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ABSTRACT: Phosphoinositide 3-kinase (PI3Kγ) is a drug target that has been implicated in the treatment of a range of
diseases. We have developed a synthesis of a novel PI3Kγ inhibitor containing a 1,2-dihydro-3H-pyrrolo[3,4-c]pyridin-3-one
scaffold. The key step in the synthesis involved a ruthenium-catalyzed [2 + 2 + 2] cyclotrimerization reaction between a diyne
and an alkoxycarbonyl isocyanate, a previously unreported coupling partner in such a reaction.
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The phosphoinositide 3-kinase (PI3K) family of lipid
kinases catalyze the phosphorylation of the inositol ring

of phosphoinositides. Through this phosphorylation, PI3Ks
control a number of important cellular processes such as
growth, proliferation, and survival.1,2 PI3Kγ, a member of the
most-studied Class I PI3Ks, is activated through G protein-
coupled receptors, and its expression is restricted to the
hematopoietic system.3,4 Inhibitors of PI3Kγ are expected to
have utility in the treatment of autoimmune diseases, such as
multiple sclerosis, due to the role of PI3Kγ in lymphocyte
chemotaxis and in the production of reactive oxygen
species.5−8 The intricate mechanisms involved are still being
elucidated.9 There is also evidence linking PI3Kγ inhibition to
the treatment of cancer and cardiovascular disease.10,11 A
number of selective inhibitors of PI3Kγ have been charac-
terized.5,12−16

Recently, we have described the design and synthesis of
isoform selective inhibitors of PI3Kγ based around a 4-aza-
isoindolinone core (for example, 1) with the potential for the
treatment of multiple sclerosis (Figure 1).5 During the course
of a routine structure activity relationship (SAR) study in that
program, we required access to analog 2. Because 6-aza-
isoindolinones with this substitution pattern had no prece-

dence in the literature at the time,17 we considered the use of
ruthenium-catalyzed [2 + 2 + 2] cyclotrimerization method-
ology described by Yamamoto et al. for the key step of the
synthesis.18 The transition metal-catalyzed [2 + 2 + 2] cyclo-
trimerization reaction between diynes and nitriles or
isocyanates has emerged in recent years as a powerful method
for the assembly of complex pyridines and pyridones in a single
atom-economical and environmentally benign step.19−22

A requirement in our retrosynthetic planning (Figure 2) was
that the R group of 4 be labile so that the desired 6-aza-
isoindolinone scaffold, 3 could be accessed by a simple
deprotection/chlorination/Suzuki sequence on 4. This re-
quired that the key cycloaddition step be carried out between
amide-diyne 5 and an isocyanate 6, bearing a labile appendage
(R). Isocyanates containing easily cleavable pendant groups
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Figure 1. Reported PI3Kγ inhibitor 1 and target analog 2.

Figure 2. Retrosynthetic analysis of 3. The R group of isocyanate 6
needed to be labile to allow its cleavage from synthetic intermediate 4
en route to the 6-aza-isoindolinone scaffold 3.
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have not previously been employed, however, in [2 + 2 + 2]
cyclotrimerization reactions with diynes of any type. In
addition, we needed to confirm that the key cycloaddition
step would tolerate the more drug-like, substituted pyrazole
group present in coupling partner 5.
In the forward direction (see Scheme 1), readily available 1-

(2,2,2-trifluoroethyl)-1H-pyrazol-4-amine23 was alkylated with

propargyl bromide to give 7 in 51% yield. The subsequent
amide coupling of 7 with but-2-yonoic acid gave amide-diyne
5, the precursor for the key cyclotrimerization step. We were
pleased to observe that slow addition of amide-diyne 5 to a
mixture of Cp*RuCl(cod) and ethoxycarbonyl isocyanate in
tetrahydrofuran at room temperature, followed by heating for
20 min at 65 °C, gave cycloaddition product 8 in an
unoptimized yield of 47% as the only detected regioisomer.
To the best of our knowledge, this is the first time that an
alkoxycarbonyl isocyanate has been employed as a reaction
partner in a cyclotrimerization reaction of this type. Acid
hydrolysis of the ethoxycarbonyl group of 8 and subsequent
chlorination with phosphorus oxychloride gave 9, a substrate
suitable for late stage diversification. Suzuki−Miyaura coupling
gave dimethoxypyridine 2 in 77% yield.
Considering that this methodology could be a useful way to

populate our corporate compound collection with novel drug-
like chemical matter, we investigated the scope of the
cyclotrimerization reaction with a range of isocyanates, and
the results are shown in Table 1. The reaction was very
functional-group-tolerant, providing products from the reac-
tion of isocyanates bearing substituents as diverse as ethers
(entries 1 and 7), haloalkanes (entries 2 and 4), an acetal
(entry 3), an ester (entry 5), a thioether (entry 6), and a
sulfone (entry 8). Aryl and heteroaryl isocyanates were
moderately competent coupling partners (entries 9, 11, and
12). The reaction also proceeded smoothly with 2-
isocyanatospiro[3.3]heptane (entry 10) and a substituted
cyclopropyl isocyanate (entry 13). The reason for the
moderate to low yields in some of the cyclotrimerization
reactions was due to a major byproduct, which was
characterized as a dimeric material originating from self-
coupling of the diyne component of the reaction. Further
experimentation will be necessary to minimize this competing
reaction pathway, which appears to dominate as less reactive or

very sterically demanding isocyanates are employed (entries
14−16).
Compound 2 displayed a high PI3Kγ affinity of 14 nM (Ki)

and inhibited the MCP-1 induced chemotaxis of THP-1 cells
with an IC50 of 270 nM. The corresponding values for
compound 1 are 4 and 47 nM, respectively. We hypothesize
that the reason for the loss of potency of 2 in comparison with
compounds from the 4-aza-isoindolinone class, such as 1, is
due to the energy penalty associated with placement of the
heteroaromatic nitrogen of 2 in the hydrophobic environment
surrounding Tyr867 (Figure 3), although this potency loss is
partially offset by the addition of the C7-methyl group to the
core of the scaffold. A detailed report on the SAR at C7 is
forthcoming. Compound 2 was less selective than compound 1
for PI3Kγ over the other class Ia isoforms (fold selectivity over
α/β/δ for compound 1, 65:31:13; for compound 2, 15:8:6).
Much has been reported in the literature regarding the over-

reliance on certain classical chemical reaction types in
medicinal chemistry, which is leading to narrow population
of chemical space.24−27 We believe that addition of more
modern synthetic methodologies to the medicinal chemist’s
toolbox will be important in serving as a source of novel
compounds for the prosecution of the challenging targets and
projects of a biopharma industry currently struggling with an
innovation crisis.28

Scheme 1a

aReagents and conditions: (a) propargyl bromide, K2CO3, DMF, 0
°C to RT, 51%; (b) but-2-ynoic acid, EDCI, DIPEA, DMAP, DCM, 0
°C to RT, 41%; (c) ethoxycarbonyl isocyanate, Cp*RuCl(cod), DCE,
60 °C, 47%; (d) 6 M HCl, THF, 95 °C then POCl3, 95 °C, 68% (2
steps); (e) 2,3-dimethoxy-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-
2-yl)pyridine, Pd(PPh3)4, aq. Na2CO3, DMF, 110 °C, 77%.

Table 1. Scope of the Cyclocotrimerization Reaction
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In summary, we have developed a practical and efficient
synthetic route to a 6-aza-isoindolinone-based inhibitor of
PI3Kγ. The key step involved a ruthenium-catalyzed
[2 + 2 + 2] cyclotrimerization reaction between a diyne and
an alkoxycarbonyl isocyanate, a novel coupling partner in such
a reaction. A rationale was proposed for the reduced PI3Kγ
potency of compound 2 versus analog 1. Further extension of
the scope of the ruthenium-catalyzed [2 + 2 + 2] cyclo-
trimerization methodology by varying the isocyanate compo-
nent produced a small library of structurally diverse analogs.
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