be safe in 

healthy individuals. In recent years, the safety of volatile anesthesia in pediatric patients has been 

questioned following reports of anesthetic induced neurotoxicity in pre-clinical studies. These 

studies in mice, rats, and primates have demonstrated that exposure to anesthetic agents during 

early post-natal periods can cause acute neurotoxicity, as well as later-life cognitive defects 

including deficits in learning and memory. In recent years, the focus of many pre-clinical studies 

has been on identifying candidate pathways or potential therapeutic targets through intervention 

trials. These reports have shed light on the mechanisms underlying anesthesia induced 

neurotoxicity as well as highlighting the challenges of pre-clinical modeling of anesthesia induced 

neurotoxicity in mice. Here, we summarize the data derived from intervention studies in neonatal 

mouse models of anesthetic exposure and provide an overview of mechanisms proposed to 

mediate anesthesia induced neurotoxicity in mice based on these reports. The majority of these 

studies implicate one of three mechanisms: reactive oxygen species (ROS) mediated stress and 

signaling, growth/nutrient signaling, or direct neuronal modulation.

Introduction

Volatile anesthetics are widely used in human medicine, and routine anesthesia is generally 

considered to be safe in healthy individuals. In recent years, the use of anesthetic in neonates 

and children has been questioned following reports of anesthetic induced neurotoxicity 

(AIN) in pre-clinical studies, as discussed in various reviews and commentaries (for 

representative examples, see (Lin et al., 2017; Vutskits and Davidson, 2017; Walters and 

Paule, 2017)). These studies in mice, rats, and primates have demonstrated that exposure to 

anesthetic agents during early post-natal periods can lead to acute neurotoxicity and later-life 
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defects in learning and memory. Defects in subtler behavioral outcomes, such as fear 

responses and social interactions, have also been reported in both rodents and primates 

(Alvarado et al., 2017; Coleman et al., 2017; Lei et al., 2013; Raper et al., 2015; Shi et al., 

2017). Acute effects of AIN have generally been quantified by staining for 

neurodegeneration and apoptotic cells, and cell death appears to occur in both neurons and 

glia.

The precise period of neonatal sensitivity to anesthesia is controversial. Some rodent studies 

suggest that neuronal progenitor cells remain sensitive to anesthesia throughout life, and that 

the period of neonatal sensitivity is primarily defined by the relative fraction of progenitors 

involved in rapid brain post-natal rodent brain development (Hofacer et al., 2013). However, 

the period of neonatal rodent hypersensitivity is generally thought to peak around post-natal 

day 7, with anesthetics causing little or no degeneration or behavioral defects when 

administered after post-natal day 10 (Jevtovic-Todorovic, 2012; Yon et al., 2005). The 

putative window of sensitivity is less clear in non-human primates, and there is no consensus 

in humans.

It is worth noting that AIN appears to occur at both extremes of life – in neonates and in the 

elderly (Figure 1). In contrast with pediatric studies, neurocognitive complications are well-

documented in geriatric patients, involving a range of symptoms collectively referred to as 

‘post-operative cognitive dysfunction’, POCD (Johnson et al., 2002). The mechanisms of 

POCD are unclear, but they appear to be at least partly distinct from those in the very young 

(Canet et al., 2003; Moller et al., 1998; Newman et al., 2001; Rasmussen et al., 2003). This 

review will focus on data from models of pediatric AIN models in mice.

The substantial literature surrounding the phenomenon of AIN involves mouse, rat, non-

human primate, and invertebrate models of exposure. This literature is the subject of 

multiple reviews which outline the evidence for or against the hypothesis that exposure to 

anesthetics during early post-natal development has the potential for acute neurotoxicity and 

long-term adverse cognitive effects in humans (Lin et al., 2017; Vutskits and Davidson, 

2017; Walters and Paule, 2017). Here, we summarize intervention studies in neonatal mouse 

models of anesthetic exposure, i.e. studies where pharmacological, dietary, or genetic 

manipulations were used to target putative pathways of AIN, providing an overview of 

proposed mechanisms underlying AIN in mice based on these reports.

Neurotoxicity of Anesthetics - Mechanisms Implicated through Rodent 

Intervention Studies

Early reports describing the neurotoxic effects of anesthesia were primarily descriptive, but 

current literature in rodents is now dominated by intervention studies. Mechanisms of AIN 

are inferred through manipulation of candidate pathways (see Table 1, Figure 2). The 

majority of putative targets fall into one of three general categories: 1) Reactive oxygen 

species (ROS) mediated stress and signaling; 2) growth/nutrient signaling; and 3) direct 

neuronal modulation. A comprehensive assessment of available rodent data provides a 

landscape of putative mechanisms of AIN.
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Oxidative Stress and ROS Signaling

Oxidative stress and ROS signaling are the most widely reported therapeutic targets in 

rodent models of AIN. The most recognizable chemical antioxidant applied to this paradigm 

is ascorbic acid (vitamin C), which has been shown to attenuate many cellular, molecular, 

and behavioral endpoints of AIN in vitro and in vivo, including induction of cleaved caspase 

3, increased ROS, mitochondrial permeability transition pore (MPTP) opening (a step in 

mitochondria mediated cell death), reduced ATP levels, and ‘freezing time’ in a fear 

conditioning assay, a cognitive behavioral phenotype (Cheng, B. et al., 2015; Xu, K.X. et al., 

2015). Similarly, Trolox, a water soluble vitamin E analog, prevented neuron death in vitro 

in a study implicating mitochondrial ROS induced apoptosis in AIN (Bai et al., 2013).

Attenuation of AIN has also been reported in mice exposed to carbon monoxide (CO) or 

‘hydrogen rich saline’ (HRS), two treatments shown to have general antioxidant effects 

(Cheng and Levy, 2014; Li et al., 2017). CO has been found to reduce mitochondrial ROS 

production in vitro, reportedly by binding to and inhibiting the peroxidase activity of 

cytochrome C, a source of mitochondrial ROS that is reportedly enhanced by isoflurane 

(Cheng and Levy, 2014; Kapetanaki et al., 2009). CO provided a dose dependent attenuation 

of molecular endpoints associated with anesthesia, with 5 ppm attenuating, and 100 ppm 

fully abrogating acute molecular and cellular markers of AIN. In agreement with these in 

vitro effects, CO treatment also partially attenuated behavioral defects induced by isoflurane 

(Wang, L. et al., 2017a). Similarly, HRS has been found to act as a potent antioxidant in vivo 

with, apparently, little in the way of off-target effects on redox or signaling (reviewed in 

Ohta, 2015 (Ohta, 2015)). The CO data are fascinating but have yet to be independently 

reproduced, while others have shown low dose CO can lead to neurodevelopmental defects 

in mice which are reminiscent of AIN (Trentini et al., 2016). Clearly, more work is needed 

to identify the ideal concentrations and exposure times of CO to alleviate AIN, and further 

characterize the mechanisms underlying the benefits of CO.

Curcumin and rutin, ‘nutraceutical’ compounds associated with many putative bioactive 

functions, have been used to prevent AIN in vivo (Ji et al., 2015; Man et al., 2015). IP 

injection of curcumin prior to sevoflurane exposure was reported to attenuate an array of 

outcomes including induction of cleaved caspase 3, expression of NADPH Oxidase 2 (Nox2, 

involved in cell non-autonomous ROS signaling), expression of brain derived neurotrophic 

factor (BDNF), expression of tumor necrosis factor alpha (TNFα), and prevented fear 

response defects. Similarly, rutin, provided orally, was found to prevent induction of cleaved 

caspase 3, circulating S100B, and Morris Water Maze defects. While the purported bioactive 

functions of these compounds are diverse, the putative antioxidant effects were implicated as 

mediating their benefits in the setting of AIN.

Each of these studies reported attenuation of AIN using general approaches to targeting 

oxidative stress through modulation of ROS levels. In contrast, a recent report by Makita et 

al. found that the specific NADPH oxidase inhibitor apocynin protected against AIN, as 

measured by the lipid peroxidation marker 4-HNE, the ROS indicator dye DHE, cleavage of 

caspase 3, and behavioral defects (Sun, Z. et al., 2016). NAPDH oxidases are membrane 

bound enzymes which produce superoxide in neutrophils and in cells involved in ROS 

mediated signaling, such as vascular smooth muscle cells (Garcia-Redondo et al., 2016; 
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Prieto-Bermejo and Hernandez-Hernandez, 2017). The apocynin results implicate ROS 

signaling, rather than oxidative stress, in mediating the benefits of antioxidants in AIN 

models, as inhibition of membrane bound NADPH oxidases would not be expected to 

impact intracellular ROS.

Attenuation of ROS levels is generally thought to protect cellular energetic status by 

preventing ROS induced damage to mitochondrial macromolecules, such as subunits the 

electron transport chain. Targeting energetics more directly has also been attempted. 

Ubiquinone (coenzyme Q10 or CoQ10), a vitamin-like cofactor which carries electrons from 

complexes I and II to III in the mitochondrial electron transport chain, rescued ATP levels, 

mitochondrial membrane potential, and Morris Water Maze performance defects resulting 

from anesthesia exposure. Ubiquinone did not, however, attenuate increased ROS levels 

induced by sevoflurane exposure (Xu et al., 2017). The authors concluded energetics directly 

mediate the benefits of CoQ10 in this paradigm.

Studies involving ROS are mired with several caveats. Methodological approaches to 

measuring ROS production, or even net ROS damage, are technically challenging, and prone 

to false positive findings (Egea et al., 2017; Gorlach et al., 2015; Griendling et al., 2016). 

Compounds with antioxidant effects demonstrated via chemical analysis do not necessarily 

act as antioxidants in vivo, and antioxidant therapies have proven ineffective in multiple 

clinical settings where ROS were thought to play a causal role (Goszcz et al., 2015; Sawyer, 

2011). In recent years it has become apparent that ROS act as potent intracellular and 

extracellular signaling molecules, and modulation of ROS levels or production can also lead 

to unexpected changes in signaling. Finally, even when changes to ROS production and/or 

oxidative damage are clearly demonstrated, causality is extremely difficult to establish in the 

context of ROS. For these reasons, the role of ROS in AIN must be assessed with great 

caution. These pitfalls of ROS assays are reviewed extensively elsewhere (Egea et al., 2017; 

Gorlach et al., 2015; Griendling et al., 2016) and should be carefully considered in designing 

experiments aimed at determining the role of ROS in AIN. Even in the best designed study, 

it is extremely difficult to demonstrate causality between ROS and disease. State of the art 

methodologies such as single cell RNA sequencing, in situ RNA sequencing, and in vivo 

detection of oxidative stress and redox status may provide new temporal and spatial evidence 

linking ROS and CNS apoptosis (Bacic et al., 2016; Lee, 2017a, b; Zhu et al., 2017). In 

addition, future experiments where both the timing and cellular location of antioxidants are 

carefully controlled may help resolve the current uncertainty in the roles of ROS in causing 

AIN.

Growth and nutrient sensing signaling

Growth, differentiation, viability, and survival of neurons depends on the interactions of 

numerous extra-and intra-cellular signaling cascades, together often referred to as growth 

signaling or nutrient sensing signaling (see Figure 3). Extracellular growth factors include 

insulin, insulin-like growth factor 1 (IGF-1), growth hormone (GH), epidermal growth factor 

(EGF), vascular endothelial growth factor (VEGF), and platelet derived growth factor 

(PDGF). Many of these systemic factors are directly or indirectly regulated by nutritional 

status, and each acts on one or more cell surface receptor tyrosine kinases (RTK’s) or G-
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protein coupled receptors (GPCR’s) (Lemmon and Schlessinger, 2010; Wauson et al., 2013). 

Transduction to intracellular signaling is mediated by membrane associated factors such as 

phosphatidyl inositol 3 kinase (PI3K), which activates intracellular mediators of growth/

nutrient signaling (Paez and Sellers, 2003; Piwien-Pilipuk et al., 2002). The mechanistic 

target of rapamycin (mTOR) is a hallmark intracellular mediator of nutrient growth 

signaling (reviewed in (Saxton and Sabatini, 2017)). mTOR activation tunes up anabolic 

processes, such as mRNA translation, and dampens catabolic processes, such as autophagy. 

mTOR is positively regulated by cell receptor/PI3K signaling via AKT mediated inactivation 

of the mTOR inhibitors TSC1/TSC2.

Growth/nutrient signaling pathways are also highly regulated intracellularly. AMP activated 

kinase (AMPK) is an mTOR inhibitor that is activated by low cellular ATP status. REDD1/2 

are hypoxia sensors that inhibit mTOR in low oxygen conditions. mTOR is also regulated by 

amino acid levels at the lysosome and modulated by ribosome status, linking mTOR activity 

to functional capacity for mRNA translation. Together, the intra- and extra-cellular 

regulation of growth/nutrient sensing signaling provides for cellular adaptation to a variety 

of stressful conditions. Various reviews detail the role of growth/nutrient signaling in 

neuronal development (Switon et al., 2017; Takei and Nawa, 2014).

Nutrient sensing and signaling pathways are critical to neurogenesis, synaptogenesis, and 

neuron development, migration, and survival (Alsina et al., 2012; Lee, 2015; Nieto-Estevez 

et al., 2016). Genetic defects in growth/nutrient signaling cause overt neurological 

conditions including epilepsy, while subtler abnormalities in nutrient signaling are 

implicated in neurological disorders ranging from autism to Alzheimers’s (Adachi et al., 

2018; Bedse et al., 2015; Borrie et al., 2017; Wang, L. et al., 2017b). Given their importance 

to neurodevelopment, it is unsurprising that these pathways have also been implicated in the 

pathogenesis of AIN through both in-vivo and in-vitro studies. Here, we focus on in-vitro 

evidence supporting a role for nutrient signaling in AIN (in vitro models are reviewed 

elsewhere, for example see (Wang, 2012; Wang and Slikker, 2008; Wang, C. et al., 2017)).

In some studies, isoflurane has shown to reduce levels of activating phosphorylation on 

AKT, GSK3B, and ERK through unknown mechanisms in the setting of both neonatal (Tao 

et al., 2016; Wang et al., 2012) and adulthood (Liu et al., 2014) exposures in mice. In mouse 

neonates, treating isoflurane anesthetized mice with lithium chloride (a poorly understood 

but broadly neuroactive compound) attenuated isoflurane induced decreases in AKT and 

GSK3B phosphorylation, and prevented neuronal death and learning/memory defects 

(Morris Water Maze, MWM) associated with AIN in neonatal mice (Tao et al., 2016; Wang 

et al., 2012). Roscovitine, an inhibitor of the cell-cycle regulator cyclin dependent kinase 5 

(CDK5), was recently reported to prevent AIN through activation of the ERK pathway (Liu 

et al., 2017a). The reported benefits of CO have been ascribed to antioxidant effects (as 

mentioned above) (Levy, 2017) as well as to inhibitory effects on intracellular signaling. 

Specifically, CO has been found to modulate cAMP, p38 MAPK, and PKB/AKT signaling, 

increasing mitochondrial biogenesis, inhibiting inflammation, and preventing anesthesia 

induced apoptosis. The mechanistic underpinnings of these ‘signaling’ functions are yet to 

be defined, but the authors suggest that CO prevents anesthesia related damage at least partly 

through these intracellular signaling modulations.

Johnson et al. Page 5

Neurotoxicol Teratol. Author manuscript; available in PMC 2020 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The observation that anesthetics alter signaling is consistent with reports finding modest or 

no increase in cell death following anesthesia but observing behavioral defects nonetheless. 

Changes to signaling pathways could modify neuronal development and function 

independently of cell loss. Signaling may also provide a reasonable model for neonatal 

hypersensitivity to AIN (compared to adult animals) given the role of PI3K/AKT pathways 

in nervous system development, as discussed. It has been suggested that volatile anesthetic 

induced alterations in signaling impact neurogenesis and reduce neural stem cell pools in 

young, but not adult, animals. This is suggested by observed reductions in BrdU/NeuN 

positive (proliferating) and Sox-2/GFAP (neural progenitor) cells in young rodents exposed 

to volatile anesthetics (Zhu et al., 2010). A similar model supported by Hofacer et al 

suggests that the age of neurons, not the age of the organism, underlies sensitivity to volatile 

anesthetic toxicity, and that young animals are more sensitive overall simply because they 

have a greater pool of ‘young’ neurons (Hofacer et al., 2013). Voluntary exercise and 

environmental enrichment are both neurogenesis promoting interventions which have been 

reported to function through growth signaling, and both have been shown to attenuate AIN 

in mice (Zheng et al., 2013).

A number of in vitro studies of cultured neurons have found that anesthetic exposure alters 

neuronal survival, morphology, and function through activation of the neurotrophin receptor 

(p75NTR) and subsequent downstream activation of the actin cytoskeleton regulating kinase 

RhoA. In addition, inhibition of p75NTR can prevent apoptotic neuron death and 

cytoskeletal depolymerization resulting from anesthetics (Head et al., 2009; Lemkuil et al., 

2011; Schallner et al., 2014). Inhibition of this p75NTR/RhoA pathway in vivo with the 

p75NTR inhibitor TAT—Pep5 did not attenuate memory defects induced by anesthesia 

exposure, suggesting an uncoupling of this apoptosis-mediating pathway from cognitive 

effects (Schilling et al., 2017). While intriguing, this finding is difficult to interpret, however, 

due to the absence of molecular data or a positive control, specifically the lack of apoptosis 

data derived from the in vivo model.

The precise role of growth and nutrient signaling remains controversial, however, as some 

reports suggest signaling activation, not inhibition, by anesthetic exposure (Liu et al., 2015). 

In line with this view, neonatal hyper-nutrition (accomplished through a neonatal ‘high-fat’ 

paradigm) has been reported to worsen AIN, although the authors attributed the effects to 

oxidative stress in the ‘obese’ pups (Xu, K.X. et al., 2015). In mouse models of Alzheimer’s 

disease, anesthetics have been reported to increase the phosphorylation of various signaling 

factors including PI3K, AKT, MAPK, and JNK, with some work suggesting that anesthetics 

directly inhibit the phosphatase PP2A, thereby increasing phosphorylation status among 

PP2A targets. Such a change would broadly disrupting nutrient signaling through inhibition 

of a negative regulator of activation (Le Freche et al., 2012; Tao et al., 2014). Other reports 

indicate that ER calcium release induced by ryanodine receptors (RYR’s), downstream of 

PI3K, mediates the neurotoxicity of anesthetics (Liang et al., 2010; Wang et al., 2014). 

Blocking RYR’s with the antagonist Dantrolene was found to reduce cell death and ER 

stress induction in cultured mouse brain slices treated with isoflurane. ER stress has also 

been shown to mediate isoflurane induced neurotoxicity during developmental stages in the 

nematode C. elegans in an mTOR dependent pathway (Na et al., 2017).
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Conflicts in reported pathway directionality may be at least partly the result of the transient 

nature of intracellular signaling cascades and the timing of measurement. For example, one 

study indicates that GSK3 and AKT phosphorylation is increased by short term exposure to 

volatile anesthetics but decreased by long term exposure (Zhang et al., 2014). The variability 

is also likely to be at least partly a result of differing anesthetic protocols (see Figure 4). 

Accordingly, while nutrient signaling appears critically important, new approaches with 

careful experimental design, execution, and interpretation are needed to resolve these 

controversies. Most pressing, perhaps, are the need for standardization of anesthetic 

conditions in neonatal mouse AIN models and an effort to carefully model clinical 

exposures. Careful temporal dissection of the impact of anesthetics on nutrient signaling in 

rigorously monitored anesthetic exposures may provide a unifying model for the role of 

signaling in AIN. As in the case of ROS, state of the art techniques assessing single cell 

changes in signaling may provide direct causal evidence linking nutrient signaling to 

apoptotic death or altered neuronal function. Finally, experiments aimed at defining 

mechanistic links between nutrient signaling and other putative pathways of AIN (ie ROS, 

neuronal modulation, etc) will clarify the relationship between nutrient signaling and other 

pathways of damage in relation to the overall pathogenesis of AIN.

Additional Targets

Direct neuronal modulation—AIN has also been attenuated through direct modulators 

of neuronal activity, though much of the data comes from non-neonatal settings. In one 

study, acute treatment with dexmedetomidine, an alpha-2 agonist, prevented anesthesia 

induced inflammation and cognitive defects in geriatric mice (Qian et al., 2015). Attenuation 

of AIN by dexmedetomidine implicates excitotoxicity in anesthesia related neurotoxicity, 

suggesting that select non-volatile anesthetics may actually prevent the neurotoxicity of 

volatile agents. Consistent with this idea, Hispudilin, a nutraceutical with ‘potent anti-

antiepileptic activity in rats’ and putative a GABAAR agonist, attenuated anesthetic 

neurotoxicity in vitro (see also above) (Niu et al., 2014). The most directly supportive data is 

provided by memantine, a clinically approved drug for Alzheimer’s disease which targets 

excitotoxicity through uncompetitive inhibition of glutamatergic AMPA. Memantine was 

found to attenuate the induction of an epigenetic biomarker associated with anesthesia 

induced neurotoxicity in P7 neonatal mice sedated with sevoflurane (Han et al., 2015). 

Direct modulation of neuronal signaling can also exacerbate AIN; caffeine, an adenosine 

receptor antagonist, substantially worsened AIN phenotypes, although the paradigm (P3 

mouse pups), the exceptionally high dose of caffeine (80 mg/kg, roughly 50% of the LD50 

for subcutaneous caffeine in adult mice according to Caymen chemicals), and lack of a 

caffeine-only control cohort greatly limit the interpretability of this report (Cabrera et al., 

2017).

Central nervous system metabolism and peripheral metabolism are both acutely altered by 

some anesthetics, but the precise impact of any given anesthetic on individual metabolic 

pathways and the role of metabolic shifts in AIN are unclear (Yamada et al., 2009). Serum 

metabolites have, remarkably, been generally ignored in AIN studies. When circulating 

metabolites have been considered, hypoglycemia has been repeatedly identified as a 

physiological consequence of volatile general anesthetic use. 3% isoflurane induces 
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substantial hypoglycemia by 90 minutes in 10 day old neonatal mice, and extended (6 hour) 

exposure to 1.5% isoflurane induces hypoglycemia in P7 mice (Loepke et al., 2009; Loepke 

et al., 2006). Furthermore, 6 hours of equipotent 1.5% isoflurane, 2.9% sevoflurane, or 7.4% 

desflurane all resulted in significantly reduced blood glucose in neonates compared to fasted 

controls in CD1 x C57Bl/6 hybrid mice, a background specifically selected for its ‘low 

mortality’ (of 20%) during 6 hours of treatment (Istaphanous et al., 2011). One report has 

suggested that dextrose administration fails to prevent neuronal apoptosis or learning and 

memory defects in isoflurane anesthetized pups. The same report presented data showing 

that 6 hours of 0.75% isoflurane induced neuronal apoptosis and cognitive defects without 

leading to marked hypoglycemia (Johnson et al., 2008). Circulating metabolites therefore 

appear important, but glucose alone may not fully explain AIN in mice. It is worth noting 

that no study to date has provideed a rigorous assessment of the physiological impact of 

extended anesthesia in neonatal mice.

Inflammation—Genetic deletion of FAS and FASL, two factors involved in extrinsic 

apoptotic signaling, prevented induction of apoptosis related to anesthesia exposure in 

neonatal mice (Song et al., 2015). This result suggests that the majority of AIN related 

apoptosis results from extrinsic, rather than intrinsic (mitochondrial), apoptotic pathways. 

Knockout of the receptor for IL-1B, a major cytokine involved in inflammatory signaling, 

was shown to prevent post-operative cognitive dysfunction in mice (Cao et al., 2012; Cibelli 

et al., 2010). Together, these findings suggest that neuronal apoptosis and behavioral defects 

associated with volatile anesthetic exposure require, and can be greatly attenuated by 

targeting, cell-extrinsic factors. These data are at odds with studies reporting that apoptosis 

results from cell intrinsic inducers such as mitochondrial oxidative stress, reduced 

mitochondrial membrane potential, or cellular energetic stress, and discussed above.

Epigenetics—Epigenetic and miRNA targets have also been studied in the context of AIN, 

though the results are difficult to interpret. Knockdown of miR-124 and miR-210 have been 

reported to attenuate anesthesia induced neuronal death in vitro or in vivo (Wang et al., 

2016; Xu, H. et al., 2015). miR-124 was shown to activate the PKC/ERK pathway in brain 

and upregulate AMPA receptor phosphorylation, but direct targets and a clear mechanism 

were not identified. Daily oral administration of SAHA (suberanilohydroxamic acid), a 

histone deacetylase inhibitor with broad and non-specific actions on epigenetic regulation 

through histone deacetylation, was reported to modify Morris Water Maze performance in 

mice exposed to sevoflurane as neonates (Lin et al., 2014). While intriguing, each of these 

studies lack clear rationale for their epigenetic target of interest, and with such broadly 

acting regulatory factors, particularly histone acetylation, it is entirely unclear what the 

mechanisms or off-target effects of these approaches might be.

Limitations of Pre-Clinical Studies

Any discussion of the phenomena of AIN would be incomplete without a critical evaluation 

of the pre-clinical literature. While, as stated above, it is clear that anesthetics can cause 

neurotoxicity under various experimental conditions, a multitude of factors have muddied 

the AIN field. AIN studies tend to lack sufficiently detailed methodological reporting, often 

have inappropriately low sample numbers, and are missing appropriate controls. 
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Furthermore, the high variability in anesthetic protocols and conditions largely precludes 

comparisons between individual reports (see Table 2). These issues have led to highly 

discordant body of research that is not easily extrapolated to the clinical setting. Finally, it 

remains unclear whether AIN models in mice are relevant to human anesthesia exposure. As 

noted elsewhere, mouse exposures are poorly monitored when compared to human 

anesthesia, and a detailed assessment of the physiological impact of anesthesia on neonatal 

mice is lacking (Van Biesen et al., 2015).

The lack of standardization in anesthetic protocols and conditions is arguably one of the 

greatest limitations of the AIN field. Even among only neonatal mouse studies it is 

immediately clear that there are is no standardization in pre-clinical models (Table 2, Figure 

4). Chosen anesthetic agents include volatile compounds such as isoflurane, desflurane, and 

sevoflurane, as well as injectable drugs compounds like midozalam, ketamine, and propofol, 

and AIN studies sometimes include complex combinations of drugs. There is no consensus 

on effective or clinically relevant doses or exposure time, even in studies using single agents. 

Regarding duration, some laboratories report AIN phenotypes only when anesthetic 

exposure is long enough to induce significant mortality from cardio-respiratory failure, a 

situation which seems unlikely to model human clinical anesthesia. Others suggest that even 

very short term anesthesia can have overt effects on neuron viability and lasting effects on 

learning and memory. There is disagreement over whether single or repeat exposures are 

necessary to induce behavioral outcomes, a question of particular significance to the 

interpretation of human clinical trials.

The variation in timing, dose, and anesthetic choice is mirrored by variability in other 

conditions. Oxygen levels, temperature, humidification, flow rate, ventilation method, 

animal genetic background, age, gender, and physiological maintenance (i.e. dextrose 

infusion) may all be critically important to the outcome, but no consensus exists. In fact, 

many studies simply ignore these factors in their methodology, data, and discussions, leaving 

the reader to guess at how the animals were maintained. Finally, there is little overlap 

between molecular, cellular, and behavioral endpoints; even commonly used behavioral 

studies such as Morris water maze very widely when the details of implementation are 

examined. Simply put, the extraordinary number of known variables which are uncontrolled 

between published datasets completely precludes any broad cross comparisons or large-scale 

data reduction efforts.

The complexity of Figure 2 may be reasonable if each pathway or process played a partial 

role in the overall outcome, but published reports tend to show complete or nearly complete 

prevention in almost every case. Because of this, it is difficult to imagine a cohesive model 

for published findings in AIN. Published data can only be judged on statistical rigor, 

appropriate controls, and cautious interpretation of results. Some discrepancies may result 

from unstated caveats. For example, antibody based detection methods provide powerful 

tools but as reagents they vary greatly in quality and benefit from the inclusion of additional 

controls, such as secondary-only staining in IHC (see ref’s (Gorr and Vogel, 2015; Ivell et 

al., 2014; McDonough et al., 2015)). Similarly, litter-effects are of particular importance in 

neonatal AIN research. Litter-effects are known to invalidate standard statistical assumptions 

of sample independence and normal distribution and have recently been shown to be a 
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frequent cause of false positives in mouse behavioral studies (see (Williams et al., 2017)). 

Population variability should be carefully assessed, with considerations given to both total 

sample size and litter distribution between treatments. These issues are not unique to the 

AIN field, but may be contributing to the complexity of the pre-clinical AIN literature.

Current perspective and additional avenues

Recent evidence from large-scale clinical trials now indicates that short duration routine 

anesthetic exposure in pediatrics is generally safe and without overt neurological risks, but 

the risks of multiple or long-term exposures remain unclear (Chinn et al., 2016; Davidson et 

al., 2016; Ing et al., 2016; Miller et al., 2016; Sun, L.S. et al., 2016; Vutskits and Davidson, 

2017). While these unanswered questions warrant further study, the continued relevance of 

pre-clinical research on AIN will depend on how researchers model these clinical paradigms 

and whether the quality and comparability issues in the AIN field can be resolved. One of 

the most pressing issues in pre-clinical AIN studies is arguably the need for some form of 

standardization in experimental approaches, as discussed above. The intervention literature 

has provided a variety of intriguing targets for attenuating off-target toxic effects of 

anesthetics, but until these studies are convincingly validated they are unlikely to impact 

clinical practice.

It is clear that anesthetic agents, as any chemical compound, can cause cell death under 

certain conditions. While the potential for anesthetic exposures to cause damage to the 

neonatal brain is well-supported, the relevance of pre-clinical models to patient care remains 

unclear. While pathways underlying the molecular, cellular, and behavioral outcomes in pre-

clinical models have been extensively probed. Data derived from neonatal mouse models of 

AIN strongly implicate ROS, nutrient/growth signaling, and neuronal activity in the 

pathogenesis of neurotoxicity resulting from anesthetic exposure in neonates, but individual 

reports have varied widely and the relative importance of each of these mechanisms is 

unclear. The risks of anesthesia in pre-clinical models is supported by a variety of data, but it 

is not yet clear which animal model approaches best reflect or advise the use of anesthesia in 

human patients. These models generally utilize long duration or repeated exposure to 

anesthetics under only partially controlled experimental conditions, a setting which are 

unlikely to fully mirror human pediatric clinical exposures. Addressing these questions will 

require a critical re-evaluation of the primary pre-clinical AIN literature in addition to 

carefully constructed clinical trials.
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Highlights

• Anesthetic exposure has been reproducibly shown to induce central nervous 

system cell death in neonatal mouse models

• Anesthesia exposure in neonatal mice is also reported to result in long-term 

neurocognitive defects, such as defects in learning and memory

• Intervention studies in the neonatal mouse model have identified multiple 

putative mechanistic pathways underlying anesthesia induced neurotoxicity; 

the major mechanistic targets implicated are oxidative stress, altered nutrient/

growth signaling, and direct neuromodulation

• A lack of standardization between studies and technical issues surrounding 

the study of anesthesia induced neurotoxicity in neonatal rodents complicate 

interpretation of the this field
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Figure 1: Neurotoxicity of anesthesia appears to occur at both extremes of age.
Anesthetics are associated with neuronal death and adverse cognitive effects in both 

pediatric and geriatric populations. While the precise mechanisms of anesthesia induced 

neurotoxicity are unclear, data suggests that anesthetics have some neurotoxicity at all ages. 

In pediatric patients, this neurotoxicity disrupts normal neurodevelopment, and neonates are 

highly sensitive to as a result of their relatively high number of young neurons. Conversely, 

sensitivity to anesthesia in geriatric patients appears to result from age-related deficits in 

neurogenesis which exacerbate the functional impact of neuron loss due to anesthesia 

exposure.

Johnson et al. Page 19

Neurotoxicol Teratol. Author manuscript; available in PMC 2020 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2: Interventions and mechanisms reported in mouse models of AIN.
Intervention studies in mouse AIN models have identified a wide variety of candidate targets 

and compounds. The majority of these can be grouped into one of three major categories: 

oxidative stress, ROS signaling, and energetics; growth/nutrient signaling; and direct 

modulation of neuronal activity. Additional candidates, such as epigenetic factors, are less 

clearly defined.
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Figure 3: Growth and nutrient sensing signaling pathways at the interface between intra- and 
extra-cellular stimulus.
Growth and nutrient signaling pathways involve soluble signaling factors, membrane bound 

receptors at the cell surface, intracellular sensors, and intracellular kinases which mediate 

signal transduction and amplification. Growth and nutrient signaling pathways, such as the 

canonical PI3K/AKT/mTOR pathway, play critical roles in neuron survival, differentiation, 

metabolism, and cellular organization.
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Figure 4: Sources of variability in pre-clinical anesthesia induced neurotoxicity literature.
Pre-clinical models of anesthesia induced neurotoxicity have identified a variety of pathways 

involved in AIN, but a global assessment of these studies is hampered by the high variability 

in experimental conditions. Confounding factors include anesthetic dose, frequency, 

duration, and various aspects of physiological maintenance. In addition, measured outcomes 

vary widely between studies. Future work in pre-clinical AIN would benefit from 

standardization of anesthetic protocols and experimental methods used to assess AIN.
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Table 1 –

AIN Interventions Tested In Vivo in Mice

Compound Dose
Mechanism(s)* Known (k), reported (r), 
or putative (p) Report(s)

Apocynin 50 mg/kg NADPH oxidase inhibitor (k); reduces 
oxidative stress (r)

(Sun, Z. et al., 2016)

Carbon Monoxide 5 ppm; 100 ppm Reduced oxidative stress (r) (Cheng and Levy, 2014; 
Cheng, Y. et al., 2015; 
Wang, L. et al., 2017a)

Coenzyme Q10 50 mg/kg Electron transport chain component 
(k);antioxidant (r)

(Xu et al., 2017)

Curcumin 20 mg/kg;
40 mg/kg

Antioxidant (p) (Ji et al., 2015)

Dexmedetomidine 15 g/kg;
25 g/kg

2 adrenergic receptor agonist (k) (Qian et al., 2015)

Environmental enrichment 2 hrs/day from P7 to 
P31

Increased neurogenesis (p) (Zheng et al., 2013)

‘Hydrogen rich saline’ n/a Antioxidant (p) (Li et al., 2017)

Lithium Chloride 100 mg/kg AKT/GSK3/ERK activator (p) (Tao et al., 2016)

Memantine 1 mg/kg NMDA glutamate inhibitor (k) (Han et al., 2015)

Roscovitine 25 mg/kg/day CDK5 inhibitor, action through ERK (p) (Liu et al., 2017a)

Rutin 25 mg/kg 50 mg/kg Unknown; nutraceutical, putative antioxidant 
(p)

(Man et al., 2015)

Suberanilohydroxamic acid (SAHA) 25 mg/kg Histone deacetylase inhibitor (k) (Lin et al., 2014)

Vitamin C 80 mg/kg Multiple; antioxidant (k,p) (Cheng, B. et al., 2015; Xu, 
K.X. et al., 2015)

Contraindicated (worsens AIN) Dose Mechanism(s) Report(s)

Caffeine 80 mg/kg Adenosine receptor agonist (k) (Cabrera et al., 2017)

High-fat diet Induced by reducing 
litter size and maternal 
high fat chow

Unknown in this paradigm (Xu, K.X. et al., 2015)

Genetic Manipulations Gene Product Function Report

FAS or FASL KO Ligand and receptor for extrinsic apoptosis 
(k)

(Song et al., 2015)

IL-1B KO Inflammatory cytokine (k) (Cao et al., 2012)

miR-124 Knockdown Unknown; most highly expressed miRNA in 
neurons

(Xu, H. et al., 2015)

miR-34a Knockdown Regulates FGFR1 (p) (Jiang et al., 2014)

*
Known – generally accepted function supported by robust published pharmacological data; reported – mechanism of action proposed in the setting 

of AIN if distinct from known mechanisms of action (or if none known); putative – the mechanism suggested by the authors when little mechanistic 
data is available (includes commonly reported compounds with poorly described mechanisms of action, for example nutraceuticals).
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Table 2 –

AIN Paradigms in Neonatal Mice

Age Background/Gender Drug(s) Dose and time Other Conditions Endpoints Report

P6–8 C57Bl/6; gender not 
indicated

Sevoflurane 3% 2hr/day for 
3 days

60% oxygen Morris water maze at P30–
34; assays for apoptosis 
following treatment

(Song et al., 
2015)

P7 C57Bl/6; both genders Propofol 30 or 60 
mg/kg IP 
injected

37 degrees C Apoptosis and neurogenesis 
at P8 or P17; AKT/ERK 
signaling

(Huang et 
al., 2016)

P6 C57Bl/6; male only for 
behavior, both genders 
for molecular endpoints

Sevoflurane 3% for 6 hours 40% oxygen, 38 
degrees C

Apoptosis related endpoints 
immediately after treatment

(Sun, Z. et 
al., 2016)

P7 C57Bl/6; both genders Isoflurane; Lidocaine; Lidocaine 
plus midazolam

Isoflurane: 
0.75% for 6 
hours; 
Lidocaine: 4 
mg/kg 
subcutaneous; 
midazolam: 9 
mg/kg 
subcutaneous

Warmed with heat 
lamp, agitated as 
needed to increase 
respiratory rate

Apoptosis related endpoints 
from samples 6 hours after 
exposure

(Lee et al., 
2014)

P7 (F) C57Bl/6 x (M) CD-1 
hybrid offspring; gender 
not indicated

Isoflurane 1.5% for 6 
hours

30% oxygen, 35.5 
degrees C

Apoptosis related endpoints 
after exposure; Morris water 
maze and spontaneous 
activity at P70

(Loepke et 
al., 2009)

P5–7 C57Bl/6, gender not 
indicated

Isoflurane; isoflurane plus 
midazolam

0.75% 4 hours 
0.75% plus 
midazolam 6 
hrs; 1.5% 2 
hours; 2% 1 
hour

30 degrees C Apoptosis related endpoints (Johnson et 
al., 2008)

P14 C57Bl/6; males Isoflurane 1.7%, 35 
min/day for 4 
days

50% oxygen, 37 
deg C

Apoptosis related endpoints; 
neurogenesis

(Zhu et al., 
2010)

P6–8 C57Bl/6; both genders Sevoflurane 3% isoflurane, 
2 hours/day 
for 3 days

60% oxygen, 37 
degrees C

pGSK3, pAKT (Zhang et 
al., 2014)

P6 C57Bl/6; both genders Sevoflurane 2.2%, 2 hours 
per day for 3 
days

37–38 deg C Morris water maze at P40 (Liu et al., 
2017a)

P6 C57Bl/6; both genders Isoflurane, desflurane 2% isoflurane 
or 8% 
desflurane (0.7 
MAC) 2 
hrs/day for 3 
days

60% oxygen, 37 
deg C

pAKT, pGSK3 after 
exposure; Morris water 
maze P31–37

(Tao et al., 
2016)

P10 129T2/SvEvMsJ x 
C57BL6/J F1 hybrid, 
both genders

Isoflurane 3% isoflurane, 
90 minutes

Not specified; 
mechanical 
ventilation for 
some at 300 
breaths/min

Metabolic parameters (Loepke et 
al., 2006)

P6 C57Bl/6; both genders Sevoflurane 2%, 6 hours 40% oxygen, 
1L/min flow, 
humidified

Apoptosis related parameters (Satomoto 
et al., 2016)

P7 C57Bl/6; both genders Isoflurane; propofol 1.5% 
isoflurane or 
150 mg/kg 
propofol

Isoflurane: in 30% 
oxygen

Apoptosis related 
parameters; Morris water 
maze at P39

(Yang et al., 
2014)
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Age Background/Gender Drug(s) Dose and time Other Conditions Endpoints Report

P6-P8 C57Bl/6; males Sevoflurane 3% 2 
hours/day for 
3 days

40% oxygen, 37 
degrees C

Apoptosis related parameters 
after exposure

(Ji et al., 
2015)

P7 C57Bl/6; both genders Sevoflurane; propofol 2.9% 
sevoflurane 6 
hours or 150 
mg/kg 
propofol

Sevoflurane in 
30% oxygen, 38 
deg C, humidified

Apoptosis related parameters 
after exposure; morris water 
maze at P31–34

(Man et al., 
2015)

P7 C57Bl/6; not indicated Sevoflurane; sevoflurane plus 
propofol or thiopental

3% for 6 hours 
with or 
without 5 
mg/kg 
thiopental or 
10 mg/kg 
propofol

Not available Apoptosis related parameters 
after treatment

(Tagawa et 
al., 2014)

P6–8 C57Bl/6 Sevoflurane 3%, 2 hours 
daily for 3 
days

60% oxygen, 37 
degrees

Apoptosis related 
parameters; Morris water 
maze at P31–37

(Lin et al., 
2014)

P7 C57Bl/6; both genders Sevoflurane, isoflurane, desflurane Isoflurane: 
1.5% 6 hours; 
sevoflurane 
2.9% 6 hours; 
desflurane: 
7.4% 6 hours

30% oxygen, 38 
degrees, 
humidified

Apoptosis related 
parameters; various behavior 
tests at P35

(Xu, K.X. et 
al., 2015)

P7 C57Bl/6CR; both genders Isoflurane, sevoflurane 0.75% 
isoflurane for 
6 hours; 1.1% 
sevoflurane 6 
hours

30% oxygen, 38 
degrees C, 
humidified

Apoptosis related parameters 
at 2 hours post exposure; 
Morris water maze at P42

(Liang et al., 
2010)

P7 C57Bl/6; male mice Sevoflurane 1.5%, 2 hours Air oxygen, 37 
degrees C

Protein/signaling changes (Han et al., 
2015)

P6–8 C57Bl/6J; both genders Sevoflurane 3%, 2 hours 
daily for 3 
days

60% oxygen, 37 
degrees C

Synaptic protein levels; 
Morris water maze at P31–
37

(Xu et al., 
2017)

P14–21 C57Bl6; gender not 
indicated

Ketamine 50 mg/kg/day 
for 6 days

n/a Morris water maze at 2 
months; molecular endpoints

(Xu, H. et 
al., 2015)

P7 CD-1, male Isoflurane 2%, 1 hour Air oxygen Retinal cell apoptosis 
immediately and 5 hours 
after anesthesia

(Cheng, Y. 
et al., 2015)

P7 CD-1, males Isoflurane 2%, 1 hour Air oxygen Apoptosis related endpoints (Cheng and 
Levy, 2014)

P6–7 C57Bl/6J; both genders 
for biochemical 
endpoints, males only for 
behavior

Sevoflurane Titrated dose 
for 6 hours: 
3.5% for 90 
min, 3% for 90 
min, then 
2.5% for the 
final 3 hours.

30% oxygen Autism related behaviors, 
memory assessed by fear 
related assays; apoptosis 
related endpoints

(Chung et 
al., 2015)

P7–9 C57Bl/6 Isoflurane,sevoflurane 1.5% 
isoflurane or 
2.2% 
sevoflurane, 2 
hours/day for 
3 days

37–38 degC Morris water maze; 
apoptosis related endpoints; 
expression of BDNF and 
synaptic proteins

(Liu et al., 
2017b)

P7–8 CD-1 male x C57Bl/6 
hybrid, both genders

Isoflurane, sevoflurane, desflurane 6hrs 1.5% 
isoflurane, 
2.9% 
sevoflurane, or 
7.4% 
desflurane

30% oxygen, 35.5 
deg C

Apoptosis related endpoints (Istaphanous 
et al., 2011)
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Age Background/Gender Drug(s) Dose and time Other Conditions Endpoints Report

P7, P21, 
or P49

C57Bl/6J, both genders Isoflurane 1.5%, 6 hours 30% oxygen, 35.5 
deg C

Apoptosis related endpoints, 
neurogenesis

(Hofacer et 
al., 2013)

P7 C57Bl/6CR, both genders Isoflurane, sevoflurane 0.75% 
isoflurane or 
1.1% 
sevoflurane, 6 
hours

30% oxygen, 38 
deg C

Apoptosis, serum S100B, 
Morris water maze at P42

(Liang et al., 
2010)

Prenatal 
– dams 
at 
gestation 
day 14

C57Bl/6J; pregnant 
females, both genders of 
pups used

Sevoflurane 2.5%, 2 hours 100% oxygen Apoptotic, inflammatory, 
and synaptic markers; 
Morris water maze at P31

(Zheng et 
al., 2013)
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