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Abstract

Objective—A variety of bioengineering systems are being developed to restore tactile sensations 

in individuals who have lost somatosensory feedback because of spinal cord injury, stroke, or 

amputation. These systems typically detect tactile force with sensors placed on an insensate hand 

(or prosthetic hand in the case of amputees) and deliver touch information by electrically or 

mechanically stimulating sensate skin above the site of injury. Successful object manipulation, 

however, also requires proprioceptive feedback representing the configuration and movements of 

the hand and digits.

Approach—Therefore, we developed a simple system that simultaneously provides information 

about tactile grip force and hand aperture using current amplitude-modulated electrotactile 

feedback. We evaluated the utility of this system by testing the ability of eight healthy human 

subjects to distinguish among 27 objects of varying sizes, weights, and compliances based entirely 

on electrotactile feedback. The feedback was modulated by grip-force and hand-aperture sensors 

placed on the hand of an experimenter (not visible to the subject) grasping and lifting the test 

objects. We were also interested to determine the degree to which subjects could learn to use such 

feedback when tested over five consecutive sessions.

Main Results—The average percentage correct identifications on day 1 (28.5 ± 8.2% correct) 

was well above chance (3.7%) and increased significantly with training to 49.2 ± 10.6% on day 5. 

Furthermore, this training transferred reasonably well to a set of novel objects.

Significance—These results suggest that simple, non-invasive methods can provide useful 

multisensory feedback that might prove beneficial in improving the control over prosthetic limbs.

1. Introduction

Recent years have marked major advances in the application of brain machine interfaces 

(BMIs) to partially restore the ability of paralyzed humans to interact with their environment 

(Hochberg et al. 2012; Collinger et al. 2013; Afalo et al. 2015; Bouton et al. 2016; Gilja et 

al. 2016, Ajiboye et al. 2017). One goal of such systems is to extract signals from regions of 

the cerebral cortex that represent desired or intended movements and to use those signals to 

control prosthetic devices. The formulation of the motor commands in the cerebral cortex 

that drive movements, however, is highly dependent on visual and somatosensory inputs. 

While complex voluntary movements can be performed in the absence of vision (e.g., highly 
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skilled musicians often perform with their eyes closed), removal of somatosensory feedback 

via deafferentation dramatically and persistently impairs voluntary movements even in the 

presence of vision (Mott and Sherrington 1895; Sherrington 1931; Lassek 1953a; Twitchell 

1954). This was vividly demonstrated in monkeys who had undergone a complete section of 

the cervical dorsal roots. In those animals, the arm permanently hung flaccidly at the side 

and was not even used to ward off threats such as pin-pricks (Twitchell 1954). While the 

deficits associated with deafferentation were not always so severe (e.g. Taub et al. 1975), 

nevertheless, these results imply that even to initiate movements (and prior to any feedback 

associated with the movement itself) that somatosensory inputs play an important role in 

shaping and organizing neural activity in the motor cortex. As such, the ability of BMIs to 

decode intended movement trajectories from cortical signals may be hampered by deficient 

or absent somatosensory feedback that accompanies many forms of paralysis.

It should be noted, however, that retention of even a modicum of sensory feedback in 

deafferentation studies largely prevents the development of overt impairments (Lassek 

1953b, Twitchell 1954; Galambos et al 1967). As such, the inclusion of even relatively 

simple forms of artificial somatosensory feedback may markedly improve the control of 

motor prosthetics. Indeed, recent studies have explored the utility of artificial feedback 

signals representing tactile stimuli (O'Doherty et al. 2011; Tabott et al. 2013; Klaes et al. 

2014; Kim et al. 2015; Flesher et al. 2016) or information about hand-to-target vectors 

(Dadarlat et al. 2014) to directly stimulate somatosensory cortex with implanted 

microelectrode arrays. Similarly, intraneural stimulation in residual peripheral nerves of 

amputees using implanted microelectrodes have also been used to provide tactile and 

proprioceptive feedback from a prosthetic hand (Riso 1999; Horch et al. 2011; Schiefer et al. 

2016, Oddo et al. 2016).

While such invasive approaches show great promise, there remain a number of challenges 

and limitations, including the necessity (and associated risks and costs) of surgery. A non-

invasive means to provide artificial sensory feedback is to stimulate sensate skin using 

mechanical (e.g. Bach-y-Rita et al. 1969; Chatterjee et al. 2007; Shokur et al. 2016) or 

electrical (e.g. Prior and Lyman 1975; Szeto and Saunders 1982; Kaczmarek et al. 1991; 

Marcus and Fuglevand 2011, Jorgovanovic et al. 2014; Patel et al. 2016; Štrbac et al. 2016; 

Dosen et al. 2017) stimuli. Such feedback systems typically are designed to provide 

information about grip force via sensors placed on the digits of the prosthetic or insensate 

hand (see review by Antfolk et al. 2014). While grip force signals are important, other 

somatosensory information, including hand location, hand orientation, and the degree of 

hand opening, among others, would also seem important to feedback to the user of an upper-

limb prosthetic.

One challenge associated with multiple channels of artificial feedback relates to the 

relatively poor ability of users to efficiently switch attention between and extract desired 

information from the different signals (Szeto 1982; Szeto and Saunders 1982). However, 

previous studies that have examined multichannel somatosensory feedback typically 

involved a single experimental session only (Szeto 1982; Witteveen et al. 2014; Patel et al. 

2016, Štrbac et al. 2016, Dosen et al. 2017). As such, the ability of subjects to learn to use 
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more than one channel of artificial somatosensory information has only been addressed in a 

limited way.

Therefore, the purpose of this study was to determine the ability of healthy human subjects 

to learn to identify objects of varying sizes, weights, and compliances based entirely on 

electrotactile feedback from grip-force and hand-aperture sensors placed on the hand of an 

experimenter (not visible to the subject) grasping and lifting different test objects. Over the 

course of five experimental sessions, accuracy of object identification improved by about 

80%. This suggests that multichannel somatosensory feedback can readily be learned and 

that such non-invasive methods could be used to improve control over upper limb 

prosthetics.

2. Methods and Materials

Eight subjects participated in this study (6 males and 2 female, ages 22-58). Each subject 

participated in 5 experimental sessions on 5 consecutive days. Each session lasted ∼ 1.5 – 2 

hrs. The Human Investigation Committee at the University of Arizona approved the 

experimental procedures, and subjects gave their informed consent to participate.

2.1 Experimental Setup

The experimenter wore a glove fitted with position sensors (Liberty, Polhemus, Colchester, 

VT) placed on the thumb and the index finger (Fig. 1). In addition, a flexible force-sensitive 

resistor (9.5 mm diameter, Flexiforce A201 sensor, Tekscan, South Boston, MA) was 

attached to the glove over the distal, volar surface of the thumb. The specific position of the 

force transducer was adjusted to a location that ensured good contact with the objects during 

gripping. A small foam disk (9.5 mm diameter, 1.5 mm thick) was placed between the glove 

and the force sensor in order to maximize object contact with the force transducer and to 

minimize object contact with un-instrumented portions of the glove. Position and force data 

were recorded in real time (120 samples/s/channel, USB-6001, National Instruments, 

Austin, TX) and delivered to a MATLAB (Mathworks, Natick MA) program for on-line 

processing. The difference in the 3-D locations of the two position sensors was used to 

calculate hand aperture. The force signal was used to indicate the normal (grip) force applied 

normal to the grasped objects.

Based on the force and aperture signals, the MATLAB program controlled a multichannel 

stimulator (STG4008, Multichannel Systems, Reutlingen, Germany) to deliver current-

regulated pulses (described below) to two pairs of surface electrodes (Covidien/Kendall, 

Pediatric cloth ECG Hydrogel Electrodes H59P, Medtronic, Dublin, Ireland) placed on the 

left and right dorsal skin of the neck of the subject (Fig. 1). This region was targeted (similar 

to Marcus and Fuglevand 2009) as it remains sensate in most types of spinal cord injury. 

Also, this region is unobtrusive, readily accessible, and does not subserve other important 

functions. During testing, the subject wore a blindfold and headphones that played Brownian 

noise (noise for which power density falls off progressively for increasing frequencies) to 

obscure any auditory cues that might inadvertently have arisen while the experimenter was 

gripping test objects. A time lag (∼250 ms) between signal detection with sensors and 

delivery of associated current pulses to subject was present due to signal processing delays. 
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While such a time lag was not critical in the present experiments involving relatively slow 

changes in applied forces and finger movements (see below), it could contribute to 

instabilities in real closed-loop control of a prosthetic hand. Software re-design in the future 

could markedly reduce these delays.

2.2 Test Objects

An array of 27 cylindrical containers served as the test objects that subjects attempted to 

identify based on electrotactile feedback during grasping and lifting by the experimenter 

(Fig. 2). Each object differed in terms of its particular combination of width, weight, and 

compliance. The containers were selected to have one of three approximate diameters: 4.5, 

6.5,10 cm. Varying quantities of sand were placed inside the containers to bring each object 

to one of three weights: 100, 300, or 500 g (∼ 1, 3, and 5 N, respectively). Because the 

volumes of some of the small containers were not large enough to hold sufficient sand on 

their own to attain the targeted weights, an additional chamber was affixed beneath those 

objects to hold sand. The containers were made of glass, plastic, or silicone and were 

selected to possess different compliances, estimated to be: ∼0.0, 0.45, and 2.0 mm/N.

Pairs of pliable plastic disks (1.5 cm in diameter, 2 mm thick) were glued on opposite sides 

of each object. These disks were the target sites for thumb and index finger contact with the 

objects by the experimenter. These disks also ensured that the coefficient of friction was 

more-or-less the same for each object grasped and that the locations of contact on a given 

object were the same during repeated trials.

Each test object was labeled with an identifying code and the objects were systematically 

arrayed on a table (Fig. 2) situated between the experimenter and subject. With visual 

inspection and explanation by the experimenter, the systematic spatial arrangement of 

objects helped subjects to easily understand the characteristics of the objects to be tested.

2.3. Electrotactile Feedback

Grip force and aperture signals were transformed into amplitude-modulated current pulse 

trains (200 Hz, 0.2 ms duration, monophasic pulses) delivered independently to the left and 

right set of electrodes, respectively, on the back of the subject's neck. A pulse frequency of 

200 Hz was selected because this is approximately the lowest frequency that evokes 

relatively fused (rather than pulsatile) sensations (Marcus and Fuglevand 2009). Frequency 

modulation was not used to encode sensor signals because there is little change in perceived 

stimulus strength with increasing pulse frequency, particularly above 200 Hz (Kaczmarek et 

al. 1992; Marcus and Fuglevand 2009; Kim et al. 2015). Monophasic pulses were used 

because they seem less susceptible to sensory adaptation than biphasic pulses (Szeto and 

Saunders 1982).

Grip force (F) was converted into stimulus current amplitude (I) using a simple power 

function: I = a·Fb (Marcus and Fuglevand 2009). The coefficient a and exponent b were 

determined individually for each subject based on a brief calibration procedure that involved 

perceptual magnitude estimation to different current intensities. The relationship was 

bounded for each subject by the perceptual threshold current (method to identify threshold 

currents described below), which was mapped to a detected force equivalent to 2 standard 
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deviations above the mean force signal recorded on the unloaded force transducer, and by 

the discomfort threshold current, which was mapped to a grip force = 15 N (i.e. above the 

maximum grip force used in these experiments).

Aperture encoding was based on a simple inverse linear relationship such that current 

amplitudes became stronger with smaller apertures. This type of coding was used based on 

preliminary studies (carried out on the authors) in which it seemed more intuitive for 

stimulus intensity to increase as the thumb and finger closed-in on target objects rather than 

diminish as the thumb and finger approached objects. The relationship was bounded for each 

subject by the perceptual threshold current which was associated with an extended hand 

posture having an aperture of about 12 cm (∼ 2 cm greater than the widest test object) and 

by the discomfort threshold current associated with the thumb and index finger in contact 

with one another (i.e. zero aperture).

2.4 Procedures

2.4.1 Threshold Determination—In each session for every subject, we first identified 

the perceptual threshold for each electrode pair by repeatedly delivering 1-s trains of 

stimulus pulses (1-s inter-train interval) that increased in amplitude from zero in 0.1 mA 

increments. The subject verbally reported when they first detected a sensation, and the 

associated current was deemed the perceptual threshold current.

We then carried out a similar procedure for assessing the discomfort threshold. In this case, 

however, subjects were asked to report when the stimulus became uncomfortable. To reduce 

the total number of stimulus trains delivered for this procedure, current amplitude was 

incremented in 0.5 mA steps beginning at the previously identified perceptual threshold 

amplitude. Electrical stimulation was immediately stopped when the subject reported 

discomfort. This level was then deemed the discomfort threshold.

2.4.2 Training—Once the operating current range was established, the training phase of the 

experiment began. In each session, we first asked subjects to distinguish between three 

objects that varied only in weight but had the same size and compliance (Fig. 3A). Subjects 

were aware of what objects were included in this set and that they only had to guess object 

weight. Initially, subjects viewed the experimenter grasp, lift, and squeeze each of the three 

objects while information about grip force was fed back to the subject through one pair of 

stimulating electrodes (aperture feedback was turned off). Then, with the subject 

blindfolded, the experimenter grasped, lifted, and squeezed each of the three objects in 

random order. After each trial, the subject guessed the weight of the object (light, medium, 

or heavy). The experimenter then informed the subject what was the actual weight of the 

object and the subject was allowed to look at the object. This task was repeated until the 

subject could successfully identify the weight on six consecutive trials without an error. This 

training was then repeated (Fig. 3A) for objects that varied only in size (with only aperture 

feedback provided) and then for objects that varied only in compliance (with both force and 

aperture feedback provided). The training phase enabled the subject to form initial 

associations between stimulus characteristics and object attributes. The training phase lasted 

about 10 – 15 minutes.
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2.4.3 Testing—Upon completion of the training phase, we tested the ability of subjects to 

distinguish among the 27 test objects based on electrotactile feedback provided through the 

two pairs of electrodes. There were three blocks of 27 trials/block with an ∼ 5 min rest 

period between blocks (Fig. 3B). Each trial involved a different object and the order of 

objects was randomized across the entire set of 81 trials (rather than across the 27 trials in a 

block). As a consequence, while each object was tested a total of 3 times in an experimental 

session, it was possible for the same object to be tested 2 or 3 times within a block, and even 

on 2 consecutive trials (e.g. see highlighted object 18 in block 2, Fig. 3B). This was done to 

prevent the subject from discounting objects that had been tested within a trial.

For each trial, and with the subject blindfolded and wearing headphones, the experimenter 

slowly closed his hand to make contact with the object, then grasped, lifted, held the object 

stable, squeezed, replaced the object, and then opened his hand away from the object (see 

Fig. 3C). The duration of an entire grasping sequence was about 10 – 12 s and the timing of 

the different phases was not strictly controlled. The squeezing portion of the trial was 

included to facilitate detection of object compliance. Trial start and the onsets of the holding 

and squeezing phases were reported verbally by the experimenter saying “start”, “hold”, 

“squeeze” respectively and loudly enough to be heard above the noise delivered to the 

headphones. After the object was replaced on the table, the subject was allowed to look at 

the entire array of objects and guess the one just lifted. Subjects could also simply verbally 

report the individual attributes of the object (e.g. “light-weight, small, and stiff”). The 

experimenter then informed the subject which object was grasped.

Subjects repeated these experiments on five consecutive days to assess the degree to which 

subjects could learn to use electrotactile information to identify objects. At the end of the 

fifth session, we also tested the ability of 3 of the 8 subjects to discriminate the 27 objects 

using their natural hand. While blindfolded, with no electrotactile feedback, but while 

wearing a thin leather glove (to help prevent information about object identity being 

conveyed based on texture), an object was placed between the subject's thumb and the rest of 

the digits with the hand held in an open configuration. The subject was then instructed to 

close their fingers onto the object, then to grasp, hold, and squeeze the object mimicking the 

protocol used by the experimenter while lifting each object. The object was then removed 

from the subject's hand and replaced on the table. The subject was then allowed to look at 

the objects and guess the object they just grasped.

2.5 Data Analysis

The main performance measure quantified for each session was the percentage of correct 

identifications, with chance level being 1/27 = 3.7%. To evaluate the effects of learning, a 

Friedman repeated measures one-way analysis of variance on ranks (given the unequal 

variances) was performed on the percentage of correct identifications with session (day 1 – 

day 5) as the factor. In addition, we calculated the percentage correct identifications of each 

attribute (weight, width, or compliance) to determine if some attributes were more readily 

identified than others. In this case, the chance of correctly identifying the level (e.g. light, 

medium, heavy) of a particular attribute (e.g. weight) was 1/3 = 33.3%. A two-way repeated 
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measures ANOVA was performed on these data with attribute (weight, width, compliance) 

and session (day 1 – day 5) as factors.

2.5.1. Machine Learning—We were also interested to know whether sufficient 

information was even theoretically available in the signals fed back to subjects to enable to 

them to discriminate among the test objects. As such, we trained a machine-learning 

algorithm using features extracted from the actual feedback signals delivered to one of the 

subjects. For each trial, the features extracted included: 1) current amplitude measured on 

the aperture channel at the moment current amplitude on the force channel was greater than 

zero (i.e. at object contact), 2) average current amplitude on the force channel during the 

hold phase, 3) the difference in the current amplitudes on the aperture channel between time 

of object contact and the average value of the holding phase, and 4) difference in the current 

amplitudes on the aperture channel between the average of the holding phase and the peak 

value during the squeezing phase. These four features were thought to provide reasonable 

representations of: 1) the width of the object, 2) the weight of the object (since grip force 

should be roughly proportional to object weight), 3) an initial estimate of object compliance 

(since the degree of aperture constriction upon grasping should provide one coarse indicator 

of compliance), and 4) a second estimate of compliance (since the degree of aperture 

constriction during the squeezing phase should provide a separate indicator of compliance). 

Two indicators of compliance were used because for some objects (particularly heavy, 

narrow, and compliant objects), the majority of aperture constriction occurred during the 

initial grasping phase, whereas for other objects (such as lightweight, wide, and compliant 

objects), most of the aperture change occurred during the squeezing phase.

Such feature data along with a categorical indicator of the actual object grasped from all 

trials prior to last block of trials on a given day was used to train the algorithm (nearest 

neighbor, MATLAB Machine Learning Toolbox). As such, the amount of training data 

increased from day 1 to day 5, just as would occur in the case of the subject learning over 

successive days. Accordingly, for day 1, data used to train the algorithm included only that 

from blocks 1 and 2 of that day, whereas for day 2, training data included all the data from 

day 1 plus data from blocks 1 and 2 on day 2, and so on. The trained algorithm for each day 

was then used to predict the identity of the objects grasped during the third block of trials for 

that day. The percentage correct identifications was then determined for each of the five 

days.

3. Results

Across all subjects and test days, the average (±SD) perceptual threshold current was 4.8 

± 0.7 mA whereas the discomfort threshold was 14.0 ± 1.3 mA. Figure 4 shows examples of 

the aperture and grip force signals and the associated stimulus pulse trains delivered to a 

subject while the experimenter grasped a wide, lightweight, and compliant object (Fig. 4A) 

and a narrow, heavy, and stiff object (Fig. 4B). When grasping the wide, lightweight, and 

compliant object (Fig. 4A), the initial contact was registered (vertical arrow) when the 

aperture was about 10 cm and was associated with a force feedback current slightly above 

the perceptual threshold current (∼ 4 mA). During the subsequent initial gripping period, 

there was a slight change in aperture due to the compliance of the object. During the holding 
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phase, the force and aperture feedback currents were both near to the perceptual threshold 

values due to the low grip force and wide aperture of the hand needed to hold this object. 

During the squeezing phase, there was a substantial increase in aperture-feedback current 

due to the marked closure of the hand during the application of the increased gripping force 

on this compliant object.

In contrast, when grasping the narrow, heavy, and stiff object (Fig. 4B), the patterns of 

feedback currents were quite different. Contact (vertical arrow) occurred at a narrow 

aperture of about 5 cm and was associated with a strong aperture-feedback current of about 

12 mA. Once contact was made, force (and associated current) continued to increase in the 

initial period until the gripping force was sufficient to lift and hold the object. The currents 

delivered during the holding phase were high for both aperture and force feedback due to the 

narrow width and relatively large gripping force needed to hold this object. Because of the 

low compliance of this object, there was virtually no change in aperture during the 

squeezing phase of the trial.

Based on the types of feedback signals depicted in Figure 4, subjects attempted to identify 

the 27 different objects that were grasped by the experimenter. Figure 5 depicts the mean (± 

SD) percent correct identifications out of 81 trials for the eight subjects across each of the 

five days. On each day, subjects performed well above chance (3.7%). There was also a 

gradual improvement in performance over days from 28.5 ± 8.2% on day 1 to 49.2 ± 10.6% 

on day 5. This represents a 72% improvement in object identification over the 5 sessions. 

Overall, Friedman repeated measures ANOVA on ranks indicated a significant effect (P < 

0.001) of training day on percentage correct identifications. Post hoc analysis indicated a 

significant difference (P < 0.05) between day 1 and day 4 and between day 1 and day 5.

Also shown in Figure 5 is the outcome of the machine-learning predictions for each of the 5 

days. With increasing amounts of training, machine-learning predictions eventually attained 

100% correct identifications for days 4 and 5, more or less comparable to the level obtained 

when subjects used their own hands to identify the objects (red dashed line, Fig. 5). This 

result implies that sufficient information was available in the feedback signals to enable, 

with practice, accurate identification of the objects.

We also analyzed the ability of the eight subjects to correctly identify each attribute 

associated with an object, namely, its weight, width, and compliance (Fig. 6). A two-way 

ANOVA indicated a significant effect of training day (P < 0.001)) and attribute (P < 0.001) 

on percentage of correctly identified objects with no significant interaction between the two 

factors (P = 0.23). Post-hoc analyses indicated significantly higher percentage correct 

identification of weight on days 3, 4, and 5 compared to days 1 and 2 (P < 0.05). For object 

compliance, post-hoc analyses indicated higher percentage correct on days 4 and 5 

compared to day 1 (P < 0.007) and on day 5 compared to day 3 (P < 0.05). Interestingly, 

post-hoc analysis indicated no significant change in identification accuracy for object width 
across days (P = 0.20). With regard to object attributes, post-hoc analyses indicated that 

object weight was significantly (P <0.001) better identified (overall average of 82.6 ± 8.4%) 

than compliance (overall average 71.4 ± 9.5%) and significantly (P<0.001) better identified 
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than weight (overall average 66.0 ± 10.2%). There was no significant difference (P = 0.062), 

however, in the overall identification accuracies of compliance compared to object width.

We did notice, however, that subjects seemed to have more difficulty identifying the width of 

the most compliant objects. This impression was borne out by statistical analysis. The 

overall average percent correct identification of width varied systematically with 

compliance: 73.1 ± 7.9% for stiff objects, 67.6 ± 7.7% for intermediate compliance objects, 

and 57.4 ± 13.5% for the most compliant objects (P = 0.002, repeated measures ANOVA). 

Post-hoc analyses indicated that percent correct identification of width for stiff and 

intermediate-compliant objects were significantly higher than for compliant objects (P < 

0.05).

Finally, to test how training with electrotactile feedback might generalize to new objects, we 

carried out another set of experiments on the last three subjects. After completion of their 

final training session on day 5, these subjects were then tested on an array of 27 everyday 

objects. These objects had attributes that mostly encompassed but also extended beyond the 

attribute space of the original test objects (Fig. 7). As for the original test objects, pairs of 

pliable plastic disks were glued on opposite sides of each new object to ensure similar 

coefficients of friction across objects. The new objects were presented in 3 blocks of 9 

objects (Figs. 8A, 8B, 8C). There were no practice trials. After visually scanning the objects 

on the table, the subject was blindfolded and put on headphones. The experimenter 

scrambled the locations of the objects (to prevent the subject from guessing objects based on 

slight changes in the location of objects when replaced after grasped). The experimenter then 

grasped, held, and squeezed a randomly selected object using the same procedures as for the 

original test objects. The subject then removed the blindfold and guessed the identity of the 

object. The subject was not informed of the identity of the object grasped. This process was 

repeated until each object in a set had been tested once. The same procedures were then used 

to test the other two sets of objects. The order of object sets was different across the three 

subjects.

Figures 8D, 8E, and 8F show the percentage of correctly identified objects by each subject 

for each of the three sets of new objects. Chance level is indicated as a dashed line (1/9 = 

11%). The average percent correct was 52% for the first set (Figs. 8A, 8D), 41% for the 

second set (Figs. 8B, 8E), and 44% for the third set (Figs. 8C, 8F). No statistics were carried 

out on these results given the small number of subjects. The overall average percent correct 

across all three sets of objects was 46%, which was well above chance. These results suggest 

that over the course of training, subjects learned to interpret electrotactile feedback in a 

general way that they transferred to identify novel objects with reasonable accuracy, rather 

than having simply learned to associate specific stimulus patterns to particular objects.

4. Discussion

A learning-based object discrimination task was used to test the ability of intact human 

subjects to interpret physical information derived from artificial tactile and proprioceptive 

feedback. We found that subjects successfully learned to use such electrotactile feedback to 

discriminate reasonably well among 27 different objects varying in weight, width and 
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compliance. Over five days of training, performance accuracy increased ∼80%. 

Furthermore, this training transferred reasonably well to novel objects. These results 

suggest, therefore, that non-invasive forms of somatosensory feedback, with training, could 

be used to provide important information needed to help control prosthetic or paralyzed 

hands.

4.1. Object Attributes

Haptic identification of real-world objects involves integration of multiple physical attributes 

of an object, including weight, size, compliance, shape, texture, mass distribution, and even 

temperature. Here we provided direct feedback only about two variables: normal contact 

(grip) force on the thumb and the spacing between the thumb and index finger. Grip force 

scales with the weight of an object for a given coefficient of friction between hand and 

object (Johansson and Westling 1984). Because we controlled the coefficient of friction in 

these experiments, attention to grip force feedback alone provided a reasonable source of 

information about object weight. Indeed, object weight was the attribute most accurately 

identified in the present experiments (Fig. 6).

Object width, on the other hand, was the attribute least accurately identified and subjects 

showed little improvement with training (Fig. 6). Identification of object width probably 

required some degree of attention to both aperture and grip force signals. This was needed 

because many objects were compliant, and therefore, the aperture of the hand during steady 

state holding might not reflect the un-deformed width of the object. It should also be kept in 

mind that the skin of the distal finger pads is also relatively compliant at low loads 

(deflection of ∼ 2 mm for 1 N load, Cabibihan et al. 2011), which may have led to some 

small additional errors in detection of object width. Furthermore, the sensitivity of the force 

transducer was limited; as such, the onset of electrotactile feedback of grip force did not 

always coincide with the time of object contact, particularly for compliant objects. In 

informal interviews following the experiments, some subjects indicated that they attempted 

to focus on aperture feedback at the moment they detected object contact from the grip force 

feedback to determine object width. Because grip force feedback could be delayed, this 

likely led to significant errors in estimating width of objects, especially for compliant 

objects. Furthermore, the added cognitive challenge associated with a rapid switch of 

attention from grip-force detection to aperture magnitude may have led to the lower 

accuracy in identifying object width compared to object weight.

Identification of object compliance, in theory, should require concurrent evaluation of 

changes in aperture and grip force signals. We anticipated, therefore, that compliance would 

be the attribute most difficult to accurately identify. However, accuracy associated with 

identifying object compliance was better on every training day than object width (although 

not statistically significant) and showed significant improvement with training (Fig. 6). This 

was likely due to the standardized way in which the experimenter carried out the squeezing 

phase of the object manipulation. Namely, subjects were verbally notified as to when the 

squeezing phase was to ensue. In addition, the experimenter typically applied similar levels 

of force during the squeezing phase to objects of widely varying compliances (see Fig. 4). 

As such, subjects may have focused primarily on aperture changes alone during the 
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squeezing phase to extract information about object compliance, making the task somewhat 

easier than having to simultaneously focus on both changes in force and aperture.

4.2. Task Difficulty and Comparison with other Studies

Despite the ostensibly simple nature of the task involving only two feedback variables, 

subjects reported that the task was demanding and required intense focus. The challenging 

nature of this object discrimination task was born out by the relatively modest overall 

performance. Correct identification of objects occurred about 49% of the time even after five 

days of experience with the task, whereas correct identifications occurred nearly 100% of 

the time with natural feedback from a gloved hand. Because we were concerned that the 

feedback signals we used might not have contained sufficient information to enable full 

discrimination of all objects, we applied machine learning to the same signals delivered to 

one of the test subjects. With sufficient training data (> 3 day's worth), the machine-learning 

algorithm was capable of identifying the test objects at 100% accuracy (Fig. 4). This 

indicates that the feedback signals did possess the requisite information for object 

identification.

Nevertheless, our results from the first day of training were somewhat better than that 

previously reported object discrimination tasks based on artificial somatosensory feedback. 

For example, intrafascicular stimulation that provided feedback of grip force and hand 

aperture in an amputee yielded correct identification of 9 objects (varying in size and 

compliance) about 28% of the time (Horch et al. 2011). For that experiment, the ratio of 

correct identifications to chance was 28%/11% = 2.5. When the task was simplified to 

discriminate among 4 objects, identification success rate was 67.5%, yielding a correct/

chance ratio of 67.5%/25% = 2.7 (Horch et al. 2011). Similarly, subjects using audio 

feedback of grip force from different locations on a robotic hand correctly identified three 

objects about 85% of the time, yielding a correct/chance ratio of 85%/33.3% = 2.6 (Gibson 

and Artemiadis 2014). Likewise, for subjects receiving vibrotactile feedback to explore 4 

virtual objects of different geometric shapes (Martínez et al. 2016), correct identification 

occurred 65% of the time for a correct/chance ratio of 65%/25% = 2.6. In contrast, during 

the first session of the present experiments, the correct/chance ratio was 28.5%/3.7% = 7.7. 

This ratio increased to 49.2%/3.7% = 13.3 with 5 days of experience with this task.

The reasons for the nearly 3-fold larger correct/chance ratio in the present experiments 

compared to the others are not immediately evident. One possibility is that the nature of the 

feedback was substantially different across the studies, including vibrotactile (Martínez et al. 

2016), audio (Gibson and Artemiadis 2014), intrafascicular (Horch et al. 2011), and surface 

electrotactile (present study). While electrotactile feedback can be more accurately 

controlled over larger ranges than for vibrotactile feedback (Szeto and Saunders 1982), this 

would not be the case for audio feedback. For studies involving electrical stimulation of 

somatosensory nerves as feedback in object discrimination tasks, Horch et al. (2011) used 

frequency modulation of stimulus pulses whereas we used amplitude modulation. The 

relative merits of frequency versus amplitude coding for sensory feedback have not been 

resolved. For example, we previously found that perceptual sensitivity to amplitude coding 

of electrotactile feedback was substantially greater than that for frequency coding (Marcus 
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and Fuglevand, 2011), similar to the findings of Kaczmarek et al. (1992). In contrast, Szeto 

and Lyman (1977) found frequency coding (in the 1 – 15 Hz range) superior to amplitude 

coding for electrotactile feedback.

Interestingly, some recent investigations have also deployed mixed stimulus modalities to 

successfully convey different attributes of a signal at a single location simultaneously, 

including frequency and amplitude coding of electrotactile feedback (Choi et al. 2017) and 

amplitude coding of vibrotactile and electrotactile feedback (D'Alonzo et al. 2014). Both 

these studies involved three intensity levels for each of two stimulus modalities for a total of 

nine multimodal signals. Subjects were able to correctly identify multimodal signals 84% 

(Choi et al. 2017) and 56% (D'Alonzo et al. 2014) of the time for correct/chance ratios of 

84%/11% = 7.6 and 56%/11% = 5.1. Those impressive findings indicate that mixed modality 

stimulation may be a promising means to provide somatosensory feedback, particularly 

given the reduction in the total number of stimulation sites that would need to be used.

One clear difference between the present investigation and others is that object identification 

here involved highly controlled haptic movements made by an experimenter whereas in 

other studies, object identification was based on manipulation of objects with myoelectric-

controlled robotic hands (Horch et al. 2011; Gibson and Artemiadis 2014).. As a 

consequence, the feedback signals in the present study were certainly more consistent than 

in studies involving robotically controlled manipulation, thus making discrimination easier. 

Furthermore, object identification in the present study involved a purely passive sensory 

perception task., It is possible that the added cognitive load associated with controlling hand 

movements (Richardson et al. 1981) or the gating of cutaneous sensory signals during 

movement (Chapman 1994) might have interfered with sensory perception during the active 

tasks. The majority of studies comparing the discriminative abilities of active to passive 

touch, however, have found little difference between the two (see Chapman 1994, Prescott et 

al. 2011).

Along these lines, it is important to highlight that the object identification task used in the 

present experiments tested only the perceptual properties of artificial somatosensory 

feedback. The ultimate test of its utility, however, will be in how well such feedback can be 

used to improve control of limb trajectory and object manipulation in artificial or paralyzed 

limbs. Nevertheless, it seemed reasonable as a first step, to test the sensory capabilities of 

electrotactile feedback in isolation before evaluating its possible benefits to the more 

complex situation of limb motor control, as will need to be done in the future.

4.3. Invasive Versus Non-Invasive Feedback

In the past 10 years, there have been remarkable advances in the fabrication of unobtrusive, 

flexible, high-density tactile sensory arrays (e.g. Kim et al. 2011; Hammock et al. 2013). In 

many respects, however, these advances have far outpaced the development of methods to 

deliver and to enable useful interpretation of such rich sensory information by an amputee or 

paralyzed individual. As shown here, and in other studies (e.g. Szeto 1982; Szeto and 

Saunders 1982), interpretation of even two channels of electrotactile feedback represent a 

significant cognitive challenge for human subjects. Part of this difficulty derives from the 

dislocated nature of electrotactile feedback. Namely, sensory signals indicating the state of 
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the hand, for example, are delivered along sensory pathways that normally convey 

information about other parts of the body or even about different sensory modalities (e.g. 

tactile pathways used to transmit proprioceptive information). Consequently, such sensory 

substitution requires considerable cognitive processing. It will be important in the future to 

determine whether, with long-term training, sensory substitution can be beneficially used to 

aid the control of artificial or paralyzed limbs in a fluid and naturalistic way.

One way to make artificial somatosensory feedback more natural and intuitive is to target 

stimulation of residual peripheral axons that, prior to injury, innervated the regions of the 

hand that subsequently are instrumented with artificial sensors on the prosthetic hand (Riso 

1999; Kuiken et al. 2007; Horch et al. 2011, Oddo et al. 2016). Such targeted stimulation of 

residual nerves, however, would not be useful in the case of many spinal-cord injured 

individuals because central lesions may prevent transmission of peripherally-instigated 

signals to the brain. An alternative is to provide somatosensory feedback by directly 

stimulating the somatosensory cortex with implanted electrode arrays (O'Doherty et al. 

2011; Tabott et al. 2013; Klaes et al. 2014; Dardarlat et al. 2014; Kim et al. 2015; Flesher et 

al. 2016). For example, Tabott et al. (2013) showed that the ability of monkeys to estimate 

the strength of electrical stimuli delivered to hand regions of primary somatosensory cortex 

(SI) was just as good as that associated with mechanical stimuli delivered to the skin of 

hand. The ability of the monkeys to judge which finger region of SI was stimulated, 

however, was poorer than that for mechanical stimulation. Flesher et al. (2016) reported 

similar results for a human tetraplegic in response to stimulation of the hand region of SI 

with chronically implanted microelectrode arrays. Despite this promise, a number of 

significant hurdles remain to be overcome before such invasive approaches could 

realistically be deployed for home use in human patients (Bensmaia and Miller, 2014). 

Additionally, it will be important in the future to ascertain whether or not invasive means can 

provide at least equally effective somatosensory feedback as non-invasive approaches (as 

tested here).

Finally, as pointed out in the Introduction, retention of a small fraction of somatosensory 

axons in lesion studies largely prevents obvious motor deficits in experimental animals 

(Mott and Sherrington 1985; Lassek 1953b, Twitchell 1954). Accordingly, even rudimentary 

forms of artificial somatosensory feedback, with training, may provide substantial 

improvements in the control of prosthetic or paralyzed limbs. Indeed, Štrbac et al. (2017) 

have recently shown this to be the case for amputees who significantly increased grasping 

performance over five days of practice using electrotactile feedback to control a myoelectric 

prosthesis. Ultimately, such artificial somatosensory feedback, when combined with vision, 

should markedly enhance and expand the overall ability of prosthetic hands to manipulate 

objects. Indeed it is of interest, both in terms of artificial limb control and normal limb 

control, to determine the relative contributions of vision and somatosensory feedback during 

object manipulation. This could be addressed in future experiments wherein object 

manipulation is compared under conditions involving vision only, artificial somatosensation 

only, and both together.
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Figure 1. 
Experimental setup. A force sensor on the volar surface of the thumb and position sensors 

placed on the dorsal surfaces of the thumb and index fingers were used to extract grip force 

and hand aperture information from the experimenter's hand while grasping various test 

objects. Grip force and aperture signals were processed in near real time by a MATLAB 

program to drive two channels of amplitude-modulated current pulses that were delivered to 

surface electrodes on the left and right side of subject's neck. Subjects wore blindfold and 

headphones (not shown) during testing.
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Figure 2. 
27 test objects that subjects attempted to identify based on electrotactile feedback. Objects 

varied in weight (‘heavy’ = 500 g, ‘medium’ = 300 g, ‘light’ = 100 g), size (‘wide’ ≈10 cm, 

‘medium’ ≈6.5 cm, ‘narrow’ ≈4.5 cm), and compliance (‘stiff’ ≈ 0 mm/N, ‘intermediate’ 

≈0.45 mm/N, ‘compliant’ ≈2 mm/N). Some objects had additional containers fixed beneath 

them to provide chamber for sand needed to bring object to targeted weight.
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Figure 3. 
Overview of training and testing protocols. Numbered rectangles represent individual 

objects. (A) Training involved presentation of three sets of three objects. In each set, objects 

varied in one attribute only and electrotactile feedback associated with that attribute was 

delivered. For the initial trials, subjects viewed the experimenter grasp, lift, and squeeze the 

objects. Then, while blindfolded, the three objects were presented in random order. When 

subjects correctly identified objects on six consecutive trials, the next training set was 

presented. (B) Testing involved 3 blocks of 27 trials separated by ∼5 min of rest. Each object 

was presented three times. The order of presentation was randomized across the 3 blocks. As 

such, an individual object could be presented on two consecutive trials (e.g. object 18 on 

trials 3 and 4 of block 2). (C) Each trial involved a sequence of several phases during which 

the experimenter (E) grasped, held, and squeezed the object. The E verbally notified (red 

text) the subject (S) of the onset of some of the phases.
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Figure 4. 
Example sensor and feedback signals during grasping of two objects: (A) wide, lightweight, 

and compliant object and (B) narrow, heavy, and stiff object. Horizontal arrows on images 

indicate contact points on small disks fixed to objects. Each grasp was divided into three 

phases, an initial phase during which grip force increased to lift and support the weight of 

the object, a steady hold phase, and a squeeze phase during which additional grip force was 

applied to the object to aid in identifying object compliance. Note that vertical axes of 

aperture signals are inverted (i.e. small apertures towards the top) to allow more ready 

comparison to feedback signals. Vertical arrows indicate time at which grip force exceeded 

minimum threshold and force feedback was initiated.
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Figure 5. 
Mean (± SD) percentage correct identifications of the 27 objects based on electrotactile 

feedback for eight subjects over five days (black trace). There was a significant (P< 0.001) 

effect of training day on percentage correct identifications. Post hoc analyses indicated 

significant difference between day 1 and day 4 and day 1 and day 5 (* P < 0.05). The green 

trace shows the performance of the machine-learning algorithm trained on the same signals 

delivered to one of the subjects. The red dashed line depicts the mean performance of three 

subjects using their own hand to identify the objects and the black dashed line indicates 

chance level.
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Figure 6. 
Mean (± SD) percent correct identification of each object attribute for eight subjects over 

five days: weight (black symbols), width (red symbols) compliance (green symbols). The 

dashed line represents the chance level.

Arakeri et al. Page 22

J Neural Eng. Author manuscript; available in PMC 2019 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 7. 
Weights, compliances, and widths of the 27 original test objects (black symbols) and of the 

27 everyday objects (red symbols) that were used to test how well electrotactile training 

transferred to novel objects.
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Figure 8. 
(A), (B), (C) Three sets of 9 items that served as new objects for discrimination based on 

electrotactile feedback during grasping. (D), (E), (F) Percentage of correctly identified 

objects by each subject for each object set shown in (A), (B), (C), respectively. Average 

correct identification across all three sets of objects was 46%. Chance level (11%) is shown 

as a dashed line.
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