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Abstract

Polygenic risk scores (PRSs) are typically constructed as weighted sums of risk allele counts of 

single nucleotide polymorphisms (SNPs) associated with a disease or trait. PRSs are typically 

constructed based on published results from Genome-Wide Association Studies (GWASs), the 

majority of which have been performed in large populations of European Ancestry (EA) 

individuals. While many genotype-trait associations have generalized across populations, the 

optimal choice of SNPs and weights for PRSs may differ between populations due to different 

linkage disequilibrium (LD) and allele frequency patterns. We compare various approaches for 

PRS construction, using GWAS results from both large EA studies and a smaller study in 

Hispanics/Latinos: the Hispanic Community Health Study/Study of Latinos (HCHS/SOL, n = 

12,803). We consider multiple approaches for selecting SNPs and for computing SNP weights. We 

study the performance of the resulting PRSs in an independent study of Hispanics/Latinos from 

the Women’s Health Initiative (WHI, n = 3,582). We support our investigation with simulation 

studies of potential genetic architectures in a single locus. We observed that selecting variants 

based on EA GWASs generally performs well, except for blood pressure trait. However, use of EA 
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GWASs for weight estimation was suboptimal. Using non-EA GWAS results to estimate weights 

improved results.
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Introduction

Polygenic Risk Scores (PRSs, see Table 1 for acronyms and shorthands) summarize the 

genetic component of a disease or quantitative (continuous) trait and are routinely used in 

public health genetics research for a wide range of applications, such as improving disease 

and trait prediction (Morrison et al., 2007); studying the shared genetic basis between traits 

(Raffield et al., 2017); increasing power by integrating over multiple variants rather than one 

variant at a time; and Mendelian Randomization studies (Voight et al., 2012; Vimaleswaran 

et al., 2013) in which a PRS associated with one trait is used as an instrumental variable in a 

causal analysis of the association of the trait with another outcome. PRSs are typically 

constructed as the weighted sum of risk alleles of single nucleotide polymorphisms (SNPs) 

associated with the trait of interest, where SNPs and weights are usually selected based on 

findings from published studies, such as Genome-Wide Association Studies (GWASs) (Qi et 

al., 2012). However, most GWASs to date have been performed in studies of individuals of 

exclusively or predominantly European genetic ancestry (EA). This poses a difficulty for 

PRS construction in non-EA populations.

Using EA GWAS to select SNPs and choose weights for PRSs in non-EA populations may 

seem like a reasonable approach: Hispanics/Latinos are admixed with European ancestry, 

and previous studies have shown that many genetic EA genetic associations generalize to 

Hispanics/Latinos (Qi et al., 2017; Graff et al., 2017). Furthermore, EA GWASs are 

typically very large, with tens or hundreds of thousands of individuals, therefore having 

large statistical power to detect the most strongly associated variants from genomic 

association regions and obtain precise estimates of effects sizes. In fact, Dudbridge (2013) 

studied power and prediction accuracy of PRSs and suggested that hundreds of thousands of 

individuals may be needed to estimate SNP effects. While such numbers are available in EA 

GWASs, they are not currently available in GWASs of diverse populations such as 

Hispanics/Latinos. For example, in the Hispanic Community Health Study/Study of Latinos 

(HCHS/SOL), there are fewer than 13,000 individuals who consented for genetic studies. Of 

these, about 7,000 individuals participated in a GWAS of diabetes (Qi et al., 2017) which is 

the largest published GWAS to date in Hispanics/Latinos. In contrast, the largest published 

GWAS of diabetes (DIAbetes Genetics Replication And Meta-analysis (DIAGRAM) 

Consortium et al., 2014) meta-analyzed multiple EA studies (N =≈70,000 cases and 

controls), and a smaller number of population studies of other ancestries (including about 

2,500 Mexicans).

There are a number of drawbacks to using EA GWAS for PRS construction in non-EA 

populations. Specifically, linkage disequilibrium (LD) patterns vary across populations, 
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rendering different best available tag SNPs between populations; allele frequencies often 

differ across populations; and, at least for some traits, effect sizes differ between populations 

and allelic heterogeneity exists (The International HapMap Consortium, 2005; Musunuru et 

al., 2012). Admixed populations, such as Hispanics/Latinos, may have different genetic 

architecture and effect sizes at a genetic association region compared to an ancestral 

population due to gene-gene (epistasis) or gene-environment interactions, or because a 

causal variant is monomorphic in one ancestral population (Jain et al., 2017; Qi et al., 2017). 

Belsky et al. (2013) constructed a PRS for obesity based on EA GWAS results and found 

that its utility for an African American (AA) population was low, and much lower than that 

for an EA population. Martin et al. (2017) studied transferability of PRSs constructed based 

on single-ancestry GWASs to other ancestries, and demonstrated that scores inferred from 

EA GWASs may perform poorly in other ancestries. Others have recently shown that PRSs 

are highly associated with genetic ancestry and cautioned against using EA-based PRSs in 

diverse populations (Reisberg et al., 2017; Curtis, 2018). Collectively, these studies highlight 

the need to adapt PRS construction methods to diverse ancestries. Even across Hispanic/

Latino populations, LD patterns and allele frequencies can differ. For example, at 

rs4133185, a SNP on chromosome 17, we see both different allele frequencies (Burkart et 

al., 2018) and distinct LD patterns (see Figures S1-S6 in the Supplementary Methods) across 

multiple background groups with distinct admixture histories in HCHS/SOL.

How to best construct a PRS for a study in a Hispanic/Latino population is still an open 

question. Should one use only the information published in a large, primarily EA study? Or, 

can we use results from a smaller, non-EA study? In particular, will incorporating 

information from these lower-powered (smaller sample size) non-EA GWAS in fact improve 

PRS construction, or will it instead introduce harmful variability? Here, we take a 

systematic, empirical approach to constructing PRSs for Hispanics/Latinos, based on 

published GWASs results from large EA population studies and medium-sized studies of 

Hispanics/Latinos. Specifically, we use GWAS findings from the HCHS/SOL to construct 

and evaluate PRSs in an independent study of Hispanic/Latina women from the Women’s 

Health Initiative (WHI). We support our results with simulations mimicking potential 

genetic architecture within a single, trait-associated genomic region.

Materials and Methods

Let yi be a quantitative trait measured on the ith participant, i = 1,…, n, and xi a k × 1 vector 

of covariates such as confounders. Let g1i,…,gPi be allelic counts or dosages of P 
independent variants associated with yi, and α1,…, αP their effect sizes, so that the additive 

linear model holds:

yi = xiβ + ∑
p = 1

P
gpiαp + ϵi, i = 1, …, n (1)

where ϵi are residual errors. An optimal PRS for yi is Gi
opt = ∑p = 1

P gpiαp, the weighted sum 

with the causal genotypes and their true effects.
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Issues in selection of SNPs for PRSs

In practice, we do not know which are the true causal genotypes for a trait, so we have to 

select a set of SNPs to use in our PRS. Often, the data we have at our disposal for selecting 

SNPs are derived from a genotyping platform that did not interrogate all sequence 

genotypes, but rather a reduced set of a few million (or fewer) variants. For PRS 

construction, we often have only a set of associated genotypes that likely tag a subset of the 

causal genotypes.

Let gp be a causal genotype in EA populations, and let gp′  be a tag SNP to gp that was 

detected in an association study, perhaps because gp was not genotyped at all. It is well 

known (Pritchard and Przeworski, 2001) that the size of trait association at gp′  is related to 

the LD of gp′  with gp, denoted by ρp, so that αp′ = ρpαp. Given a large enough dataset, we 

expect that the lead variant (the variant with strongest association in the region) will be the 

one with ∣ρp∣ closest to the maximal value 1, among all available (genotyped or imputed) 

variants.

Further complicating this situation is the fact that tag SNPs may differ across populations. 

Assume the simple scenario of a single causal SNP in an association region, with the same 

effect size β in two ancestral populations P1 and P2. Suppose that in the admixed population 

(ADM) the proportion of genomic intervals containing the causal variant inherited from 

populations P1 and P2 is α and (1 − α), respectively. This is demonstrated in Figure 1, which 

shows that even if the same tag SNPs were available in the two ancestral populations P1 and 

P2, and we knew which SNPs were the best tags in each population, it is not clear which is 

the best tag SNP in ADM. This becomes even more complicated when there are multiple 

ancestral populations, when SNP availability differs due to different genotyping platforms, 

and when effect sizes differ between ancestral populations.

PRS construction

SNP selection.—Consider a GWAS performed in an EA study. Association results are 

available for d variants, with p-values p1
e, …, pd

e and effect size estimates b1
e, …, bd

e. Assume 

that almost all variants are also available in a GWAS of individuals with admixed ancestry, 

such as the HCHS/SOL, with corresponding p-values and effect size estimates p1
a, …, pd

a, and 

b1
a, …, bd

a. Based on the information from both EA and HCHS/SOL GWASs, we can perform 

fixed-effects meta-analysis (META) to produce meta-analytic p-values and effect sizes 

p1
m, …, pd

m, and b1
m, …, bd

m. We can also perform generalization analysis (Sofer et ah, 2017a), 

to test the composite null hypothesis that is rejected if an association exists in both the EA 

population and in the HCHS/SOL study, and get r-values for these variants r1
m, …, rd

m.

We created lists of candidate SNPs for PRSs by filtering variants based on these measures 

(pe, pa, pm, rm) and with varying thresholds. We considered the p-value thresholds 5 × 10−8, 

1 × 10−7, 1×10−6, 1×10−5, 1×10−4, 1×10−3, 0.01, 0.05, 0.5 and r-value thresholds 0.05, 0.1, 

0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.99. For generalization analysis, we initially took all 
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variants with p-value < 10−6 in the EA GWAS, then performed generalization analysis using 

these SNPs to compute r-values. Therefore, by construction, smaller lists of SNPs are 

considered using this approach. Finally, we clumped the SNPs using PLINK (Purcell et al., 

2007) to generate a list of SNPs in no or low LD (ρ2 < 0.2), where LD was evaluated using 

the 1000 Genomes EA population panel (1000 Genomes Project Consortium, 2012).

In simulation studies, which focused on the effects of LD and sample sizes, we selected only 

a single lead SNP from the region based on the same criteria described above (lead EA, lead 

in META, etc.), without setting a p-value threshold or clumping.

SNP weights.—The optimal PRS weights reflect the true size of association between each 

SNP in the PRS and the trait. In practice, the size of this association must be estimated. We 

considered the effect size estimates computed in the EA GWAS (be), which may be very 

accurate in the EA population but potentially less appropriate in the admixed population. 

Therefore, we also considered the effect size estimated in a trainig admixed population (ba) 

and the effect size estimated in fixed effects meta-analysis (bm). We also compared these to 

PRSs without weights (or αp = 1 ∀p) because unweighted PRSs are often used in practice 

(Qi et al., 2017; Raffield et al., 2017). We always oriented the alleles to represent trait-

increasing alleles.

PRS evaluation.—To evaluate PRS approaches, we constructed PRSs in an independent 

validation dataset based on SNPs and weights according to the training dataset. Let the PRS 

for participant i in the validation dataset be

PRSi = ∑
j ∈ S

gi jα j

where S  is the selected set of SNPs (which is likely different than the true causal set S), and 

α j is the estimated effect of the jth SNP is the set. We considered two measures for 

evaluation. For simulation studies we used the Root Mean Squared Prediction Error 

(RMSPE), computed by

RMSPE = 1
nv

∑
i = 1

nv
(yi − PRSi)

2
1 ∕ 2

, (2)

across the nv individuals in the validation dataset. In data analysis, we computed the 

variance explained by each PRS in a regression model adjusted for sex, age, and the first five 

principal components (PCs) of genetic ancestry. This was calculated by first fitting a model 

with these covariates, but without the PRS, and obtaining the residual variance denoted by 

σ0
2, then fitting a model that also included the PRS and obtaining the residual variance σg

2. 

The estimated percent variance explained is 100 × (σ0
2 − σg

2) ∕ σ0
2.
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Simulation study

Our simulation studies focused on the impact of LD and variability in the estimation of 

effect sizes, caused by small sample size and admixture, on PRSs, in admixed populations 

with two ancestral populations (compared to the three ancestral populations of Hispanics/

Latinos), CEU (EA) and YRI (African ancestry, AA), for simplicity. Henceforth, we always 

refer to admixed populations as ADM. When distinction is needed, we add subscripts to 

denote sample sizes (an integer representing thousands of individuals) and proportions of 

AA admixture (a number between 0 and 1). We simulated genotypes in a 1Mbp genomic 

region for a large EA sample (nEA = 50,000), a moderately sized admixed sample (ADM12, 

with nADM12 = 12,000), and a small admixed sample (ADM5, with nADM5 = 5, 000). 

Admixture proportions where either 20% or 40% of YRI. These proportions were selected 

based on observed proportions of African ancestries in HCHS/SOL’s Dominican and 

Puerto-Rican background groups respectively (see Figure 2 in Conomos et al. (2016)). We 

simulated quantitative traits under a few potential genetic architectures, assuming one or two 

causal SNPs, which are either shared or different between the two ancestral populations, in 

the region. Each simulation setting was repeated 500 times. Details about simulating 

admixed populations genomic association regions and architectures, are provided in the 

Supplementary Material.

Evaluating similarity between LD patterns

We evaluated the similarity between LD patterns of the simulated populations CEU, 

ADM0.2, and ADM0.4. For each SNP j = 1,…,617 in the simulated genomic region, we 

identified its best tag SNP in CEU, ADM0.2, and ADM0.4 by finding the SNP j′ ≠ j which 

had the highest LD (r2) with SNP j in that sample. Given one of the simulated admixed 

populations, we calculated the proportion of SNPs in the region that had a tag SNP with 

higher LD in CEU compared to second admixed populations (which had different admixture 

proportions), and the other way around.

Using the HCHS/SOL to develop Hispanic/Latino-specific PRSs Previously published EA 
GWASs and traits

We considered three groups of traits with previously published GWAS results: 

anthropometric, comprising of height, body mass index (BMI), hip circumference (HIP), 

waste circumference (WC), and waste-to-hip ratio (WHR) from the GIANT consortium 

GWAS; (Wood et al., 2014; Locke et al., 2015; Shungin et al., 2015) blood pressure traits, 

comprising of systolic and diastolic blood pressure (SBP, DBP), pulse pressure (PP = SBP-

DBP), and mean arterial pressure (MAP=DBP+1/3PP), with GWASs performed by the 

International Consortium of Blood Pressure (ICBP) (Wain et al., 2011; International 

Consortium for Blood Pressure Genome-Wide Association Studies, 2011); and finally, blood 

count traits, including white blood cell count (WBC), platelet count (PLT), and hemoglobin 

concentration (HGB) (Tajuddin et al., 2016; Chami et al., 2016; Eicher et al., 2016). Note 

that for these blood count GWASs, we used just the EA GWAS results and not the 

transancestry results that were also available.
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The Hispanic Community Health Study/Study of Latinos (HCHS/SOL)

The HCHS/SOL is a community-based cohort study following 16,415 self-identified 

Hispanic/Latino participants with initial visits between 2008 and 2011 (Sorlie et al., 2010). 

Participants were recruited into the study in four field centers (Chicago, IL, San Diego, CA, 

Bronx, NY, and Miami, FL) via a two-stage sampling scheme, by which community block 

units were first sampled, followed by households within the block units. Some or all 

household members were recruited. The sampling probabilities were set preferentially 

towards sampling Hispanics/Latinos (LaVange et al., 2010). In total, 12,803 study 

participants consented to genetic studies. Henceforth, we focus on this subset when 

describing the HCHS/SOL population. The HCHS/SOL participants are very diverse, and 

usually self-identify as belonging to one of six background groups: Central American, 

Cuban, Dominican, Mexican, Puerto Rican and South American. Genotyping, imputation, 

and quality control in the HCHS/SOL have been described in Conomos et al. (2016).

Genome-Wide Association Studies in the HCHS/SOL

HCHS/SOL analyses followed the standards developed by the HCHS/SOL Genetic Analysis 

Center and reported in Conomos et al. (2016); Sofer et al. (2016). Table S1 in the 

Supplementary Material summarizes the information about each of these GWASs, including 

sample sizes, specific covariates, trait transformations, and imputation reference panels. In 

brief, analyses used mixed models with variance components due to genetic relatedness, 

household, and block unit sharing, and were adjusted for sex, age, log-transformed sampling 

weights (to prevent potential selection bias due to the study design), and the first five 

principal components reflecting ancestry (to control for population stratification). Samples 

sizes ranged from 11,809 to 12,705. GWASs for blood count traits in the HCHS/SOL were 

reported in Schick et al. (2016); Hodonsky et al. (2017); Jain et al. (2017), and GWASs for 

blood pressure (BP) traits were reported in Sofer et al. (2017b).

The Women’s Health Initiative SNP Health Association Resource (WHI SHARe)

The WHI is a long-term health study following 161,808 postmenopausal women aged 50-79 

years old who were recruited from 1993 through 1998 from 40 clinical centers throughout 

the United States (Hays et al., 2003). Ten of the 40 WHI clinical centers with expertise and 

access to specific minority groups (American Indian, black, Asian American or Pacific 

Islander, and Hispanic) were selected to serve as minority recruitment sites. Clinical 

information was collected by self-report and physical examination. A total of 5,469 self-

identified Hispanic Americans (HA) were consented to genetic research and were eligible 

for WHI-SHARe. Due to budget constraints, we randomly selected a subsample of 3,642 

(66.6%) HA women. DNA was extracted by the Specimen Processing Laboratory at the Fred 

Hutchinson Cancer Research Center from specimens that were collected at the time of 

enrollment. All participants provided written informed consent as approved by local human 

subjects committees. Genotype data are from the Affymetrix Genome-Wide Human SNP 

Array 6.0 that contains 906,000 single nucleotide polymorphisms (SNPs) and more than 

946,000 probes for the detection of copy number variants. The genotype data were 

processed for quality control, including call rate, concordance rates for blinded and 

unblinded duplicates, and sex discrepancy, leaving 871,309 unflagged SNPs with a 
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genotyping rate of 99.8% and 3586 HA women used in the current analysis. Genotype 

Imputation was carried out with MaCH. For imputation in HA samples, we used reference 

panel of HapMap III CEU + MEX (Mexican ancestry in Los Angeles, California) + YRI 

samples for a total of 1,387,466 SNPs (MAF > 1%), of which 1,368,178 SNPs met the 

quality threshold of r2 > 0.3 (Reiner et al., 2012).

Results

Simulations

Our simulations focused on a single, 1Mbp genomic region (locus), which contains 617 

SNPs. We first evaluated the similarity of LD patterns between potential training samples 

(EA, ADM training dataset) and the test ADM dataset, and then evaluated the combined 

impact of LD, genetic architecture, and variability in effect estimates on PRS performance.

LD patterns in the admixed samples are more similar to each other than to EA samples

Table 2 reports how often each training sample (EA or training ADM) provided a tag SNP 

having higher LD with the true causal SNP in the test ADM dataset. The tag SNPs in CEU 

and the training ADM population were often the same (46-50% of the time). When they 

differed, the tag SNP identified in the training ADM population was usually a better tag of 

the causal SNP in the test ADM population.

Performance of PRSs in the simulated test datasets

Our simulation study considered four different scenarios of genetic architecture at the locus, 

focusing only on the effect of LD, sample sizes, and admixture proportions, and assuming 

that effect sizes were the same across populations. Details are provided in the 

Supplementary Material. For each choice of causal SNP(s) we repeated the simulation 500 

times, constructing 12 PRSs each time (all combinations of the four selection and three 

weight estimation approaches), and we recorded the median RMSPE for each PRS across 

the 500 repetitions.

Results are visualized in figures depicting the distributions of the median RMSPEs across 

the various choices of causal SNPs in each of the simulation scenarios. Figure 2 provides 

these distributions for two simulation scenarios, where the test dataset was a small admixed 

population with 40% African ancestry (ADM5,0.4) and the training datasets were a large EA 

sample and a moderately sized sample of admixed individuals with 20% African ancestry 

(ADM12,0.2,). Figures corresponding to all other scenarios and settings are provided in the 

Supplementary Material, Figures S7-S10.

In almost all simulation scenarios, SNP selection by ADM training dataset and weights 

calculated by ADM (regardless of SNP selection approaches) performed the worst. Only in 

the simulation scenario in which there were two causal SNPs with one being polymorphic 

only in YRI, computation of weights in the ADM training data is sometimes advantageous 

over EA weights. However, this was true only when ADM12, 0.2, was the training dataset, but 

not when ADM12,0.4, was the training dataset. Other than that, both EA and META SNP 

selections and weights constructions usually performed similarly, with a few more settings 
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in which META weights outperformed EA weights. We do note that all types of PRS 

suffered from outlying scenarios: specific combinations of causal SNP(s) in which one PRS 

produced extremely large RMSPEs. However, on average we see better performance of 

PRSs based on the META and EA GWAS relative to the other two selection approaches 

when the causal SNPs’ effect sizes are the same across populations.

Performance of PRSs in the Women’s Health Initiative dataset

We constructed PRSs for 3,642 Hispanic/Latina women from the WHI based on 

combinations of results from EA and HCHS/SOL GWASs. Figure 3 demonstrates the 

highest variance explained obtained by the highest performing EA-based PRS (SNP 

selection and weight estimation by EA GWAS), and the highest variance explained by any of 

the approaches. Table 3 provides information about the best performing EA-based PRS, and 

the overall best performing PRS.

For anthropometric traits, EA GWASs sample sizes ranged from 212-253K individuals. The 

pattern of results was similar for all anthropometric traits, in that optimal PRSs had SNPs 

selected according to EA GWAS, with weights according to the meta-analysis of the EA and 

the HCHS/SOL GWASs. Optimal SNP selection threshold varied, but were quite high 

(0.001-0.5).

For blood count traits, EA GWASs sample sizes were 106-108K individuals. Optimal PRSs 

had SNPs selected according to EA GWAS, but optimal weights differed between traits 

(HCHS/SOL, meta-analysis, or no weights). Interestingly, the number of SNPs used in the 

optimal PRSs for blood count traits is much lower than the number of SNPs used in the 

optimal PRSs for anthropometric traits, while achieving similar variance explained 

percentages. This may reflect different genetic architecture: less SNPs with stronger effects 

for blood count compared to anthropometric traits, and potentially different effect sizes 

between population groups.

For blood pressure traits, EA GWASs sample sizes were 70-74K individuals. There was no 

consistent pattern for the highest performing PRSs, but clearly the EA-based PRSs 

performed poorly. All PRSs explained less than 1% of the variance of blood pressure traits.

Discussion

We studied several approaches for constructing PRSs in Hispanic/Latino populations, using 

GWAS results from independent studies in large populations of European ancestry (EA) and 

medium-sized GWASs in Hispanics/Latinos. We studied the performance of PRSs 

constructed using these approaches on an independent dataset. We investigated 12 traits in 

data analysis. Results differed by trait, and possibly by sample size of the discovery EA 

GWAS (the discovery GWASs in Hispanics/Latinos had about the same sample size for all 

traits). For example, for all anthropometric and blood count traits, which had sample sizes of 

more than 100K individuals in the EA discovery GWAS, optimal SNP selection was based 

on EA GWAS. However, results were not consistent in the blood pressure traits, which had 

smaller EA discovery sample sizes: around 70K individuals. However, for all traits, using 

estimated effect sizes from the EA GWAS as weights was never optimal. Our simulation 

Grinde et al. Page 9

Genet Epidemiol. Author manuscript; available in PMC 2020 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



studies were performed in simplified scenarios in which admixture arises from only two 

ancestral populations (unlike the HCHS/SOL, in which there are three ancestral 

populations), and the effect sizes were the same in both ancestries, and in the admixed 

populations themselves. The LD patterns between our simulated training and testing 

admixed populations were more similar to each other than to the LD pattern in the simulated 

EA population, despite the fact that the two admixed populations had different admixture 

proportions. Therefore, given large enough sample sizes, we expect that the training 

admixed population would have been a better reference for PRS construction in the testing 

admixed population compared to the EA population. However, in these simulations usually 

the PRSs with SNP selection using EA GWAS and weights using META performed best, 

and weights using the admixed training datasets usually performed poorly. These results are 

supported by Dudbridge (2013), who suggested that many thousands of individuals are 

required to effectively calculate effect sizes to be used as SNP weights.

Although the setup of our simulation study focused on a simplified scenario, we can draw a 

few conclusions by comparing the results to that of the data analysis. Based on simulation 

results, if the causal SNPs are the same and have the same effect sizes in all EA and 

Hispanic/Latino populations, we would expect that EA-based SNP selection combined with 

either EA or META weights would have optimal performance. This was the pattern of 

results for the anthropometric traits, however, not for blood count or blood pressure traits. 

Therefore, we hypothesize that there may be differences in effect sizes between population 

groups for those traits. This is in agreement with the work of Coram et al. (2017) who 

assumed different effect sizes between populations, and found that estimating effect for risk 

prediction purposes is useful in ethnically-matched population, while SNP selection using 

EA GWAS is generally appropriate. Moreover, for platelet count, diastolic blood pressure, 

and pulse pressure, EA selection worked better with HCHS/SOL weights. In simulations, 

this happened when either the LD of the selected SNP with the causal one was higher in 

ADM, or when the selected SNP was more frequent in ADM. Both phenomena can be 

related to natural selection (Slatkin (2008), and recent work from Guo et al. (2018), which 

investigated natural selection evidence for complex traits). It is an important avenue for 

future research to study the evidence of natural selection in admixed populations by 

phenotypes, and its implication for construction of PRSs. Finally, in simulation studies, SNP 

selection by META performed well, but not in data analysis. In Tables S6-S7 in the 

Supplementary Material, we demonstrate that the poor performance of META selection in 

the data analysis is due to the use of an EA reference panel for clumping. When we pruned 

SNPs based on base-pair distance instead of LD-clumped, META-based selection performed 

well, and better than EA-based PRSs (that clumped SNPs) for blood pressure and blood 

count traits, and worse for anthropometric traits.

Our study has a few limitations. First, we looked only at the performance of PRSs in 

independent validation datasets, so our results do not inform the construction of PRSs to be 

used in the same study (e.g., a Mendelian Randomization study). Furthermore, the 

independent validation study in our data analysis, WHI, only includes female participants, 

while our training studies, EA GWAS results and the HCHS/SOL, included both males and 

females. As gene-sex interactions likely exist, the PRSs constructed using the general 

population may not be optimal for women. However, this is unlikely to introduce any 
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systematic biases to the SNP selection and SNP weights calculation procedures, so the 

relative performance of the PRS construction approaches should not be impacted. We did 

not investigate the entire literature for each trait and then investigate each of those loci 

separately, as is sometimes done in practice, but instead applied the same algorithm to each 

trait, based on two reference GWASs. While the first approach is useful for investigators 

who work with a single PRS and want to optimize it, it is also more case-dependent, and less 

generalizable. Our systematic approach is easier to apply on a number of traits and is 

appropriate for drawing general conclusions. Finally, we did not use multi-ethnic GWASs 

for PRS construction, but rather focused on EA and and Hispanic/Latino GWASs. Our goal 

was to more clearly delineate properties of the genetic architecture similarities or differences 

between populations. Another limitation of the current study is the lack of systematic 

investigation into generalizability of our results to other types of populations and varying 

sample sizes. It is a topic of future research as results from larger diverse studies become 

available. In the Supplementary Material, we report the results of a secondary analysis 

repeating the same data analysis reported in the manuscript, while evaluating PRSs on WHI 

African American women. Interestingly, the pattern of results is generally similar. This 

suggest that leveraging trans-ethnic information into PRS construction is beneficial.

Other recent methodological work on PRSs has been performed primarily in the context of 

EA populations. Shi et al. (2016) suggested to penalize the estimated effect sizes used in a 

PRS, by fitting an l1-penalized regression. It is a topic of future work to suggest an approach 

that reduces the computational burden of applying shrinkage estimation procedure in mixed 

models and test its utility for improving the effect size estimates in an admixed population 

training dataset. Vilhjálmsson et al. (2015) proposed LDpred for incorporating information 

from GWAS summary statistics and a reference panel to use information from multiple 

SNPs, rather than only the lead SNP, from an association region. While they demonstrated 

this method to be useful under specific priors for genetic architecture, their approach hinges 

on having a good reference panel. Different admixed populations differ in their admixture 

patterns, so the same reference panel may not be appropriate across the board. It will be 

interesting to study and potentially extend Vilhjálmsson et al. (2015)’s approach to admixed 

populations, despite the lack of training and testing samples with the same LD structure. 

Recently, Baker et al. (2018) proposed POLARIS, a method to construct PRSs while 

accounting for LD structure in the test dataset (i.e. not in a reference panel). It is a topic for 

future research to study the POLARIS approach for admixed and diverse populations. Other 

investigators worked on incorporating information from large studies in EA populations and 

a smaller admixed population, specifically focusing on trait prediction. Márquez-Luna et al. 

(2017) considered an approach that constructs a prediction model based on two PRSs, each 

constructed based on GWAS in a different population (EA and admixed population), and 

principal components of ancestry. They used either a validation dataset or cross validation to 

select LD parameters for clumping, p-value threshold for SNP selection, and also to select 

parameters for combining the two PRSs. We performed analyses mimicking their approach, 

by dividing the HCHS/SOL dataset to obtain training and validation datasets. However, this 

approach did not perform well, as determined by variance explained in WHI HA population. 

Details are provided in Section 2.2. of the Supplementary Material.
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In summary, we reported a study about the construction of PRSs for use in general 

association studies performed in studies of admixed populations, specifically focusing on 

Hispanics/Latinos, based on results from independent GWASs in a large EA population, and 

in a small/medium Hispanic/Latino population. Our results indicate that current sample sizes 

of GWAS in Hispanics/Latinos are insufficient for good SNP selection, but utilizing EA 

GWAS for SNP selection and weights construction is useful. Importantly, we found that 

using only EA GWAS for constructing PRSs for blood pressure traits performs poorly in 

Hispanics/Latinos, with EA GWAS sample sizes of 70K individuals. While PRS 

construction depends on both sample size of discovery GWAS and genetic architecture, we 

hypothesize that as sample sizes in GWAS keep increasing, PRSs will become better, even 

when using only EA GWAS. We caution against using a reference panel that does not match 

a GWAS discovery population for SNP clumping. However, more flexible approaches for 

computing PRS weights are useful. We provide files with SNP selections and weights for 

our optimal PRSs validated in WHI HA and AA for the 12 traits investigated here, but also 

recommend that future investigators who construct PRSs for traits with relatively low 

sample sizes, attempt to follow our approach of training and testing on an independent 

dataset to select an optimal PRS. When computational resources are limited, we recommend 

to clump SNPs based on EA GWAS results and compare multiple weighting schemes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Observed SNPs gt1, gt2 likely have different LDs ρ with the unobserved causal SNP g in 

ancestral populations P1 and P2, leading to distinct tag SNPs in the two populations: gt1 in 

P1 and gt2 in P2. In the admixed population (ADM), the associations between the observed 

tag SNPs and the unobserved causal SNP depend on a, the proportion of admixed haplotypes 

that inherited this region from ancestral population P1.
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Figure 2: 
The smoothed distribution of median root mean squared prediction errors (RMSPEs), where 

each median was computed over 500 repetitions of the same simulation setting, and the 

distribution is across all possible choices of causal SNP(s) in the locus. The left panel 

corresponds to the scenario in which there is a a single causal SNP in the locus, which is 

monomorphic in the African population, and the right panel corresponds to the scenario in 

which there are two causal SNPs, one of which is monomorphic in EA. In these figures, the 

training datasets were EA and ADM12,0.2, while the test dataset was ADM5, 0.4. Dashed 

vertical lines correspond to median of the plotted distribution. In the right panel, the lines 

corresponding to EA and meta-analysis (META) weights overlap.
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Figure 3: 
Variance explained by the highest performing EA-based PRS and highest performing PRS 

across all approaches, for all investigated traits, in WHI Hispanic Americans. The numbers 

on the bars represent the number of SNPs used in the PRS. Table 3 provides more details 

about the PRSs, including p-value or r-value threshold, weights used, etc.
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Table 1:

Acronyms and shorthands used in the manuscript.

AA African Ancestry

ADM an admixed population

ADMn an admixed population with n thousands individuals (n ∈ {5,000, 12,000g)

ADMp an admixed population proportion of YRI ancestry equal to p (p ∈ {0.2, 0.4})

ADMn,p an admixed population with n thousands individuals and proportion of YRI ancestry equal to p. (n ∈ {5, 000, 12, 000}, p ∈ 
{0.2, 0.4}).

BMI Body Mass Index

CEU Utah Residents (CEPH) with Northern and Western European Ancestry; from 1000 genomes.

DBP diastolic blood pressure

EA European Ancestry

GWAS Genome-Wide Association Study

HA Hispanic American

HCHS/SOL Hispanic Community Health Study/Study of Latinos

HGB Hemoglobin concentration

HIP Hip circumference

LD Linkage Disequilibrium

MAP Mean Arterial Pressure

Mbp Mega (1,000,000) base-pairs

META meta-analysis of GWASs, one in an EA population and the second in an admixed population

PCs Principal Components

PLT Platelet count

PP Pulse Pressure

PRS Polygenic Risk Score

RMSPE Root Mean Squared Prediction Error

SBP Systolic Blood Pressure

SNP Single Nucleotide Polymorphism

WBC White Blood Cell count

WC Waist Circumference

WHI Women’s Health Initiative

WHI-SHARe Women’s Health Initiative SNP Health Association Resource

WHR Waist-to-Hip Ratio

YRI Yoruba in Ibadan, Nigeria; from 1000 genomes.

Genet Epidemiol. Author manuscript; available in PMC 2020 February 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Grinde et al. Page 20

Table 2:

The mean percentage of SNPs (empirical standard deviation (SD)) in the investigated locus for which the tag 

SNP in each of the training populations had higher LD with the causal SNP in the test population. Means and 

SDs were computed over 500 realizations of the simulated admixed populations. In each simulation repetition, 

the EA training data had 50,000 individuals. The subscripts in ADMn,p provide sample size n ∈ {5,12} (in 

thousands), and p ∈ {0.2, 0.4}, denoting proportion of YRI ancestry.

Training ADM
population

Test population EA better tag Training ADM better tag Same tag

ADM12,0.2 ADM5,0.4 3% (0.3%) 47% (0.4%) 50% (0.4%)

ADM12,0.4 ADM5,0.2 9% (0.6%) 45% (0.6%) 45% (0.3%)
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Table 3:

Characteristics and performance, in terms of variance explained, of the highest performing EA-based PRS and 

highest performing PRS across all approaches, for all investigated traits, in WHI Hispanic Americans. ‘Max N 

EA GWAS’ is the maximum number of participants used for estimating genetic associations in the EA GWAS 

that was used as a training dataset. ‘Fold change’ is the variance explained by the best performing PRS, 

divided by variance explained by the best performing EA-based PRS. The EA-based PRS selected SNPs based 

on EA GWAS results, with pruning based on EA populations from 1000 Genomes. The weights used in the 

PRSs were effect sizes from the EA GWASs. In the ‘best performing PRS’, SNPs were selected based on 

either EA GWASs, meta-analysis of EA and HCHS/SOL GWASs (META), or Generalization analysis (GEN) 

performed based on discovery in EA GWAS and generalization in the HCHS/SOL GWAS. SNP clumping was 

based on EA populations from 1000 Genomes. Weights were based on EA GWAS, Meta-analysis of EA and 

HCHS/SOL GWAS (Meta), HCHS/SOL GWAS (SOL), or ‘None’ - a simple sum of trait-increasing alleles.

Best performing PRS Best EA-based performing PRS

Trait Max
N EA
GWAS

Selection Weights Thresh-
old

#
SNPs

Variance
ex-
plained

Thresh-
old

#
SNPs

Variance
ex-
plained

Fold
change

Anthropometric traits

Height 253,280 EA Meta 0.001 10,719 12.32 0.001 10,719 12.21 1.01

BMI 322,154 EA Meta 0.05 21,683 5.52 0.01 6,585 4.72 1.17

WC 232,101 EA Meta 0.001 1,348 3.65 0.001 1,348 3.48 1.05

HIP 213,038 EA Meta 0.05 22,625 4.37 0.001 1,498 3.96 1.10

WHR 212,248 EA Meta 0.5 158,718 2.23 0.001 1,150 1.75 1.27

Blood count traits

PLT 108,598 EA SOL 0.001 423 4.79 1e-05 114 4.34 1.10

WBC 108,596 EA Meta 0.001 320 4.16 1e-05 69 3.28 1.29

HGB 106,377 EA None 0.01 1,290 1.43 1e-06 44 1.13 1.26

Blood pressure traits

SBP 69,909 META None 1e-05 83 0.70 1e-07 17 0.12 5.83

DBP 69,899 EA SOL 1e-05 67 0.47 5e-08 11 0.08 5.87

MAP 74,064 META None 1e-04 230 0.84 0.05 23,717 0.06 14.0

PP 74,064 GEN SOL 0.7 (r-value) 4 0.50 1e-06 23 0.06 8.33
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