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ABSTRACT
Antibodies are proteins generated by the adaptive immune system to recognize and
counteract a plethora of pathogens through specific binding. This adaptive binding is
mediated by structural diversity in the six complementary determining region (CDR)
loops (H1, H2, H3, L1, L2 and L3), which also makes accurate structural modeling
of CDRs challenging. Both homology and de novo modeling approaches have been
used; to date, the former has achieved greater accuracy for the non-H3 loops. The
homology modeling of non-H3 CDRs is more accurate because non-H3 CDR loops of
the same length and type can be grouped into a few structural clusters. Most antibody-
modeling suites utilize homology modeling for the non-H3 CDRs, differing only in the
alignment algorithm and how/if they utilize structural clusters. While RosettaAntibody
and SAbPred do not explicitly assign query CDR sequences to clusters, two other
approaches, PIGS and Kotai Antibody Builder, utilize sequence-based rules to assign
CDR sequences to clusters. While the manually curated sequence rules can identify
better structural templates, because their curation requires extensive literature search
and human effort, they lag behind the deposition of new antibody structures and are
infrequently updated. In this study, we propose amachine learning approach (Gradient
Boosting Machine [GBM]) to learn the structural clusters of non-H3 CDRs from
sequence alone. The GBM method simplifies feature selection and can easily integrate
new data, compared to manual sequence rule curation. We compare the classification
results using the GBM method to that of RosettaAntibody in a 3-repeat 10-fold cross-
validation (CV) scheme on the cluster-annotated antibody database PyIgClassify and
we observe an improvement in the classification accuracy of the concerned loops
from 84.5% ± 0.24% to 88.16% ± 0.056%. The GBM models reduce the errors in
specific clustermembershipmisclassifications when the involved clusters have relatively
abundant data. Based on the factors identified, we suggest methods that can enrich
structural classes with sparse data to further improve prediction accuracy in future
studies.
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INTRODUCTION
Antibodies are central to adaptive immunity. They are responsible for recognizing a variety
of target molecules known as antigens. They acquire the ability to recognize any one of
a diverse set of targets through two biological mechanisms: V(D)J recombination and
affinity maturation. These gene-editing mechanisms can produce an enormous quantity
of unique sequences, in theory on the order of 1013 (Georgiou et al., 2014; DeKosky et al.,
2016; Hou et al., 2016), though the antibody repertoire of any single individual comprises
only a fraction of the possible sequences. Recent advances in high-throughput sequencing
techniques are permitting unparalleled access to the human antibody repertoire (Boyd &
Crowe, 2016; Luciani, 2016), thus furthering our comprehension of immune response to
vaccination, infection, and autoimmunity. Beyond sequence data, structural information
can provide additional insights about the functions of antibodies. Yet only a very small
fraction of antibodies have solved crystal structures in the Protein DataBank, reported
as 3,087 structures (Dunbar et al., 2014) with a filtered set of 1,940 PDB antibody entries
included in PyIgClassify as of August, 2017 (Adolf-Bryfogle et al., 2015). Most of these
structures aremurine (51.15%) and human (35.51%), while repertoire sequencing is rapidly
expanding our knowledge of other species. It would be challenging and time-consuming to
close the gap between structure and sequence knowledge through experimental structure
determination methods. Computational modeling provides a feasible alternative. For
example, in chronic lymphocytic leukemia, models of antibody structures added prognostic
value over sequence data alone (Marcatili et al., 2013). Besides using modeling to develop
biological understanding, docking studies of antibodies complexed with various antigens
can reveal atomic details of antibody–antigen interactions (Kuroda et al., 2012; Kilambi
& Gray, 2017; Koivuniemi, Takkinen & Nevanen, 2017; Weitzner et al., 2017). Finally, in
antibody design studies, computational approaches can enhance affinity or design an
antibody de novo—without prior sequence information (Lippow, Wittrup & Tidor, 2007;
Kuroda et al., 2012; Dunbar et al., 2016; Baran et al., 2017; Adolf-Bryfogle et al., 2018). To
be useful, however, computational methods must be able to accurately predict antibody
structure.

Typical approaches to antibody structure prediction decompose the problem into three
parts based on known antibody-structural features (Almagro et al., 2014). Antibodies are
typically comprised of a light and heavy chain, both having variable (V) and constant (C)
regions (Fig. 1A). While the constant region is important for signaling, it does not vary
across antibodies and does not greatly affect the antigen-binding function. On the other
hand, the variable region can differ between antibodies and is responsible for recognizing
antigens. The variable region can be further divided into a framework region (FR), with
greek-key β-barrel topology, and six complementarity-determining regions (CDRs), which
are solvent-exposed loops connecting the β-strands comprising the aforementioned β-
barrel (Figs. 1B– 1C). The FR is conserved and has a low rate of mutation across antibodies,
whereas the CDRs, and in particular the CDR H3, are highly mutable in order to be able to
bind a wide variety of antigens (Schroeder, Cavacini & Cavacini, 2010). Thus, the antibody
modeling problem is often decomposed into (1) homology modeling of light and heavy
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Figure 1 Clusters in canonical CDR loops are not balanced in their number of members. (A) IgG car-
toon structure highlighting the variable heavy (VH, red) and light (VL, blue) domains, which bind anti-
gen through their CDR loops. (B) Count of non-redundant CDR loops in the PyIgClassify database for
each VH loop-length and -type cluster, with a gray header background indicating adequate numbers for
GBMmodeling and a white header background indicating inadequate numbers, and a cartoon highlight-
ing the VH beta-strand connectivity and CDR loop location. The CDR H3 is excluded due to its highly
variable nature. (C) Analogous to (B), but for the VL. The most populous cluster and clusters possessing
cis-prolines are colored.

Full-size DOI: 10.7717/peerj.6179/fig-1

FRs, (2) homology modeling of the non-H3 CDR loops, and (3) de novo modeling of the
CDR-H3 loop.

Of these three modeling problems, modeling the CDR-H3 loop is the most challenging.
For example, an average backbone RMSD of 2.8 ± 0.4 Å was reported over eleven
test antibodies and seven modeling approaches in a recent blind assessment (Almagro et
al., 2014). By comparison, FR modeling was found to achieve sub-angstrom accuracy,
on average, for both the light and heavy chains. The quality of the modeling of the
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non-H3 CDRs was uneven, with average backbone RMSDs ranging from 0.5 ± 0.1 to
1.3 ± 1.1 Å for RosettaAntibody models of targets in the same assessment (Weitzner et
al., 2014). This result was surprising since previous studies have found that, when divided
by loop type and length (e.g., H1-10), non-H3 CDRs can be structurally clustered and a
majority (85%) of the loops assume structures similar to just a few loops structures, called
the cluster exemplars (North, Lehmann & Dunbrack, 2011). Whether antibody-modeling
methods have been using this structural information effectively remains an open question.

In the four most popular methods SAbPred (Dunbar et al., 2016), PIGS (Marcatili et
al., 2014), Kotai Antibody Builder (Yamashita et al., 2014) and RosettaAntibody (Weitzner
et al., 2017), non-H3 CDR loops are generally modeled by homology: a CDR loop with
a known structure is chosen as a template structure based on its sequence similarity to
the query CDR loop. However, the use of additional structure-based rules, the scoring
matrix used to determine sequence similarity, and the database of possible templates all
vary among methods.

First, PIGS and Kotai Antibody Builder both use sequence-based rules to identify the
structural cluster of the query CDR sequence. If a potential cluster or clusters can be
identified, the methods constrain the template search to these clusters. While sequence
rules are easy to interpret and can offer deterministic cluster assignments, they are limited
in their adaptability and their power—as the number of known antibody structures and
sequences grows, analysis by hand becomes more challenging. For example, the current
PIGS method uses curated rules from a variety of previous studies (Marcatili et al., 2014).
For the CDR H1 loop, it has four canonical clusters from four different loop lengths with
sequence rules, but according toNorth, Lehmann & Dunbrack (2011) study there are now17
structural clusters and six loop lengths for the CDR-H1 loop (North, Lehmann & Dunbrack,
2011). Another issue is that some clusters lack deterministic, human-identified rules. Kotai
Antibody Builder (Yamashita et al., 2014) devised sequence rules for cluster identification
in accordance with the clusters identified by North, Lehmann & Dunbrack (2011), but in
that publication there are not clear sequence rules for distinguishing among H1 clusters.
In fact, only a fraction of the remaining non-H3 CDR clusters (26/56) have sequence rules
(Shirai et al., 2014) and, worryingly, not all sequence rules are comprehensive. For example,
under the Chothia numbering convention (Chothia et al., 1989), an arginine at position 71
in length 10 CDR-H2 loops can indicate membership to either the H2-10-1 or H2-10-2
cluster, but not all sequences belonging to the H2-10 cluster have that arginine: only 8 out
of 155 CDRs in H2-10-1 and 38 out of 42 CDRs in H2-10-2 do. To address this problem
and the problem of inadequate sequence-based rule coverage, Kotai Antibody Builder
built position-specific-substitution-matrix (PSSM) profiles for each cluster, so that when
sequence rules fail, PSSM-based scoring can be used to suggest a cluster (Shirai et al., 2014).
When assessed using the PyIgClassify antibody dataset, Kotai Antibody Builder correctly
identified the cluster in 90% (Shirai et al., 2014) of all CDR loops, including the CDR H3.
However, it is not clear whether the tested data was excluded from the construction of the
PSSM profiles, so the reported accuracy might have been overestimated.

Recent assessments of antibody structural modeling report varying accuracy of non-
H3 CDR modeling. When RosettaAntibody was benchmarked in a recent study on
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54 antibody targets (Weitzner et al., 2014), non-H3 CDR loop modeling achieved sub-
angstrom backbone RMSD between the homology-modeled and crystal-structure CDRs
in 42/54 (L1), 50/54 (L2), 37/54 (L3), 36/54 (H1), and 42/54 (H2) cases. Meanwhile,
using a set of 689 antibody structures and leave-one-out-cross-validation (LOOCV), PIGS
(Marcatili et al., 2014) was found to capture ∼50% of the modeled non-H3 CDRs with
sub-angstrom backbone RMSDs to the native CDRs structures. Finally, SAbPred (Dunbar
et al., 2016) was tested on the same set of 54 antibodies as RosettaAntibody and resulted
in average backbone RMSDs as 1.09, 0.59, 1.00, 0.88 and 0.90 Å for 5 non-H3 CDRs
(Choi & Deane, 2011). Despite mostly sub-angstrom average RMSDs for all methods and
benchmarks, individual models with RMSDs much greater than an angstrom were not
rare (Choi & Deane, 2011;Weitzner et al., 2014; Almagro et al., 2014), suggesting a need for
special handling of these fail-prone cases. We propose introducing an extra step to non-H3
CDR modeling, where a machine learning approach is used to predict cluster membership
and template structures are only selected from the predicted cluster. We hope to improve
accuracy by preventing templates coming from a structurally distinct cluster with a large
structural distance to the query CDR loop.

Machine learning has been used extensively in protein classification problems. For
example, machine learning based methods have accurately predicted protein function
(Radivojac et al., 2013), folding rate (Corrales et al., 2015), super-family levels for fold
recognition (Jain, Garibaldi & Hirst, 2009), enzyme classes (Kumar & Choudhary, 2012),
and functional binding sites (Si, Zhao & Wu, 2015). For antibody structure, LYRA uses a
similarity-score-based template selection method for modeling the antigen-binding site
(Klausen et al., 2015). Decision-tree-based models have been used on antibodies to predict
the structural classes of antigen binding regions. Chailyan et al. (2011) used a random
forest model to predict non-H3 loop clusters with about 90% accuracy on the data set
available then, which had ∼200 antibodies in 10 clusters, before the more complete North,
Lehmann & Dunbrack (2011) clustering was developed.Messih et al. (2014) focused on the
CDR-H3 loop and compared the template selection quality of a random forest model to the
BLAST similarity score method on a dataset comprising of 401 structures. They found that,
on average, the random forest model produced smaller between-query-template RMSD
values. Today, more structures are available, and North, Lehmann & Dunbrack (2011) have
provided a more comprehensive non-H3 CDR clustering scheme. Therefore, a new study
using state-of-the-art machine learning prediction performance on canonical CDR loops
is needed.

Of many machine learning methods, Gradient Boosting Machine (GBM) was recently
shown to yield the best accuracy for structural classification of proteins in the Structural
Classification Of Protein database (SCOP) (Jain, Garibaldi & Hirst, 2009). The GBM
method builds a succession of a tunable number of weak learners, with each learner being a
decision tree with tunable tree depth and branch splitting rules. During training, incorrectly
classified samples are upweighted in later iterations to converge on final decision trees that
fix errors. Since non-H3 CDR loop cluster prediction is a protein structural classification
problem, we will adapt this approach.
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In this work, we attempted to increase the quality of CDR structural template selection by
using the machine learning method GBM. For a relevant and fair assessment, we evaluated
the quality of template selection rather than that of the final model. The assessment
was performed on the comprehensive dataset PyIgClassify (Adolf-Bryfogle et al., 2015),
comparing the original RosettaAntibody structural template identification method and the
GBM method developed herein. As the disparities of cluster member sizes can affect the
performance of GBM (Sun et al., 2007), we surveyed various techniques for overcoming
the data imbalance problem. Approaches vary, from down-sampling the majority class to
up-sampling the minority classes, or even adding synthetic members to balance the size
of the clusters (Chawla et al., 2002; Blagus & Lusa, 2013). Previous results suggest that the
best approach depends on the specific data set and size (Kuhn & Johnson, 2013a). In our
study, we used the up-sampling strategy.

We show that (1) the new GBM can better identify the query CDR’s structural cluster
than RosettaAntibody and (2) selecting structural templates from within the query cluster
results in lower RMSD templates than selecting outside the cluster. The GBM models also
recapitulate previously known sequence motifs and identify new ones. The GBM models
find that the presence or absence of a single residue on its own is not sufficient to assign
a sequence to a specific structural cluster. Instead, the combination of residues in the
query sequence is important for assigning a probable cluster. These findings suggest that
incorporating machine learning methods may achieve closer-to-native templates selection
during non-H3 CDR homology modeling and realize an automated feature selection,
surpassing the manual curation of sequence rules.

MATERIALS AND METHODS
Dataset
We compared the CDR structural class prediction performance of GBM and blindBLAST
on the non-redundant CDR loops in the PyIgClassify database (http://dunbrack2.fccc.edu/
PyIgClassify/Download/Download.aspx). The structures and clusters were downloaded
in February 2017 by selecting the ‘‘CDRs and clusters of non-redundant sequences for a
given CDR’’ database. The database contains antibody structures from the PDB with 2.8
Å or better resolution and an 0.3 R-factor cutoff, while excluding non-proline cis loops
or loops with highly improbable conformations (North, Lehmann & Dunbrack, 2011). The
set of non-redundant canonical CDR loops from the database is partitioned by CDR loop
type and length. It contains 3,558 total loops from 1,153 distinct antibody structures.

In PyIgClassify, CDR loops are partitioned by type (e.g., L1 or L2) and length (e.g., 10 or
11) and clustered such that themembers of each cluster aremore structurally similar to their
cluster exemplar than to the exemplar of any other cluster, with the exemplar as defined
in North, Lehmann & Dunbrack (2011). The distribution of CDR cluster membership is
unbalanced, with each CDR loop and length pair having one well-populated, dominant
cluster and many sparsely populated, non-dominant clusters. In our study, CDR loops
which were unable to find a nearest neighbor cluster within certain dihedral angle distance
and clusters smaller than three members were merged into a single cluster labelled ‘‘none’’.
The cluster member size distribution by CDR loop and length type is shown in Fig. 1.
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Structural class prediction methods
We employed two methods, blindBLAST and GBM, for CDR structural class prediction.
The blindBLAST approach comes from the current version of RosettaAntibody (Weitzner
et al., 2017), which identifies template non-H3 CDR loops through a BLAST search against
CDRs of the same length and type using the PAM30 matrix to rank sequence similarity.
The BLAST parameters used are:

-substitution_matrix PAM30 -word_size 2 -max_target_seqs 3000 -evalue

2000

The template loop with the most sequence similarity to the query is then selected for
grafting and further modeling. We refer to this approach as ‘‘blindBLAST’’, as it does not
utilize CDR structural cluster information but rather identifies the structural class of a
CDR loop implicitly by choosing a template with the highest bitscore. On the other hand,
we trained supervised GBMmodels for each CDR loop and length type. Each model learns
to predict the structural class (synonymous to the structural cluster) from the labelled CDR
sequences, including the 10 flanking residues on either side. Sequences were vectorized
by one-hot-encoding (Beck & Woolf, 2000): the observed amino acid is represented by a
one and the other possible 19 amino acids are zeros. Thus, a CDR loop of length 10 is
represented by a 30*20 matrix.

We trained our GBM model by searching a hyper-parameter grid in a nested 3-repeat
10-fold CV scheme. As typical for nested CV, the grid search was performed in the inner
loop (consisting of 3-repeat 10-fold CV on the training folds for each iteration of the outer
loop), and model accuracy was assessed over the outer loop. We used CV instead of a single
training/test data split to counter data sparsity. Fold splitting was stratified, ensuring that
the composition of each fold was representative of the whole dataset (Kohavi, 1995). To
counter the unbalanced sample problem, classes with low population were up-sampled
to either 50 or to the number of samples in the most popular cluster, whichever was
lower (Dittman, Khoshgoftaar & Napolitano, 2015; Sun, Kamel & Wang, 2006). The hyper-
parameters yielding the highest estimated model accuracy were used for the final model.
All machine learning was performed using the Caret package (Kuhn, 2008).

Comparisons of different methods
For both blindBLAST and GBM, an error case was identified when the query cluster did not
match to the predicted (template) cluster. The number of error cases and the corresponding
accuracy were calculated for each loop and length type for each repeat and then averaged
over the three repeats. To further analyze failures, we counted and compared the specific
misclassifications (i.e., the number times a cluster A to cluster B misclassification occurred)
for both GBM and blindBLAST.

The χ2 goodness-of-fit test was run on each loop type and length combination to test
whether the blindBLAST errors differed significantly from random assignment. The χ2

was calculated as

χ2
=

∑
Y

∑
X

(εX→Y
blindBLAST−E[ε

X→Y
])2

E[εX→Y]
, (1)
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where εX→Y
blindBLAST is the average error count of misclassifying cluster X to cluster Y

in 3-repeats-10-fold cross-validation, E
[
εX→Y]

= nX ·PY is the expected error count
of misclassifying cluster X to cluster Y , with nX as the number of samples in cluster
X in the dataset and PY as the fraction of cluster Y samples. The significance value
pX→Y corresponding to the X → Y misclassification is then found comparing to the χ2

distribution with degrees of freedom equal to the number of clusters. When χ2 exceeds the
critical value, it means that blindBLAST is not different from random (H0 is rejected).

Additionally, raw error cases counts are confounded by the member size differences
between structural classes, so we can’t compare the values directly. Instead, for a
particular misclassification (e.g., H2-10-1 incorrectly classified as H2-10-4), we compare its
blindBLAST error count to a simulated random error count distribution using a two-tailed
hypothesis test at an 0.05 significance level (Eq. (1)). The random error counts are generated
from 10,000 iterations of randomly assigning cluster identies in proportion to the naturally
occurring rate. The comparison between the average blindBLAST error count over three
repeats of 10-fold cross validation (εX→Y

blindBLAST) and its simulated distribution (εX→Y
n, random)

hinges on the significance value, p, which is determined as the proportion of the random
simulated error counts with smaller values than εX→Y

blindBLAST:

H0 : ε
X→Y
blindBLAST is equivalent to εX→Y

random,

p(εX→Y
blindBLAST)=

∑10000
n=1 I

(
εX→Y
blindBLAST,ε

X→Y
n, random

)
10000

, (2)

where I
(
εX→Y
blindBLAST,ε

X→Y
n, random

)
=

{
1,if εX→Y

blindBLAST≥ ε
X→Y
n, random

0,if εX→Y
blindBLAST<ε

X→Y
n, random

We reject the null hypothesis, if p≤ 0.025 (meaning blindBLAST misclassifies with
significantly lower error than random) or if p≥ 0.975 (meaning blindBLAST misclassifies
with significantly higher error than random). Three categories of misclassifications are
generated using the p values (Table S1).

Structure and sequence metrics
To better understandwhymisclassificationmay have occurred, we computed two structural
metrics and compared each of the metrics between the correct cases and the incorrectly
predicted cases using the blindBLAST. Defining the dihedral angle distance by following
(North, Lehmann & Dunbrack, 2011),

D
(
i,j
)
=

∑N

r=1
D
(
φir ,φ

j
r
)
+D

(
ψ i
r ,ψ

j
r
)
, (3)

where D(θ1,θ2)= 2(1−cos(θ1−θ2)), N is the length of the loop, r is the residue number,
and i and j represent each CDR identity in the CDR pair for the dihedral angle distance
calculation. First, we calculated the dihedral angle distance of every query case to the
exemplar of its corresponding cluster and compared the distance distributions for correctly
and incorrectly classified cases. Second, we counted the number of structural neighbors in
the cognate cluster for all CDR loops. A structural neighbor is defined to be any CDR loop
with dihedral angle distance to the query less than 1/15th of the radius of that cluster, where
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the radius is the largest dihedral distance between the cluster exemplar and any CDR loop
in the cluster. We compared the distributions of the number of structural neighbors for
the correctly and incorrectly classified cases. We also computed the dihedral angle distance
between clusters that are significantly better distinguished by the blindBLAST than random
by the χ2 test, and we compared the values to those of cluster pairs that are found to be
nonsignificant in the χ2 test.

In addition to investigating structural features, we extracted sequence features from
the tuned GBM models based on the scaled feature importance. Absolute importance was
calculated by determining how much a decision tree split reduces Gini impurity (Louppe et
al., 2013) and then summing over all node-size-weighed reductions on splits corresponding
to that feature over all boosting trees (Kuhn & Johnson, 2013b). The importance was then
scaled to values from 0 to 100.

The code for the model generation and analysis can be found in https://github.com/
xlong2/machine-learning-cdr.

RESULTS
BlindBLAST is more accurate than random assignment for all but one
CDR loop type and length
In blindBLAST, cluster assignment accuracies varied among the different CDR loop and
length types frombelow50% to almost 100%according to 3-repeat 10-fold cross-validation,
as shown in Fig. 2A. In most of the cases where the clusters of the query and the template
CDR did not match, a more near-native structural template could be found if the BLAST
search was restricted to within the query cluster (Fig. 2B). This suggests that identification
of the query cluster could lead to selection of lower-RMSD templates.

To improve the accuracy with which we identify query sequences’ CDR clusters, we first
sought to understand why the accuracy of CDR cluster identification varies across loop
lengths and types. We found that accuracy is affected by (1) the number of clusters in each
loop length and type, (2) the number of loops populating each cluster, and (3) the total
number of loops of a given length and type (Fig. S1). First, we found that loops with a larger
number of clusters tended to have lower accuracy. For example, H1-13 has eight clusters
and a blindBLAST assignment accuracy of 78.6± 0.4%whereas H2-9 has three clusters and
an accuracy of 91.2± 0.5%. Second, we found that loops with uniform populations among
clusters had lower accuracy. For example, H2-10 and H1-13 both have eight clusters, so
based on our first observation we expected their accuracy to be similar. It is not: H2-10 has
an accuracy of 73.3 ± 0.1% whereas H1-13 has an accuracy of 78.6 ± 0.4%. Analyzing the
populations of the clusters for each loop, we observed that clusters H2-10-1 and H2-10-2
have a similar number of CDRs whereas clusters H1-13-1 have many more CDRs than
any other H1-13 cluster (Fig. 1). Third, accuracy can be limited by sparse data. We have
observed lower accuracies for loops with a small number of structures for a length and
type. This is exemplified by H1-14, L1-12, L3-8, L3-10 having the worst accuracies among
all loops: 45.1± 0.1%, 72.9± 4.8%, 65.4± 3.7%, 62.0± 2.8% (with a total number of 30,
43, 62, 72 loops), respectively.
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Figure 2 BlindBLAST canmore accurately assign CDR loops than random, and, when assignment
is to the cognate cluster, RMSD is lower. (A) Cluster assignment accuracy comparison between blind-
BLAST and random assignment. Error bars show the standard deviation of the accuracy. For blindBLAST,
the standard deviation is calculated across the 3-repeat 10-fold cross validation, whereas for the random
model it is the standard deviation of accuracies over 10,000 iterations. In all but one case (H1-14), blind-
BLAST determines clusters more accurately than random. (B) Comparison of query–template RMSD
when the loop is selected by BLAST from the incorrect versus the ‘‘corrected’’ cluster. Incorrect cases are
loops with templates from clusters other than the query and they are ‘‘corrected’’ by sequence alignment
to only templates within their cluster. In most cases, BLAST finds lower-RMSD templates within the cog-
nate loop cluster than outside of it, indicating that correct cluster determination from sequence can lead to
a better structural template. However, two loop types (H1-15 and L3-11) do not have lower RMSD tem-
plates in their cognate cluster.

Full-size DOI: 10.7717/peerj.6179/fig-2

In addition, the χ2 goodness-of-fit test suggests that blindBLASTmay classify some loop
and length types no better than a random model (Table S2). The sparse loop and length
types H1-14, H1-15, H2-9, H2-12, L1-10, L1-15, L1-16, L1-17 are included. The more
populated loop and length types including H1-13, H2-10, L2-8 and L3-9 have significantly
‘‘better than random’’ predictions results. Furthermore, errors in each loop and length
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Figure 3 Small distance between a pair of clusters is associated with higher likelihood of misclassi-
fication using blindBLAST. Each point corresponds to a misclassification from cluster X→ cluster Y,
with a minimum of three misclassifications required. The x axis is the ratio of the average error count for
blindBLAST to the average error count for random assignment. The y axis is the dihedral angle distance
between the two clusters’ exemplars. BlindBLAST misclassifications are significantly fewer than random
when dihedral angle distance between exemplars is large.

Full-size DOI: 10.7717/peerj.6179/fig-3

type consist of several different misclassifications. From the random assignment test, we
identified different misclassifications where blindBLAST performs better or worse than
random (Table S3 , Fig. S2). The ‘‘random-like’’ misclassifications typically have smaller
distances between the true and incorrectly predicted cluster than those of the ‘‘better than
random’’ misclassifications (Fig. 3).

We also examined whether where the query CDR is situated inside its cluster affects
its chance of being misclassified. We quantify a query CDR inside its cluster by two
metrics: (1) the dihedral distance of the query CDR to its cluster exemplar and (2) the
number of structural neighbors to the query CDR. The distributions of query–exemplar
dihedral-angle distances (Fig. 4) and suggest that query CDRs that are more distant from
their corresponding cluster exemplars are more likely to be misclassified by blindBLAST.
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Figure 4 CDRs that are misclassified have a relatively large dihedral angle distance to their cluster ex-
emplars.Density of dihedral angle distances between the query loops and their cluster exemplar loops. For
most loop lengths and types (e.g., H1-13, H2-9, L1-15, L3-8, L3-9, and L3-10), the misclassified distribu-
tion has more density at larger dihedral angle distances with respect to the correctly classified distribution.
The skewedness indicates that for many loops, if a query CDR is distant to its corresponding structural ex-
emplar, then it is more likely to be incorrectly classified using the blindBLAST method.

Full-size DOI: 10.7717/peerj.6179/fig-4

The distributions of structural neighbor counts (Fig. 5) suggest that for somewell populated
clusters, such as H1-13-1, H2-9-1 and L3-9-cis7-1, CDRs with fewer neighbors in the same
cluster are more likely to be misclassified. Taken together, these data indicate that query
CDRs that are located centrally within their cluster—those having a small dihedral distance
from the cluster exemplar and many neighbors—are more accurately classified.

GBM improves cluster identification accuracy over blindBLAST
Compared to blindBLAST, GBM models improve average query cluster identification
accuracy from 79.0% ± 0.23% to 83.4% ± 0.11% (Fig. 6). The difference between GBM
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Figure 5 CDRs that are misclassified have fewer structural neighbors, in some clusters. The density
of the number of structural neighbors for loop lengths and types with more than five members, both cor-
rectly and incorrectly classified. Structural neighbors, as defined in the Methods, are all CDRs with dihe-
dral angle distances equal to or less than 1/15th of the cluster radius to a given CDR. The 1/15th is chosen
because it has the best inference. In many clusters, including H1-13-1, H1-13-4, H1-13-5, H1-14-1, H2-
10-6, L1-12-1, L3-10-1, L3-9-1, L3-9-cis7-1, L3-9-cis7-2, the misclassified CDRs have greater density at
lower numbers of structural neighbors, with respect to the correctly classified CDRs. These data suggest
that the number of structural neighbors may affect the chance of correct template selection for a query
structure.

Full-size DOI: 10.7717/peerj.6179/fig-5

and blindBLAST accuracy is greater than the standard deviation calculated across each
repeat of the three repeats in the 10-fold cross-validation scheme. Also, the GBM model
accuracy variance arises from the sparsity of data as evidenced by the larger variance in the
loops with sparser members (Fig. S3).

Next, to determine where the improvement in GBM accuracy is achieved, we
decomposed the overall error count into changes in individual misclassification counts
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Figure 6 The GBMmodel has higher accuracy and lower error count than blindBLAST. (A) Compar-
ison of blindBLAST (red) and GBM (blue) accuracy in assigning CDR sequences to clusters. Error counts
and accuracies are averaged over each of 3 repeats (in the 3-repeat 10-fold CV scheme) for both GBM and
blindBLAST (see Methods). (B) Comparison of the number of erroneously assigned clusters in blind-
BLAST and GBM error count. The GBMmodel universally lowers error count.

Full-size DOI: 10.7717/peerj.6179/fig-6

(Fig. 7) and compared potential sequence rules to key features extracted from the GBM
models (Figs. 8 and 9).

Decomposing the error counts into their constituent misclassifications provided a few
insights into how GBM models outperform the blindBLAST method. For H2-10 loops,
the GBM model improved H2-10-2→ H2-10-X misclassifications over blindBLAST.
For example the H2-10-2→ H2-10-1 error count was reduced from 14 to 8 (Fig. 7A).
Correspondingly, H2-10-X→ H2-10-2 misclassifications increased. For example the
H2-10-6→H2-10-2 error count increased from 4 to 7. Taken together, these observations
indicate that blindBLAST was failing to properly classify CDR loops as H2-10-2. Similarly,
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Figure 7 A detailed dissection of error count reduction by the GBMmodel. (A) All misclassifications
with a difference of three or more in error count between GBM and blindBLAST are plotted. A misclassi-
fication labeled as 1→2 denotes queries belonging to cluster 1 that are incorrectly classified as cluster 2.
(B) Misclassifications involving at least one cis cluster with corresponding blindBLAST and GBM error
counts.

Full-size DOI: 10.7717/peerj.6179/fig-7

we examined L1-11 loops, which are similar to H2-10 in that the second cluster is well
populated (Fig. 1). Yet, L1-11 loop classification improvements came from fewer L1-11-1
loops being misclassified as L1-11-2, rather than fewer L1-11-2 loops being misclassified
as L1-11-X. This case improves less than H2-10, likely because the L1-11-1 and L1-11-2
clusters are already similar, involving just a flip of two residues, while the other dihedrals
have conserved structure. Finally, we investigated improvements for L3-9 and L3-10
loops, both loops that occasionally contain cis peptide bonds (Fig. 7B). For both loops,
we observed that the most drastic improvements came from cases where blindBLAST was
incorrectly assigning loops, some without prolines, to cis clusters; To BLAST, the penalty of
misaligning a proline at the cis position is more or less equal to the penalty of misaligning
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Figure 8 Sequence logos of selected CDR clusters show there are no readily available sequence rules.
(A–D) The amino acid compositions of the L3-9 clusters. There are no universal distinguishing residues,
except for L3-9-1 which does not contain a proline at position 7. (E–G) Similarly, for H2-10-1, -2, and -6
there is not a universal difference in sequences.

Full-size DOI: 10.7717/peerj.6179/fig-8

any other position, but such parity is not required by aGBMmodel, which can assign greater
importance to having a proline in the cis position. Other than promoting the importance
of the proline residue at a cis position using machine learning, another approach is to
filter out any template from a cis-cluster. The GBM method beats the filtering method in
identifying cis-related clusters in several situations. It reduced prediction errors involving
query sequences with cis-proline residue and a non-proline bearing template candidate.
It also reduced errors in which query sequences from one cis-proline cluster incorrectly
identified as some other cis-proline cluster (cis7-1→cis7-2). In some other cases, reduced
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Figure 9 Relative importance can be extracted fromGBMmodels, permitting the identification of key
sequence features. For the best GBMmodel of each loop and length type (though only L3-9 (A), H2-10
(B), L3-10 (C) and L2-8 (D) are shown), the training features were ranked by how much they can help to
reduce the training error on a scale of least to most important (1–100). The features are named by the po-
sition and the residue type. For example, position ‘‘1’’ is the start of the CDR loop and ‘‘−1’’ is the preced-
ing residue of the loop. Data are from 3-repeat-10-fold splitting between the training/validation and the
testing set. As expected for L3-9 and L3-10, two proline containing loops, the presence of a proline at key
positions is the most important feature. For H2-10 and L2-8, 6G and 7R are identified as the most impor-
tant features, respectively. The 6 , 7 and−1 position Gly are the most important features for H2-10 mod-
els. In H2-10-6, GBM captured the conserved glycines at positions 6 and 7, which enable the segment to
adopt the E region conformation in Ramachandran map. Capturing this feature reduced the error count
related to H2-10-6 classification (Fig. 8).

Full-size DOI: 10.7717/peerj.6179/fig-9

errors are those which cis-proline loops are predicted into clusters with non-cis-proline
(cis7-1→2 with nine cases in L3-9-2 having 7th-non-cis-proline, cis7-1→. None with
ten 7th-position-non-cis-proline cases in L3-9-none) which the incorrectly predicted cases
can’t be excluded by proline filtering in the 7th position.
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The proline observation raised the question: were there any other sequence features
missed by BLAST, but identified by GBM models? To this end, we constructed sequence
logos (Crooks et al., 2004) of select CDR loop clusters (Fig. 8) and compared them to
residue features deemed important in our GBM models (Fig. 9). For L3-9, we observed
proline at position 7 in the loop to be key in both cis clusters and themost important feature
for our GBM model. The GBM model additionally identified a key threonine residue at
position 6, which is never present in L3-9-1. Results are similar for L3-10, with proline
residues at cis positions being by far the most important. For H2-10, the most important
feature of glycine at the 6 position, and the second and third important features are glycine
at the −1 and 7 positions. The accuracy improvements arise not from a single residue
presence or absence but from the combination of many features with varying weights in
the training process.

Comparison to other methods
Several other groups have attempted to predict CDR canonical cluster membership. Two
other comparable methods are PIGS and SCALOP. SCALOP (Wong et al., 2018) uses
PSSMs derived for the length-independent clusters identified first by Nowak et al. (2016).
They then assign membership to the highest scoring cluster based on the PSSMs, except
for the L2 CDR which is always assigned to the most populous cluster. On the other hand,
PIGS (Chailyan et al., 2011; Marcatili et al., 2014) classifies based on residue identities at
key positions of γ light chain CDR clusters and heavy chain clusters curated from previous
literature, as well as using clusters found by agglomerative clustering on λ light chain
CDR loops using TM-score distance as distance function. In addition to using different
cluster definitions, both methods self-report measures of accuracy that differ from our
own, confounding direct comparisons with our work.

SCALOP reports precision or the number of predictions identifying a cluster with a loop
within 1.5 Å backbone RMSD to the target, dived by the total number of predictions. They
report precisions of 89.26% for the CDR H1 loop, 93.60% (H2), 95.67% (L1), 99.13%
(L2), and 93.31% (L3). We can compute a similar measure, albeit for different clusters: the
number of correct cluster predictions divided by the number of total cluster predictions.
The GBM achieves precisions of 85.65% (H1), 88.13% (H2), 87.67% (L1), 93.15% (L2),
87.94% (L3) without accounting for the ‘‘none’’ clusters, same as how SCALOP reports
the precisions. These values are unsurprisingly lower as we attempt to classify into greater
number of possible clusters.

In their recent update to the webserver PIGSPro (Lepore et al., 2017), Lepore et al.
report only the average Cα RMSD of all loops (including CDR H3) following alignment
of framework regions. They report an average value of 1.79 ± 1.03 Å. Our GBM achieves
1.03 ± 1.06 Å in a comparison of the CDRs, excluding the H3, identified by our GBM-
improved BLAST. As expected, our reported average RMSD is lower because we are not
considering the difficult-to-model CDR-H3 loop.
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DISCUSSION
In the current implementation of RosettaAntibody, blindBLAST is used to select templates
for the non-H3 CDR loops, so we are interested in investigating and improving cases where
blindBLAST identifies templates with high RMSD. We found that one way to improve
template RMSD is to take advantage of the fact that non-H3CDR loops cluster and to search
for templates within the query cluster. BlindBLAST does not consider cluster information
explicitly, instead it selects templates of the same length and loop type based on sequence
similarity alone. When we tested the ability of blindBLAST to identify clusters compared to
a randommodel, we found multiple and diverse sources of error in cluster classification, so
we turned to machine learning, and in particular a GBM model, to improve classification
accuracy.

When comparing blindBLAST to a random model, we observed various potential
sources, but found no single cause, for inaccurate cluster assignment. First, some loops
with few structures, such as H1-14, H1-15, L3-8 were more difficult to classify than
loops with many structures because many of the associated misclassifications from the
blindBLAST result have random-like error counts (Table S3). Second, other loops with
many unbalanced clusters (i.e., where most loops belong to one cluster and few loops
belong to the remaining clusters), such as H1-13, resulted in low accuracy. For these loops,
identifying a low-RMSD template is confounded by the sparsity of potential templates in the
cognate cluster and the large number of potential templates in the other clusters (Fig. S1).
Assuming a high sequence similarity across all loops of the same length and type, it is likely
that the highest bitscore will arise from an alignment to the most popular cluster. Indeed,
we observe misclassifications from sparsely populated clusters to the most populated
cluster frequently (6/15 times, Table S4) when blindBLAST performs worse than random.
Third, low accuracy was observed when there were two clusters with approximately equal
membership. H2-10 loops, which have two highly populated clusters (1 and 2), are such
an example and account for 2 of the 15 misclassifications when blindBLAST performs
worse than random. Additionally, blindBLAST misclassifies loops where clusters have
small dihedral-angle distance between exemplars, such as between L2-8-1 and L2-8-2 (4.5)
and between L2-8-1 and L2-8-4 (8.8). Furthermore, in many loop and length types, queries
lying at a greater dihedral-angle distance to the cluster exemplar and with a smaller number
of structural neighbors were found to have a greater chance to be misclassified.

With no single clear source for blindBLAST misclassifications, we turned to GBM
models to improve classification accuracy. As shown in Fig. 7, GBM can better distinguish
some cluster pairs with even relatively small amounts of structural data. For example,
misclassifications from L3-9-2 to L3-9-cis7-1, from H2-10-1 to H2-10-6, and from L2-8-1
to L2-8-4 have reduced error counts despite small dihedral-angle distances between their
cluster exemplars (6.9, 6.8 and 8.8, respectively). However, better performance was not
observable for misclassifications involving clusters L2-8-1 and L2-8-2 with only 4.45
dihedral-angle distance between exemplars.

For clusters with relatively large between-clusters-dihedral-angle-distance, GBMmodels
may still not offer any improvement, such as the misclassification between cluster pairs
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H1-13-4 & H1-13-1 or H1-13-6 & H1-13-1 with dihedral-angle distances of 17 and 23
between their exemplars, respectively. Having the lack of improvements for such cases in
mind, along with the fact that most misclassifications with reduced error counts with GBM
models involve clusters that have relatively abundant sample number, we propose that the
abundance of data in the non-dominant clusters of the cluster pairs affects how effectively
GBM models can improve the blindBLAST performance.

Overall, our results suggest that relative to blindBLAST, GBM is able to better capture
features and assign more sensible feature importance with only limited data. GBM
models test results have reduced error count (>3) in nine out of 15 listed blindBLAST
‘‘worse than random’’ misclassifications, in 14 out of 33 listed blindBLAST ‘‘random-
like’’ misclassifications, and 12 out of 21 listed blindBLAST ‘‘better than random’’
misclassifications.

CONCLUSIONS
In summary, our study has demonstrated that a CDR template from the corresponding
structural cluster generally has lower RMSD than a template from the wrong cluster. We
have examined the ability of blindBLAST, which is the method used by RosettaAntibody,
to identify non-H3 CDR loop clusters implicitly. We trained a GBM model for each
CDR loop and length type, and cumulatively improved the canonical structural cluster
identification accuracy from79.0% (±0.23%) test accuracy using the blindBLAST approach
in RosettaAntibody to 83.4% ± 0.11% test accuracy using GBM models. If we remove
the query cases from the ‘‘none’’ clusters because predicting a loop correctly as a ‘‘none’’
cluster may not narrow the template candidates, then the test accuracy improves from
84.5% ± 0.24% for blindBLAST to 88.16% ± 0.056% for the GBM. The GBM model
reduces error counts in all categories of misclassification we benchmarked for blindBLAST.
However, most of the misclassifications with GBM reduced error counts involve clusters
with relatively abundant sample sizes, especially the non-dominant clusters. Thus, the
bottlenecks to further improvement are primarily the member size imbalance between
clusters and data sparsity in clusters. Methods that can generate valid data to enrich
clusters with sparse data may improve the estimation accuracy of the GBM model. A
set of structures that lie within the cluster radius constraint could be generated using
Rosetta, emulating the SMOTE method (Chawla et al., 2002) for enriching samples in
underpopulated classes. Another approach that serves to increase the member sizes of
these clusters is to use semi-unsupervised learning to incorporate the sequenced antibodies
without solved structures.

Furthermore, the GBM models are found incapable of further reducing errors in
misclassifications involving clusters with small dihedral angle distance such as between
L2-8-1 and L2-8-2. To address this limitation, we may wish to reflect the differences of
distances between cluster pairs in the loss function in the machine learning training process
using generated synthetic data, so that mismatches between clusters of greater structural
differences can be penalized more heavily. On the other hand, the sampling and learning
process can also be adjusted by training eachweak learner with an under-sampled dominant
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cluster rather than oversampling the non-dominant clusters used in this study. Finally,
instead of ten residues upstream and downstream of the loop proper used in our method,
antibody framework residues which are neighboring the CDR loop residues are known to
affect loop conformation and could also be included as features (Ting et al., 2010).
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