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Abstract

In genetic association analysis, a joint test of multiple distinct phenotypes can increase power to
identify sets of trait-associated variants within genes or regions of interest. Existing multi-
phenotype tests for rare variants make specific assumptions about the patterns of association with
underlying causal variants and the violation of these assumptions can reduce power to detect
association. Here we develop a general framework for testing pleiotropic effects of rare variants on
multiple continuous phenotypes using multivariate kernel regression (Multi-SKAT). Multi-SKAT
models effect sizes of variants on the phenotypes through a kernel matrix and performs a variance
component test of association. We show that many existing tests are equivalent to specific choices
of kernel matrices with the Multi-SKAT framework. To increase power of detecting association
across tests with different kernel matrices, we developed a fast and accurate approximation of the
significance of the minimum observed p-value across tests. To account for related individuals, our
framework uses random effects for the kinship matrix. Using simulated data and amino acid and
exome-array data from the METSIM study, we show that Multi-SKAT can improve power over
single-phenotype SKAT-O test and existing multiple phenotype tests, while maintaining type |
error rate.
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Introduction

Since the advent of array genotyping technologies, genome-wide association studies
(GWAS) have identified numerous genetic variants associated with complex traits. Despite
these many discoveries, GWAS loci explain only a modest proportion of heritability for most
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traits. This may be due, in part, to the fact that these association studies are underpowered to
identify associations with rare variants(Korte and Farlow, 2013). To identify such rare
variant associations, gene- or region-based multiple variant tests have been developed(Lee et
al., 2014). By jointly testing rare variants in a target gene or region, these methods can
increase power over a single variant test and are now used as a standard approach in rare
variant analysis.

Recent GWAS results have shown that many GWAS loci are associated with multiple traits
(Solovieff et al., 2013). Nearly 17% of variants in National Heart Lung and Blood Institute
(NHLBI) GWAS categories are associated with multiple traits (Sivakumaran et al., 2011).
For example, 44% of autoimmune risk single nucleotide polymorphisms (SNPs) have been
estimated to be associated with two or more autoimmune diseases (Cotsapas et al., 2011).
Detecting such pleiotropic effects is important to understand the underlying biological
structure of complex traits. In addition, by leveraging cross-phenotype associations, the
power to detect trait-associated variants can be increased.

Identifying the cross-phenotype effects requires a suitable joint or multivariate analysis
framework that can leverage the dependence of the phenotypes. Various methods have been
proposed for multiple phenotype analysis in GWAS (Ferreira and Purcell, 2009; Huang et
al., 2011; Zhou and Stephens, 2014; Ried et al., 2012; Ray et al., 2016). Extending them,
several groups have developed multiple phenotype tests for rare variants (Wang et al., 2015;
Broadaway et al., 2016; Wu and Pankow, 2016; Lee et al., 2016; Sun et al., 2016; Maity et
al., 2012; Yan et al., 2015; Zhan et al., 2017). For example, Wang et al. (2015) proposed a
multivariate functional linear model (MFLM); Broadaway et al. (2016) used a dual-kernel
based distance-covariance approach to test for cross phenotype effects of rare variants by
comparing similarity in multivariate phenotypes to similarity in genetic variants (GAMuT)
(Chiu et al., 2017); Wu et al. (Wu and Pankow, 2016) developed a score based sequence
kernel association test for multiple traits, MSKAT, which has been shown to be similar in
performance to GAMuT (Broadaway et al., 2016); and Zhan et al. (2017) proposed DKAT,
which uses the dual kernel approach as in GAMuT but provides more robust performance
when the dimension of phenotypes is high compared to the sample size.

Despite these developments, existing methods have important limitations. Most methods
were developed under specific assumptions regarding the effects of the variants on multiple
phenotypes, and hence lose power if the assumptions are violated (Ray et al., 2016). For
example, if genetic effects are heterogeneous across multiple phenotypes, methods assuming
homogeneous genetic effects can lose a substantial amount of power. Although there has
been a recent attempt to combine analysis results from different models (Zhan et al., 2017),
no scalable methods have been developed to evaluate the significance of the combined
results in genome-wide scale analysis. In addition, most existing methods and software
cannot adjust for relatedness between individuals; thus, to apply these methods, related
individuals must be removed from the analysis to maintain type | error rate. For example, in
the METabolic Syndrome In Men (METSIM) study ~ 15% of individuals are estimated to be
related up to the second degree.
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Here, we develop Multi-SKAT, a general framework that extends the mixed effect model-
based kernel association tests to a multivariate regression framework while accounting for
family relatedness. Mixed effect models have been widely used for rare-variant association
tests. Popular rare variant tests such as SKAT(Wu et al., 2011) and SKAT-O(Lee et al.,
2012b) are based on mixed effect models. By using kernels to relate genetic variants to
multiple continuous phenotypes, Multi-SKAT allows for flexible modeling of the genetic
effects on the phenotypes. The idea of using kernels for genotypes and phenotypes were
previously used by the dual kernel approaches such as GAMuUT and DKAT. However, in
contrast to these two similarity-based methods, Multi-SKAT is multivariate regression based
and hence provides a natural way to adjust for covariates and also can account for sample
relatedness by incorporating random effects for the kinship matrix. Many of the existing
methods for multiple phenotype rare variant tests can be viewed as special cases of Multi-
SKAT with particular choices of kernels. Furthermore, to avoid loss of power due to model
misspecification, we develop computationally efficient omnibus tests, which allow for
aggregation of tests over several kernels and provide fast p-value calculation (Demarta and
McNeil, 2005).

The article is organized as follows: in the first section, we present the multivariate mixed
effect model and kernel matrices. We particularly focus on the phenotype-kernel and
describe omnibus procedures that can aggregate results across different choices of kernels
and kinship adjustment. In the next section we describe the simulation experiments that
clearly demonstrate that Multi-SKAT tests have increased power to detect associations
compared to existing methods like GAMuT, MSKAT and others in most of the scenarios.
Further we applied Multi-SKAT to detect the cross-phenotype effects of rare
nonsynonymous and protein-truncating variants on a set of nine amino acids measured on
8,545 Finnish men from the METSIM study.

Material and Methods

Single-phenotype region-based tests

To describe the Multi-SKAT tests, we first present the existing model of the single-
phenotype gene or region-based tests. Let yx= (Vix Yok = » Vi) | be an nx 1 vector of the
k" phenotype over nindividuals; X an 7% gmatrix of the g non-genetic covariates including
the intercept; G;= (Gjj, -, Gﬂ/)ris an nx 1 vector of the minor allele counts (0, 1, or 2) for
a binary genetic variant j, and G=[Gy, -**, G, is an nx mgenotype matrix for /m genetic
variants in a target region. The regression model shown in equation (1) can relate /m genetic
variants to phenotype &,

Vi =Xa,+Gp +e. (1)

where ais a g x 1 vector of regression coefficients of ¢ non-genetic covariates, £ 4= (B1;
-, Bmi) T is an mx 1 vector of regression coefficients of the /7 genetic variants, and e is an

nx 1 vector of non-systematic error term with each element following N (0, a,%). To test for

Ho: B, =0, a variance component test under the mixed effects model have been proposed to
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increase power over the usual F-test(Wu et al., 2011). The variance component test assumes
that the regression coefficients, B 4, are random variables and follow a centered distribution
with variance 72X (see below). Under these assumptions, the test for 8 = 0 is equivalent to
testing == 0. The score statistic for this test is

0= - ﬁk)TGZGGT(yk - ﬁk) (2

where g, = Xa, is the estimated mean of y under the null hypothesis of no association. The

test statistic @ asymptotically follows a mixture of chi-squared distributions under the null
hypothesis and p-values can be computed by inverting the characteristic function (Davies,
1980).

The kernel matrix Z s plays a critical role; it models the relationship among the effect sizes
of the variants on the phenotypes. Any positive semidefinite matrix can be used for 5
providing a unified framework for the region-based tests. A frequent choice of Zis a
sandwich type matrix £ g = WRgW, where W= diag(wa, .., W) is a diagonal weighting
matrix for each variant, and R is a correlation matrix between the effect sizes of the
variants. Rg = I, implies uncorrelated effect sizes and corresponds to SKAT, and Rg =
1,71, corresponds to the burden test, where /,,%,,is an m x mdiagonal matrix and 1, = (1,
-+ 1)Tis an m x 1 vector with all elements being unity. Furthermore, a linear combination of
these two matrices corresponds to Rg = pl ;15" + (1 = p) /= m Which is used for SKAT-O
(Lee et al., 2012b).

Multiple-phenotype region-based tests

Extending the idea of using kernels, we build a model for multiple phenotypes. The
multivariate linear model shown in equation (3) can relate genetic variants to K correlated
phenotypes,

Y=XA+GB+E (3

where Y= ()1, -+, Vi) is an nx K phenotype matrix; Ais a g x K'matrix of coefficients of
X, B=(Bj) is an mx K matrix of coefficients where g;;denotes the effect of the A variant
on the /% phenotype and Eis an 7 x K matrix of non-systematic errors. Let vec(-) denote the
matrix vectorization function, and then vec(£) follows MO, /,® V), where Visa Kx K
covariance matrix and ® represents the Kronecker product.

In addition to assuming that g, follows a centered distribution with covariance 2% g, we
further assume that 8; = (B4, -, Bix) |, which is the vector of regression coefficients of
variant /for K multiple phenotypes, follows a centered distribution with covariance #Xp,
which implies that vec(B) follows a centered distribution with covariance 2%s® Xp As
before, the null hypothesis Hy : veq(B) = 0 is equivalent to == 0. The corresponding score
test statistic is
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0 = (vec(¥) - vec()){(GZ46") ® (V2,0 H (vee(r) - vee(i))  (4)

where ji and V are the estimated mean and covariance of Y under the null hypothesis.

Zpplays a similar role as Z g but with respect to phenotypes. % prepresents a kernel in the
phenotypes space and models the relationship among the effect sizes of a variant on each of
the phenotypes. Any positive semidefinite matrix can be used as Zp.

The proposed approach provides a double-flexibility in modeling. Through the choice of
structures for Xz and X 5 we can control the dependencies of genetic effects. Additionally,
similar to SKAT, the use of a sandwich type matrix WRgW for Z s allows us to upweight
rare variants by using Beta(1, 25) weights as in Wu et al (Wu et al., 2011). Most of our
hypotheses about the underlying genetic structure of a set of phenotypes can be modeled
through varying structures of these two matrices.

Phenotype kernel structure Zp

The use of X s has been extensively studied previously in literature (Wu et al., 2011; Lee et
al., 2012h,a). Here we propose several choices for Zpand study their effect from a modeling
perspective.

Homogeneous (Hom) Kernel—It is possible that effect sizes of a variant on different
phenotypes are homogeneous, in which case §j = -+ = Bjk. Under this assumption,
P

T
P,Hom — Lely ()

under Z g pom the effect sizes Bj, (k=1, -+ K) for a variant jare the same for all the
phenotypes.

Heterogeneous (Het) Kernel—Effect sizes of a variant on different phenotypes can be
heterogeneous in which gy # -+ # Bjk. Under this assumption, we can construct

2 1

P,Het — Tk xk (6)

The Zpper implies that the effect sizes (ﬂjl’ ...,/JJTK) are uncorrelated among themselves. This

also indicates that the correlation among the phenotypes is not affected by this particular
region or gene.

Phenotype Covariance (PhC) Kernel—We may model Z pas proportional to the
estimated residual covariance across the phenotypes as,
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2ppnc=V ()

where V is the estimated covariance matrix among the phenotypes. This model assumes that
the correlation between the effect sizes is proportional to that between the residual
phenotypes after adjusting for the non-genetic covariates.

Principal Component (PC) Kernel—Principal component analysis (PCA) is a popular
tool for multivariate analysis. In multiple phenotype tests, PC-based approaches have been
used to reduce the dimension in phenotypes (Aschard et al., 2014). Here we show that PC-
based approach can be included in our framework. Let L = (Lg, ---, L) be the loading

matrix with each column L;produces the #7 PC score. In Appendix A, we show that using

Zp pc= VLV;IV;ILTV is equivalent to assuming heterogeneous effects with all PCs as

phenotypes. Instead of using all the PC’s, we can use selected PC’s that represent the
majority of cumulative variation in phenotypes. For example, we can jointly test the PC’s
that have cumulative variance of 90%. If the top ¢PC’s have been chosen for analysis using
v cumulative variance as cutoff, we can use

o—1o-1,T &

= VLselVP VP Lxelv

2ppPC—v

where Lgy=[L1, -, L; 0, -+, 0] and O represents a vector of 0’s of appropriate length.

Relationship with other Multiple-Phenotype rare variant tests—We have
proposed a uniform framework of Multi-SKAT tests that depend on Zsand Zp. There are
certain specific choices of kernels that correspond to other published methods.

. Using Zpppcand Zg = Wi,,WT is identical to the GAMuT(Broadaway et al.,
2016) with the projection phenotype kernel and the MSKAT with the Q statistic
(Wu and Pankow, 2016).

. Using =, = V% and T g= WI,,WT is identical to GAMuT(Broadaway et al., 2016)

with the linear phenotype kernel and the MSKAT with the Q ”statistic (Wu and
Pankow, 2016).

. Using Xppomand g = Wi, WT is identical to hom-MAAUSS (Lee et al., 2016).

. Using Zpperand g = Wi, W T is identical to het-MAAUSS (Lee et al., 2016)
and MF-KM (Yan et al., 2015).

For the detailed proof, please see Appendix B.

Minimum p-value based omnibus tests (minP & MinP¢om)

The model and the corresponding test of association that we propose has two parameters, 2 g
and X g, which are absent in the null model of no association. Since our test is a score test,
Zgand Zpcannot be estimated from the data. One possible approach is to select Zgand Zp
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based on prior knowledge; however, if the selected £z and Zdo not reflect underlying
biology, the test may have substantially reduced power (Ray et al., 2016; Lee et al., 2016). In
an attempt to achieve robust power, we aggregate results across different %z and % p using
the minimum of p-values from different kernels.

Although this omnibus test approach has been used in rare variant tests and multiple
phenotype analysis for combining multiple kernels from genotypes and phenotypes (Zhan et
al., 2017; Wu et al., 2013; Urrutia et al., 2015; He et al., 2017), it is challenging to calculate
the p-value, since the minimum p-value does not follow the uniform distribution. One
possible approach is using permutation or perturbation to calculate the monte-carlo p-value
(Urrutia et al., 2015; Zhan et al., 2017); however, this approach is computationally too
expensive to be used in genome-wide analysis. To address it, here we propose a fast copula
based p-value calculation for Multi-SKAT, which needs only a small number of resampling
steps to calculate the p-value.

Suppose py is the p-value for Qpwith given #Sgzand £p, h=1, -, b, and Tp=(py, -,
pp) Tisan b x 1 vector of p-values of £ such Multi-SKAT tests. The minimum p-value test
statistic after the Bonferroni adjustment is & % pn, Where ppmin is the minimum of the & p-
values. In the presence of positive correlation among the tests, this approach is conservative
and hence might lack power of detection. Rather than using Bonferroni corrected p;,, more
accurate results can be obtained if the joint null distribution or more specifically the
correlation structure of 7pcan be estimated. Here we adopt a resampling based approach to
estimate this correlation structure. Note that our test statistic is equivalent to

1 1
0=51Gz,GHe W =,V His, (8)

1

2

where S = a,® V_ Yvec(Y) — vec(p)}. Under the null hypothesis Sapproximately follows an

uncorrelated normal distribution MO, /,x). Using this, we propose the following resampling
algorithm

. Step 1. Generate nK samples from an MO, 1) distribution, say Sp.

. Step 2. Calculate 6 different test statistics as
1 1

0 =5KGE oW 2z, ?

) 1S, for all the choices of ZPand calculate p-

values.

. Step 3. Repeat the previous steps independently for /2= 1000) iterations, and
calculate the correlation between the p-values of the tests from the /R resampling
p-values.

With the estimated null correlation structure, we use a Copula to approximate the joint
distribution of 7, (Demarta and McNeil, 2005; He et al., 2017). Copula is a statistical
approach to construct joint multivariate distribution using marginal distribution of each
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variable and correlation structure. Since marginally each test statistic Q follows a mixture of
chi-square distributions, which has a heavier tail than normal distribution, we propose to use
a t-Copula to approximate the joint distribution, i.e, we assume the joint distribution of 7pto
be multivariate t with the estimated correlation structure. The final p-value for association is
then calculated from the distribution function of the assumed t-Copula.

When calculating the correlation across the p-values, Pearson’s correlation coefficient can be
unreliable since it depends on normality and homoscedasticity assumptions. To avoid such
assumptions we recommend estimating the null-correlation matrix of the p-values through
Kendall’s tau (z), which is a non-parametric approach based on concordance of ranks.

The minimum p-value approach can be used to combine different X given Z s, or combine
both Zpand % 5. For example two % 5’s corresponding to SKAT (WW) and Burden kernels

(Wlmlrﬁw) and four 2p's (ZpHom ZpHer LpPrc: Zppc-09) Can be comnibed, which results in

the omnibus test of these eight different tests. To differentiate the latter, we will call it
minPqom Which combines SKAT and Burden type kernels of 4.

Adjusting for relatedness

We formulated equation (3) and corresponding tests under the assumption of independent
individuals. If individuals are related, this assumption is no longer valid, and the tests may
have inflated type | error rate. Since our method is regression-based, we can relax the
independence assumption by introducing a random effect term to account for the relatedness
among individuals.

Let @ be the kinship matrix of the individuals and Vj is a co-heritability matrix, denoting the
shared heritability between the phenotypes. Extending the model presented in equation(3),
we incorporate @ and Vj;as

Y=XA+GB+Z+E (9)

where Zis an 7x K'matrix with vec(2) following MO, @ ® V). Z represents a matrix of
random effects arising from shared genetic effects between individuals due to the
relatedness. The remaining terms are the same as in equation (3). The corresponding score
test statistic is

Oxin = Ska¥z 121G gGN @ 2197 25, (10)

where s, = ﬁe_l /z{vec(Y) —vec(@}and V, = o ® x7g +1 ® V is the estimated covariance

matrix of vec('Y) under the null hypothesis. Similar to the previous versions for unrelated
individuals, Qx;,asymptotically follows a mixture of chi-square under the assumption of no
association.
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This approach depends on the estimation of the matrices ®, Vand V. The kinship matrix ®
can be estimated using the genome-wide genotype data (Manichaikul et al., 2010). Several
of the published methods like LD-Score(Bulik-Sullivan et al., 2015), PHENIX(Dahl et al.,
2016) and GEMMA(Zhou and Stephens, 2014; Zhou et al., 2013) can jointly estimate V/,
and V. In our numerical analysis, we have used PHENIX. This is an efficient method to fit
local maximum likelihood variance components in a multiple phenotype mixed model
through an E-M algorithm.

Once the matrices @, Vjand Vare estimated, we compute the asymptotic p-values for Qxip
by using a mixture of chi-square distribution. The computation of Qk;, requires large matrix
multiplications, which can be time and memory consuming. To reduce computational
burden, we employ several transformations. We perform an eigen-decomposition on the
kinship matrix @ as ® = UAU”, where Uis an orthogonal matrix of eigenvectors and A is a
diagonal matrix of corresponding eigenvalues. We obtain the transformed phenotype matrix
as Y = yu, the transformed covariate matrix as X = XU, the transformed random effects
matrix Z = ZU and transformed residual error matrix £ = EU. Rquation (9) can be
transformed into

Y=XA+GB+Z+E; vec(Z)~N@O,A® V) vec(E) ~N(O,IQ® V) (11)

All the properties of the tests developed from equation (3) are directly applicable to those
from equation(11). Qk;, can be computed from this transformed equation as,
/2

T 5-1/2(,7xv AT =—1 /23
kin = SkinV e / [(GZGG )®ZP]V6 Sk (12)

where § . = Ve‘l / 2{vec(17) - vec(ﬁ)}, fi is the estimated mean of ¥ under the null hypothesis
andV,=4® Ve+1,8V. Asymptotic p-values can be obtained from the corresponding

mixture of chi-squares distribution. Further, omnibus strategies for the tests developed from
equation (3) are applicable in this case with similar modifications. For example, the
resampling algorithm for minimum p-value based omnibus test can be implemented here as
well by noting that S"Kl.n approximately follows an uncorrelated normal distribution.

We carried out extensive simulation studies to evaluate the type | error control and power of
Multi-SKAT tests. For type | error simulations without related individuals and all power
simulations, we generated 10,000 chromosomes over 1Mbp regions using a coalescent
simulator with European demographic model (Schaffner et al., 2005). The MAF spectrum of
the simulated variants is shown in Supplementary Figure S6, showing that most of the
variants are rare variants. Since the average length of the gene is 3 kbps we randomly
selected a 3 kbps region for each simulated dataset to test for associations. For the type |
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error simulations with related individuals, to have a realistic kinship structure, we used the
METSIM study genotype data.

Phenotypes were generated from the multivariate normal distribution as

y; ~ MVN{($,G, + -+ B,G )V} (13)

where y;= (ya, -+, Vi) | is the outcome vector, G;is the genotype of the J® variant, and B
is the corresponding effect size, and Vis a covariance of the non-systematic error term. We
use V'to define level of covariance between the traits. /is a A x 1 indicator vector, which has
1 when the corresponding phenotype is associated with the region and O otherwise. For
example, if there are 5 phenotypes and the last three are associated with the region, /= (0, 0,
1,1, 1)7.

To evaluate whether Multi-SKAT can control type | error under realistic scenarios, we
simulated a dataset with 9 phenotypes with a correlation structure identical to that of 9
amino acid phenotypes in the METSIM data (See Supplementary Figure S1). Phenotypes
were generated using equation (13) with = 0. Total 5, 000, 000 datasets with 5, 000
individuals were generated to obtain the empirical type-I error rates at a = 1074, 107° and
2.5 x 1078, which are corresponding to candidate gene studies to test for 500 and 5000 genes
and exome-wide studies to test for all 20, 000 protein coding genes, respectively.

Next, we evaluated type I error controls in the presence of related individuals. To have a
realistic related structure we used the METSIM study genotype data. We generated a random
subsample of 5000 individuals from the METSIM study individuals and generated null
values for the 9 phenotypes from MVMQO, V), where V, = &5, ® ‘7g;5k +1Q® ‘75k, @, is the

estimated kinship matrix of the 5000 selected individuals, x7g_ 5 and \75k are estimated co-

heritability and residual variance matrices respectively for these individuals as estimated
using the MPMM function in the PHENIX R-package (version 1.0). For each set of 9
phenotypes, we performed the Multi-SKAT tests for a randomly selected 5000 genes in the
METSIM data. For the details about the data, see next section. We carried out this procedure
1000 times and obtained 5, 000, 000 p-values, and estimated type | error rate as proportions
of p-values smaller than the given level a.

Our simulation studies focus on evaluating the power of the proposed tests when the number
of phenotypes are 5 or 6. Power simulations were performed both in situations when there
was no pleiotropy (i.e., only one of the phenotypes was associated with the causal variants)
and also when there was pleiotropy. Under pleiotropy, since it is unlikely that all the
phenotypes are associated with genotypes in the region, we varied the number of phenotypes
associated. For each associated phenotype, 30% or 50% of the rare variants (MAF < 1%)
were randomly selected to be causal variants. We modeled the rarer variants to have stronger
effect, as 18] = dlogro(MAF))I. We used ¢= 0.3 which yields 181 = 0.9 for variants with
MAF= 10-2. Our choice of Byielded the average heritability of associated phenotypes
between 1% to 4%. We also considered situations that all causal variants were trait-
increasing variants (i.e. positive B) or 20 % of causal variants were trait-decreasing variants

Genet Epidemiol. Author manuscript; available in PMC 2020 February 01.



1duosnue Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnue Joyiny

Dutta et al.

Page 11

(i.e. negative p). Empirical power was estimated from 1000 independent datasets at exome-
wide @ =2.5x 1075
In type | error and power simulations, we compared the following tests:

. Bonferroni adjusted minimum p-values from gene-based test (SKAT, Burden or
SKAT-O) on each phenotype (minPhen)

. Multi-SKAT with % p /5, (Hom)

. Multi-SKAT with X p s (Het)

. Multi-SKAT with % ppc (PhC)

. Multi-SKAT with £ppc_g.9 (PC-Sel)

. Minimum P-value of Hom, Het, PhC and PC-Sel using Copula (minP)

. Minimum P-value of Hom, Het, PhC and PC-Sel with X s being SKAT and
Burden, using Copula (MinP¢om)

For the Multi-SKAT tests, we used two different X 5’s corresponding to SKAT (i.e. Z5=
WWW) and Burden tests (i.e. £, = Wlmlzw). For the variant weighting matrix W= diag(m,

-, W), we used w;= Beta(MAF;, 1, 25) function to upweight rarer variants, as
recommended by Wu et al. (Wu et al., 2011).

Computation Time

We estimated the computation time of Multi-SKAT tests and the existing methods. Using
simulated datasets of 5000 related and unrelated individuals with 10 phenotypes and 20
genetic variants, we estimated the computation time of Multi-SKAT tests with and without
kinship adjustments. To compare the computation performance of Multi-SKAT tests with the
existing methods, we generated datasets of unrelated individuals with five different sample
sizes (n = 1000, 2000, 5000, 10000, 15000 and 20000) and four different number of variants
(m=10, 20, 50, 100). For each simulation setup, we generated 100 datasets and obtained the
average value of the computation time.

Analysis of the METSIM study exomechip data

To investigate the cross-phenotype roles of low frequency and rare variants on amino acids,
we analyzed data on 8545 participants of the METSIM study on whom all 9 amino acids
(Alanine, Leucine, Isoleucine, Glycine,Valine, Tyrosine, Phenylalanine, Glutamine,
Histidine) were measured by proton nuclear magnetic resonance spectroscopy(Teslovich et
al., 2018). Individuals were genotyped on the Illumina ExomeChip and OmniExpress arrays
and we included individuals that passed sample QC filters (Huyghe et al., 2013). The
kinship between the individuals was estimated via KING (version 2.0) (Manichaikul et al.,
2010). We adjusted the amino acid levels for age, age? and BMI and inverse-normalized the
residuals. The phenotype correlation matrix after covariate adjustment is shown in Figure 3
and Supplementary Figure S1. Subsequently, we estimated the genetic heritability matrix
and the residual covariance matrix using the MPMM function from PHENIX (Dahl et al.,
2016) R package.
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We included rare (MAF < 1%) nonsynonymous and protein-truncating variants with a total
rare minor allele count of at least 5 for genes that had at least 3 rare variants leaving 5207
genes for analysis. We set a stringent significance threshold at 9.6 x 107 corresponding to
the Bonferroni adjustment for 5207 genes. Further, we also considered a less stringent
threshold of 1074, corresponding to a candidate gene study of 500 genes, as suggestive to
study the associations which were not significant but close to the threshold.

Type | Error simulations

We estimated empirical type | error rates of the Multi-SKAT tests with and without related
individuals. For unrelated individuals, we simulated 5, 000 individuals and 9 phenotypes
based on the correlation structure for the amino acids phenotypes in the METSIM study
data. For related individuals, we simulated 5, 000 individuals using the kinship matrix for
randomly chosen METSIM individuals (see the Method section). We performed association
tests and estimated type | error rate as the proportion of p-values less than the specified a
levels. Type | error rates of the Multi-SKAT tests were well maintained at @ = 1074, 107>
and 2.5 x 1078 for both unrelated and related individuals (Table 1), which correspond to
candidate gene studies of 500 and 5000 genes and exome-wide studies to test for all 20, 000
protein coding genes, respectively. For example, at level a = 2.5 x 1075, the largest
empirical type | error rate from any of the Multi-SKAT tests was 3.4 x 1075, which was
within the 95% confidence interval (Cl = (1.6 x 1075, 4 x 107%)).

Power simulations

We compared the empirical power of the minPhen (Bonferroni adjusted minimum p-value
for the phenotypes) and Multi-SKAT tests. For each simulation setting, we generated 1, 000
sequence datasets of 5, 000 unrelated individuals and for each test estimated empirical
power as the proportion of p-values less than a = 2.5x107, reflecting Bonferroni correction
for testing 20, 000 independent genes. Since the Hom and Het tests are identical to hom-
MAAUSS and het-MAAUSS, respectively, and using PhC is identical to both GAMuUT (with
projection phenotype kernel) and MSKAT, our power simulation studies effectively compare
the existing multiple phenotype tests.

In Figure 1, we show the results for 5 phenotypes with compound symmetric correlation
structure with the correlation 0.3 or 0.7, where 30% of rare variants (MAF < 0.01) were
positively associated with 1, 2 or 3 phenotypes. Since it is unlikely that all the phenotypes
are associated with the region, we restricted the number of associated phenotypes to at most
3. In most scenarios, PhC, PC-Sel and Het had greater power among the Multi-SKAT tests
with fixed phenotype kernels (i.e. Hom, Het, PhC and PC-Sel) while minP, maintained high
power as well. For example, when the correlation between the phenotypes was 0.3 (i.e. p=
0.3) and SKAT kernel was used for the genotype kernel % g, if 3 phenotypes were associated
with the region, minP and PhC were more powerful than the other tests. If the correlation
between the phenotypes was p = 0.7 and Burden kernel was used for genotype kernel Zg,
Het, PC-Sel and minP had higher power than the rest of the tests when 2 phenotypes were
associated. It is noteworthy that Hom had the lowest power in all the scenarios of Figure 1.
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Figure 2 demonstrates scenarios involving 6 phenotypes and clustered correlation structures
where PhC was outperformed by other choices of the phenotype kernel X .. When all three
phenotype clusters had associated phenotypes and the correlation within the clusters was low
(o =0.3) (Figure 2, upper panel), Hom and minP tests outperformed PhC when the SKAT
kernel was used. This may be because that the phenotype correlation structure did not reflect
the genetic association pattern. When 2 small clusters had high within-cluster correlation (o
=0.7) and one large cluster had low within-cluster correlation (o = 0.3) (Figure 2, lower
panel), Het and minP had higher power than PhC.

When 20% of causal variants were trait-decreasing variants (80% trait-increasing), the
power of Multi-SKAT tests with Burden .z was reduced (Supplementary Figure S2 and S3).
This is because the association signals were attenuated due to the mix of trait-increasing and
trait-decreasing variants. Since SKAT is robust regardless of the association direction, power
with SKAT .5 was largely maintained. The relative performance of methods with different
Zpgiven X s was quantitatively similar to the results without trait-decreasing variants.

Further, we estimated power of minP¢qm, Which combines tests across phenotype (X ) and
genotype X s kernels. The power of minPyy, was evaluated for the compound symmetric
phenotype correlation structure presented in Figure 1 and was compared with the two minP
tests of SKAT (minP-SKAT) and Burden (minP-Burden) X s kernels. Figure 3 shows
empirical power with and without trait-decreasing variants. When all genetic effect
coefficients were positive (Figure 3, left panel) the performances of minP-SKAT and minP-
Burden were similar for both the situations where the correlation between the phenotypes
were low (i.e. p=0.3) and high (i.e. p = 0.7). When 20% of genetic effect coefficients were
negative (Figure 3, right panel), as expected, the power of minP-Burden was substantially
decreased. Across all the situations, the power of minPy,was similar to the most powerful
minP with fixed genotype kernel Z 5. When 50% of variants were causal variants and all
genetic effect coefficients were positive (Supplementary Figure S4, left panel), minP-Burden
was more powerful than minP-SKAT, and minP¢,, had similar power than minP-Burden.

Overall, our simulation results show that the omnibus tests, especially minP.qm, had robust
power throughout all the simulation scenarios considered. When X s and X o were fixed,
power depended on the model of association and the correlation structure of the phenotypes.
Overall, the proposed Multi-SKAT tests generally outperformed the single phenotype test
(minPhen), even when only one phenotype was associated with genetic variants.

Application to the METSIM study exomechip data

Inborn errors of amino acid metabolism cause mild to severe symptoms including type 2
diabetes(Stan¢akova et al., 2012; Wirtz et al., 2012, 2013) and liver diseases(Tajiri and
Shimizu, 2013) among others. Amino acid levels are perturbed in certain disease states, e.g.,
glutamic and aspartic acid levels are reduced in Alzheimer disease brains(Allan Butterfield
and Pocernich, 2003); Isoleucine, glycine, alanine, phenylalanine, and threonine levels are
increased in cerebo-spinal fluid (CSF) of individuals with motor neuron disease(de
Belleroche et al., 2003). To find rare variants associated with the 9 measured amino acid
levels, we applied the Multi-SKAT tests to the METSIM study data(Teslovich et al., 2018).
The MAF spectrum of the genotyped variants is shown in Supplementary Figure S6,
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showing that most of the variants are rare variants. We estimated the relatedness between
individuals by KING (Manichaikul et al., 2010), and coheritability of the amino acid
phenotypes and the corresponding residual variance using PHENIX(Dahl et al., 2016)
(Supplementary Figure S1). Among the 8,545 METSIM participants with non-missing
phenotypes and covariates, 1,332 individuals had a second degree or closer relationship with
one or more of the METSIM participants. A total of 5, 207 genes with at least three rare
variants were included in our analysis. The Bonferroni corrected significance threshold was
a =0.05/5207 = 9.6 x 1075, Further we used a less significant cutoff of a = 1074 for a gene
to be suggestive. After identifying associated genes, we carried out backward elimination
procedure (Appendix C) to investigate which phenotypes are associated with the gene. This
procedure iteratively removes phenotypes based on minP.yny, p-values.

QQ plots for the p-values obtained by minPhen and Multi-SKAT omnibus tests (minP and
minPqym) are displayed in Figure 4. Due to the presence of several strong associations, for
the ease of viewing, any p-value < 10712 was collapsed to 10712. The QQ plots are well
calibrated with slight inflation in tail areas. The genomic-control lambda (A g() varied
between 0.97 and 1.04, which indicates no inflation of test statistics. Table 2 shows genes
with p-values less than 10~ for minPhen or minP¢oy,. Table 5 shows SKAT-O p-values for
each of the gene - amino acid pairs. Among the eight significant or suggestive genes
displayed in Table 2, minPym provides more significant p-values than minPhen for six
genes: Glycine decarboxylase (GLDC [MIM: 238300]), Histidine ammonia-lyase (HAL
[MIM: 609457]), Phenylalanine hydroxylase (PAH [MIM: 612349]), Dihydroorotate
dehydrogenase (DHODH [MIM: 126064]), Mediator of RNA polymerase 1l transcription
subunit 1 (MEDI [MIM: 604311]), Serine/Threonine Kinase 33 (S7TK33[MIM: 607670]).
Interestingly, PAH and MED1 are significant by minP.,n,, but not significant by minPhen.
PAH encodes an Phenylalanine hydroxylase, which catalyzes the hydroxylation of the
aromatic side-chain of phenylalanine to generate tyrosine. MEDX is involved in the regulated
transcription of nearly all RNA polymerase I1-dependent genes. This gene does not show
any single phenotype association, but cross-phenotype analysis produced evidence of
association. Using backward elimination we find that Phenylalanine and Tyrosine are the last
two phenotypes to be eliminated (Supplementary Table S2). We have provided a detailed
description of the function and clinical implications of the significant and suggestive genes
in Supplementary Table S4.

Among other genes, GLDC has the smallest p-value. Variants in GLDC are known to cause
glycine encephalopathy (MIM: 605899) (Hughes, 2009). To investigate whether our results
were supported by single phenotype associations, we applied SKAT-O to each of the 9
amino acid phenotypes. Univariate SKAT-O test with each of these phenotype reveals that
this gene has a strong association with Glycine (p-value = 2.5 x 10754, Table 5). Among the
variants genotyped in this gene, rs138640017 (MAF = 0.009) appears to drive the
association (single variant p-value = 1.0 x 10764). Variants in HAL cause histidinemia
(MIM: 235800) in human and mouse. This gene shows significant univariate association
with Histidine (SKAT-O p-value = 3.2 x 1078, Table 5) which in turn is influenced by the
association of rs141635447 (MAF = 0.005) with Histidine (single variant p-value = 3.7 x
10713). Similarly, variants in DHODH, which have been previously found to be associated
with postaxial acrofacial dysostosis (MIM: 263750), have significant cross-phenotype
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association although the result us mostly driven by the association with Alanine (SKAT-O p-
value =1.4 x 10797, Table 5). ALDH1L 1 catalyzes conversion of 10-formyltetrahydrofolate
to tetrahydrofolate. Published results show that common variant rs1107366, Skb upstream of
ALDH1IL 1, is associated with Glycine-Seratinine ratio (Xie et al., 2013). Down-regulation
of BCATZin mice causes elevated serum branched chain amino acid levels and features of
maple syrup urine disease.

Table 3 shows p-values of Multi-SKAT kernel and minP with two genotype kernels (SKAT
and Burden). Among phenotype kernels, PhC and Het generally produced the smallest p-
values. We further applied Multi-SKAT tests without kinship adjustment on the whole
METSIM study individuals. As expected, this produced inflation in QQ plots
(Supplementary Figure S5).

To directly compare our results with existing methods we applied GAMuT, DKAT and
MSKAT to the METSIM dataset. Since these methods cannot be applied to related
individuals, we eliminated 1332 individuals that were related up to second degree, leaving us
7213 individuals. Table 4 shows p-values of different methods on the eight significant or
suggestive genes displayed in Table 2. Since DKAT and GAMuUT had nearly identical p-
values when the same kernels were used, DKAT p-values were not shown in Table 4. For
unrelated individuals, as expected, p-values produced by MSKAT with Q statistic, GAMuT
with projection phenotype kernel and PhC (with SKAT X 5) were very similar, and minPgom
provided similar or more significant p-values than PhC. Interestingly MSKAT with Q’
statistic and GAMUT with linear phenotype kernel have less significant p-values than the
other tests. We found that in 5 of the 8 genes in Table 4, using all individuals with kinship
correction produced more significant PhC and minP¢q, p-values than using only unrelated
individuals. Further, we have listed the top 10 genes for each of PhC, GAMuT and MSKAT
with unrelated individuals (Supplementary Table S4). Except for the genes in Table 4, no
other genes were found to be significant or suggestive.

Overall, our METSIM amino acid data analysis suggests that the proposed method can be
more powerful than the single phenotype tests as well as existing tests, while maintaining
type | error rate even in the presence of the relatedness. It also shows that the omnibus tests
(minP and minPyp,) provides robust performance by effectively aggregating results of
various kernels.

Computation Time

When Zpand Z s are given, p-values of Multi-SKAT are computed by the Davies method
(Davies, 1980), which inverts the characteristic function of the mixture of chi-squares. On
average, Multi-SKAT tests for a given Zpand Z g required less than 1 CPU sec (Intel Xeon
2.80 GHz) when applied to a dataset with 5000 independent individuals, 20 variants and 10
phenotypes (Supplementary Table S1). With the kinship adjustment for 5000 related
individuals, computation time was increased to 3 CPU sec. Since minP¢qm requires only a
small number of resampling steps to estimate the correlation among tests, it is still scalable
for genome-wide analysis. In the same dataset, minP¢,, required 4 and 10 CPU sec on
average without and with the kinship adjustment, respectively. Further, Multi-SKAT given
Zpand X g, is computationally equivalent to MSKAT and takes less than 1 CPU-sec for up to
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20,000 samples, with 20 variants (Supplementary Figure S7 A), while GAMuUT takes
considerably more time than these two. The performance of minP¢qn is similar to GAMuUT
for small and moderate sample sizes (7.5 and 7.1 CPU-secs respectively for 10,000 samples)
and performs better than GAMUT for larger sample sizes (14.9 and 34.6 CPU-secs
respectively for 20,000 samples). Computation time of all the methods were slightly
increased when the number of variants were 100 (Supplementary Figure S7 B). Analyzing
the METSIM dataset with minPgg, required 10 hours when parallelized into 5 processes.

In this article, we have introduced a general framework for rare variant tests for multiple
phenotypes. As demonstrated, Multi-SKAT gains flexibility with regard to modeling the
relationship between phenotypes and genotypes through the use of the kernels Zpand Z .
Many published methods, including GAMuT, MSKAT and MAAUSS, can be viewed as
special cases of the Multi-SKAT test with corresponding values of ~pand Z g, which
illuminates the underlying assumptions of these methods and their relationships. In addition,
by unifying existing methods to the common framework, our approach provides a way to
combine different methods through the minimum p-value based omnibus test. Our method
can also adjust for sample relatedness. From simulation studies we have found that the
proposed method is scalable to genome-wide analysis and can outperform the single
phenotype test and existing multiple phenotype tests. The METSIM data analysis
demonstrated that the proposed methods perform well in practice.

It is natural to assume that different genes follow different models of association. For some
genes, the effect of the variants on the phenotypes might be independent of each other, thus
best detected by the Het phenotype kernel for %5, while for others, the effects might be
nearly the same and best detected by the Hom phenotype kernel. If the kernel structures are
chosen based on prior knowledge and the selected X 5 and Z »do not reflect underlying
biology, the test may have substantially reduced power. The omnibus test, which uses the
minimum p-value from the various choices of kernels, has been a useful approach under
such situations in genetic association analysis (Lee et al., 2012b; Urrutia et al., 2015; Zhan et
al., 2017). We applied this ominibus test to Multi-SKAT and used a Copula to obtain p-
values. As seen in simulation studies and real data analysis, our omnibus approaches (minP
and minPypy,) are scalable to genome-wide analysis and provide robust power regardless of
underlying genetic models.

Multi-SKAT retains most of the desirable properties of SKAT. The asymptotic p-values of
all the Multi-SKAT tests, other than minP and minP.,, can be analytically obtained via
Davies’ method. The p-value calculations for minP and minP.,,, depend on a resampling
based approach but a reliable estimate can be obtained using a small number of resampling
steps. Thus, computationally all the Multi-SKAT tests are scalable at the genome-wide level.
This method also allows the inclusion of prior information through weighting of variants.

Additionally, Multi-SKAT can adjust for the relatedness among study individuals by
accounting for their kinship matrix. As shown in Supplementary Figure S5, in the presence
of related individuals, lack of adjustment for relatedness can produce inflated type | error
rate. Since Multi-SKAT is a regression based approach, it effectively incorporates the
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relatedness by including a random effect term for kinship. Type | error simulation and
METSIM data analysis show that our approach produced more significant p-values than
alternative methods, like GAMUT and MSKAT, while controlling type I error rates.

Although Multi-SKAT provides a general framework for gene-based multiple phenotype
tests, the current approach is limited to continuous phenotypes. In the future, using a
generalized mixed effect model framework, we aim to extend Multi-SKAT to binary
phenotypes.

In summary, we have developed a powerful multiple phenotype test for rare variants. The
proposed method has robust power regardless of the underlying biology and can adjust for
family relatedness. Our method can be a scalable and practical solution to test for multiple
phenotypes and will contribute to detecting rare variants with pleiotropic effects. All our
methods are implemented in the R package MultiSKAT (see Web Resource).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendices
A. Principal Component (PC) Kernel

Let L ;be the loading vector for the 47 PC, which produces the #7PC score Pj= YL, In
PCA-based analysis, PC scores are used as outcomes instead of original Y. Since the genetic
information regarding the phenotypes may not be confined to the top few PCs (Aschard et
al., 2014), we first consider using all PCs. Let P= (P, -** Pg). Since PCs are orthogonal, we
assume genetic effects to multiple PCs are heterogeneous, which resulted in

0 = (vec(P) - vec(jip))'{(G2,G") @ (Vi V3 | vec(P) = vec(iip)}  (14)
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where /i, is the mean of ~under the null hypothesis and ‘7P is the estimated covariance
matrix between the PC’s. ‘71, will be a diagonal matrix since PCs are orthogonal. Equation

(14) can be written as

0 = {vec(Y) — vec(ﬁ)}T{ (GE,6NH ® (L?;I\??LT)]{vec(Y) —vec())  (15)

where L = (Lq, -, Lg) isa Kx KPC loading matrix. Equation (15) shows that by using

2p pC

effects of the PC’s do not need to be assumed to be heterogeneous. Any kernel structure that
is applicable to the test statistic in equation 4 can be applied here as well.

= \7L\7;1‘7;1LT\7, we can carry out PC-based tests. It is to be noted that the genetic

B.: Relationship between Multi-SKAT and existing methods

For the ease of algebraic expressions, we will consider that all the K phenotypes have
residual variance 1. For the general case of different residual variances, X should be

replaced by T;IZPT;1 where 7,,= diag(oy, -, o), ok being the residual standard error of

k" phenotype.

B.1. MSKAT
The Qstatistic of MSKAT(Wu and Pankow, 2016) is given by

Qussiar = vecS)T(WW & V™ yvee(s,),  (16)

where S.= GT(Y — i) is a matrix of score statistics (Wu and Pankow, 2016). Using row-

vectorization properties

vee(S,) = vec(GT (Y = ) = (G @ Dvee(Y — i) = (G ® D{vec(¥) - vee(@)

Then Quyskarcan be written as

{vec(Y) — vec(ﬁ)}T{(GWWGT) RV~ 1 }{vec(Y) —vec()},

which is the Multi-SKAT test statistics with = WiWWand =, = V.

Further, the Q' of MSKAT is given by

Ohskar = VEC(SC)T(WW ® Dvec(S,). (17)
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Using the similar algebra as above, this can be written as
(vee(¥) - vee@) {GWWGT) @ I} {vec(Y) - vec(@))
which is the Multi-SKAT test statistics with 5= WWand =, = 1l
B.2. GAMuUT

Suppose Y - i =7, 4 =HY and Gg7= HG are covariate adjusted phenotype and genotype

matrices where H= /- X(X7 X)~1 X7. With the intercept in X, Y,gand Ggare mean
centered. The covariate adjusted GAMuT test statistics is

(P X )
_ c“c
QGAMuT =

where

T -l I
b Ya dj(Ya dea dj) Ya dj for projection phenotype kernel

C T .
Ya dea dj for linear phenotype kernel

and X = GadjWWngj. Using the fact that YZdeadj / n =V is the estimate of variance after

- . - T _ T _ T . . . -
adjusting covariates and Gugi¥agj =G HY =G'Y (since His a symmetric idempotent

matrix), we show, for the projection kernel

B 1T T
P X) [n = ¥ Y] G WG]

1 1
r(V ZYZdeWWGTYa e 2,
T

1
) vee(WGTY i’ 2y

N —

wal oo
vec(WG yadjv

1 T 1

W6l @V 2yecy

T oo 2.
)| (WG ®V Dy 1)

{vee(Y) — vee(@)} L GWWGT @ V™Y {vec(y) — vee(i))

which is the same as the Multi-SKAT test statistic with Zg = WWWand %, = V.

Similarly for the linear kernel,
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3 T T
tr(PcXc) / n = tr(Ya dea deu djWWGa dj)

T
(WG ® Dyec(¥ ) {WGT @ Dvect )

{vec(Y) = vec()) LGWWGT @ D {vec(Y) = vec(ji))

which is the Multi-SKAT test statistic with g = WiWand x, = V*.

B.3. MAAUSS and MF-KM

There exists two different version of the MAAUSS tests. The homogeneous version of
MAAUSS assumes that the effects of a variant on multiple phenotypes are identical and uses
the following test statistic

Ovianuss — o = vee¥) = vee@) U, ® V-YG @ DWW & 1,1T)GT @ DU, ® V1
(vee(Y) = vec(@))

(18)

which is identical to the Multi-SKAT test statistic with Zg= WiWand =, = 1m1£. The

heterogeneous version of MAAUSS assumes that the effects of a variant on multiple
phenotypes are independent, and uses the following test statistic

Opanuss - uer = vee(¥) —vec@) (1, ® V)G @ DWW & NG @ (I, ® V™ )(vec
(Y) = vec(ir))

(19)

which is identical to the Multi-SKAT test statistic with 5= WWand X, = /. Note that the
test statistic of MF-KM is exactly the same as Qyaaus5-HET:

C.: Backward elimination procedure to identify associated phenotypes

After identifying the gene or region associated with multiple phenotypes, next question
would be identifying truly associated phenotypes. Here we present a simple backward
elimination algorithm to iteratively remove relatively less important phenotypes. A similar
method has previously been applied to identify rare causal variants in an associated gene
(lonita-Laza et al., 2014).

. Step 1. Start with a set of kA phenotypes Phencyrrent= {4, Vo, *** Y, and compute
a Multi-SKAT test association p-value for the set Phencyren: denoted by peyrrent
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. Step 2. Remove each of the phenotypes one at a time from the set Phenc,rens
The resulting set is Phen-i = y1, Vo, ** Vi-1, Vir1 = Vi fori=1, 2, -+, kand
compute the corresponding p-values p_;for that same Multi-SKAT test.

. Step 3. Remove the phenotype jthat leads to the smallest p-value, i.e. j=
argmin{p-y, p-, =+, P-t Update Phencyrentto Phen-;.

. Step 4. Continue removing phenotypes till only 1 phenotype is left.

Supplementary Table S2 shows the backward elimination results of 5 most significant and
suggestive genes in the METSIM study data analysis as per the p-values reported by
minPqom. Although this procedure does not provide a set of phenotypes truly associated, it
provides the relative importance of the phenotypes in driving association signals. For
example, the minP¢ym p-value for GLDC was 2.3 x 10772, When each of the phenotypes
were removed one at a time and the minP.yy, p-values were calculated on the remaining 8
phenotypes, we found that eliminating Isoleucine (lle) actually improved the signal. The
MinPeom p-value of the set of 8 amino acids leaving out Ile was 2.8 x 10773, This indicates
that Isoleucine has very minimal contribution to the association between the amino acids and
GLDC. Subsequently, Valine was the next phenotype to be eliminated indicating that it has
the next lowest contribution after Isoleucine. Carrying out this procedure further, we find
that Glycine is the last phenotype to remain indicating that it is the strongest driver of the
signal. This is in agreement to the single phenotype SKAT-O results (Table 5). Similary for
genes HAL, DHODH, PAH and MEDI, Histine, Alanine, Phenylalanine and Tyrosine were
the most associated phenotypes, respectively. Interestingly for PAH and MED1, single
phenotype p-values are not significant, which suggests that multiple phenotypes are
associated with these genes.
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Figure 1:
Power for Multi-SKAT tests when phenotypes have compound symmetric correlation

structures. Empirical power for minPhen, Hom, Het, PhC, PC-Sel, minP plotted against the
number of phenotypes associated with the gene of interest with a total of 5 phenotypes under
consideration. Upper row shows the results for p = 0.3 and lower row for p = 0.7. Left
column shows results with SKAT kernel X 5, and right columns shows results with Burden
kernel. All the causal variants were trait-increasing variants.
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minPhen
Hom

Het

PhC
PC-Sel
minP

Power for Multi-SKAT tests when phenotypes have clustered correlation structures.
Empirical powers for minPhen, Hom, Het, PhC, PC-Sel, minP are plotted under different
levels of association with a total of 6 phenotypes and with clustered correlation structures.
Middle column shows the empirical powers for different combinations of phenotypes
associated with SKAT kernel Z ; the rightmost column shows the corresponding results with
Burden kernel; left column shows the corresponding correlation matrices for the phenotypes.
The associated phenotypes are indicated in red cross marks across the correlation matrices.

All the causal variants were trait-increasing variants.

Genet Epidemiol. Author manuscript; available in PMC 2020 February 01.



1duosnuepy Joyiny 1duosnuely Joyiny 1duosnuey Joyiny

1duosnue Joyiny

Dutta et al.

Page 26

R p =0.3 B +/- =100/0 R p =0.3 B +/- = 80/20
1]
3
Associated Phenotypes Associated Phenotypes minP-Burden
= minP-SKAT
R p =0.7 B +/- =100/0 R p =0.7 B +/- = 80/20 = minPcom
9]
H
| |:I |:I |:I |:I [I
3
Associated Phenotypes Associated Phenotypes

Figure 3:
Power for Multi-SKAT by combining tests with Zpas Hom, Het, PhC, PC-Sel and Z as

SKAT and Burden when phenotypes have compound symmetric correlation structures.
Empirical powers for minP-Burden, minP-SKAT and minPy, are plotted against the
number of phenotypes associated with the gene of interest with a total of 5 phenotypes under
consideration. Upper row shows the results for p = 0.3 and lower row for p = 0.7. Left
column shows results when all the causal variants were trait-increasing variants, and right
column shows results when 80%/20% of the causal variants were trait-increasing/trait-
decreasing variants.
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QQplot of the p-values of minPhen and Multi-SKAT omnibus tests for the METSIM data.
For the ease of viewing, any associations with p-values < 10712 have been collapsed to

10712,
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