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Abstract

Monocytes and macrophages play critical roles in HIV transmission, viral spread early in 

infection, and as a reservoir of virus throughout infection. There has been a recent resurgence of 

interest in the biology of monocyte subsets and macrophages and their role in HIV pathogenesis, 

partly fuelled by efforts to understand difficulties in achieving HIV eradication. This article 

examines the importance of monocyte subsets and tissue macrophages in HIV pathogenesis. 

Additionally, we will review the role of monocytes and macrophages in the development of serious 

non-AIDS events including cardiovascular disease and neurocognitive impairment, their 

significance in viral persistence, and how these cells represent an important obstacle to achieving 

HIV eradication.
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Pathogenesis

Myeloid lineage cells are targets of HIV infection

By harboring HIV long term without cytolysis [1,2], monocytes and macrophages, compared 

with CD4+ T cells, provide a reservoir of HIV [3,4]. In the circulation, phenotypically 

unique subpopulations of monocytes exist that are distinguished based on size, granularity, 

and expression of surface markers [1,2,5]. In healthy people, cells expressing the 

lipopolysaccharide (LPS) receptor CD14 but not CD16 (classical CD14++CD16− 

monocytes) make up 80–90% of monocytes [5] (Table 1) [6–8]. Inflammation and peripheral 

immune activation during HIV infection are associated with increased numbers of 
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circulating CD14++CD16+ (intermediate) and CD14+CD16++ (nonclassical) monocytes 

[9,10], and the degree of CD16+ monocyte expansion is closely linked to the rate of disease 

progression [11]. Then they can reach 10–50% of circulating monocytes depending upon 

disease state and antiretroviral therapy (ART) status [9–12] (Table 1).

Historically, monocytes have not been considered to be a significant target of HIV infection 

[14,15]. Early studies indicate that even though they are activated and express HLA-DR, 

infection is dependent on their differentiation into macrophages [16,17]. However, more 

recent literature demonstrates that monocytes, particularly the CD16+ intermediate and 

CD16++ nonclassical cells, can be infected by HIV [18,19]. Of relevance, monocytes 

expressing CD16 are thought to have a more mature immune phenotype consistent with 

macrophages, which may partly account for their ability to become infected.

Relative to CD4+ T lymphocytes, monocytes and macrophages are more resistant to 

productive HIV infection as a result of maturation and activation-dependent host factors. 

Differential expression of host restriction factors including SAMHD1 (sterile motif and 

histidine aspartic domain and HD domain-containing protein 1), viperin [virus inhibitory 

protein, endoplasmic reticulum-associated, interferon (IFN)-inducible)], and members of the 

APOBEC (apolipoprotein B mRNA editing enzyme) 3G family can affect productive 

infection of monocytes and macrophages [20–23] (Fig. 1). Classical monocytes, in 

particular, express the low-molecular-weight forms of APOBEC3A and APOBEC3G that 

block HIV reverse transcription [18,24]. In contrast, intermediate and nonclassical 

monocytes express higher-molecular-weight forms of these enzymes that support HIV 

replication [18,21,24].

By hydrolyzing cellular deoxyribonucleotides and reducing the pool of nucleotides available 

for reverse transcription [25], SAMHD1 expression restricts viral replication in monocytes 

and macrophages [26]; cells lacking SAMHD1 are highly susceptible to infection [20]. 

Mechanisms underlying the antiviral activity of viperin remain unclear; however, viperin 

levels are increased upon HIV infection of monocytes and macrophages and inhibit 

production of infectious virus [22]. Recent studies implicate naturally occurring cellular 

microRNAs (miRNAs-28, -150, -223, -382) in restricting monocyte infection [27]. 

Chemokines and cytokines in the surrounding environment can also dictate expression of 

cellular restriction factors in monocytes and macrophages (reviewed in [28]), and influence 

their levels of productive HIV replication [29].

Monocytes and macrophages as viral reservoirs

Monocytes and macrophages are in anatomic reservoirs including tissues such as the brain 

and lung and can persist by avoiding immune system detection. In the central nervous 

system (CNS), parenchymal microglia, meningeal macrophages, choroid plexus 

macrophages, and perivascular macrophages all express viral co-receptors and are 

susceptible to HIV infection [30,31]. Perivascular macrophages are the most consistent 

targets of HIV in the brain [32], and viral DNA can be isolated from these cells throughout 

infection, indicating that they are viral reservoirs [33].
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A recent study in simian imunodeficiency virus (SIV)-infected rhesus macaques underscores 

the importance of lung alveolar and interstitial macrophages in local viral infection [34]. 

Alveolar macrophages are a primary viral target in the lung [35]; interstitial macrophages 

that are repeatedly renewed from monocytes can also be infected [34]. Pneumocystis 
jirovecii coinfection augments viral infection and macrophage activation in the lung [36,37].

In the gastrointestinal tract (GIT) of ART-naive individuals, high levels of chemokines/

cytokines (e.g. CCL2, IL1β, CCL5, CXCL9, CXCL10) are produced and activated mucosal 

macrophages with poor phagocytic activity accumulate [38]. Unlike the CNS and lungs, GIT 

macrophages downregulate CD4 and CCR5 in response to HIV [39]. Though this remains an 

open question, downregulation of CD4 and CCR5 may in part result in reduced viral 

infection in these GIT macrophages.

HIV can also infect marginal zone macrophages in the spleen but conflicting data exist on 

whether these cells maintain a reservoir of virus [40].

The low frequencies of HIV-infected monocytes and the difficulty in obtaining tissue 

samples present major barriers to elucidating the dynamics of HIV infection and productive 

viral replication in human monocytes and macrophages. Experiments in SIV-infected 

macaques have provided critical insights into the role of monocytes and macrophages in 

viral persistence and maintenance of tissue reservoirs (reviewed in [41,42]). There are higher 

levels of SIV-infected monocytes and macrophages in monkeys than HIV-infected cells of 

this lineage in humans, in part reflecting differences in the primate lentiviral auxiliary 

protein x (Vpx) between SIV and HIV [26]. By inducing proteasomal degradation of the 

host restriction factor SAMHD1, Vpx increases monocyte and macrophage susceptibility to 

SIV infection [26].

In the absence of inflammation, monocytes continuously leave the bone marrow and 

circulate in blood for 3–5 days before trafficking into tissues [43]. With SIV infection, there 

is increased egress of classical, nonclassical, and intermediate monocyte subsets from the 

bone marrow, and these cells remain in the circulation for a short amount of time before 

entering tissues [44]. We have shown that monocytes from HIV-infected individuals have 

shortened telomeres. Because monocytes do not divide in the blood, this observation may 

reflect increased cell division and subsequent shortening of telomeres in bone marrow 

monocyte precursor cells [45]. These findings suggest that monocyte turnover and release 

from the bone marrow may also increase during HIV infection [45].

Upon CD4+ T-cell depletion during chronic SIV infection in macaques, macrophages 

comprise more than 95% of productively infected cells in lymph nodes; high numbers of 

SIV RNA+ macrophages are also evident in the CNS and lungs [46,47]. Although 

sequencing studies have found little difference in HIV-1 subspecies in the blood and lungs 

[48], there appears to be independent evolution of virus in other tissues and phylogenetically 

distinct transcripts are present in the plasma, spleen, lymph nodes, and CNS [49–52]. 

Although all viral strains (X4, R5, or T cell vs. macrophage-tropic) can enter the CNS of 

HIV and SIV-infected humans and monkeys, the bulk of the data demonstrate that 

macrophage-tropic viruses preferentially replicate in the CNS [49,53–55]. It is quite possible 
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that CD4+ T cells and monocytes/macrophages can bring virus into the CNS early in 

infection; analysis of sequence evolution within the CNS has revealed that these 

macrophage-tropic viruses seed the brain throughout infection and are the major strains that 

replicate with disease [56,57].

The proportion of intermediate and nonclassical monocytes expressing CD16+ varies 

between individuals but is higher in ART-naive vs. individuals on ART, with these cells 

contributing significantly to disease pathogenesis [19,45,58]. The proportion of CD16+ 

monocytes in virologically suppressed individuals on ART is comparable with that in HIV-

infected elite controllers [59]. Despite this, CD16+ monocytes are preferentially infected and 

recovered from blood even during sustained virologic suppression when compared with 

classical monocytes [18]. CD16+ monocytes have also been shown to harbor viral variants 

that are genetically distinct from sequences in resting CD4+ T cells [60]. Taken together, the 

contribution of monocytes to the viral reservoir may vary throughout infection and with 

therapy.

Role of monocytes and macrophages in opportunistic infections—With HIV 

infection, the reduced phagocytic ability of monocytes and macrophages contributes to 

increased host susceptibility to opportunistic pathogens [61,62]. Both Mycobacterium 
tuberculosis (MTb) and HIV infect alveolar macrophages and coinfection can augment 

production of tumor necrosis factor (TNF)α, IFN-γ, and CCL2 [63]. In some coinfected 

patients, tuberculosis (TB)-associated immune reconstitution inflammatory syndrome (TB-

IRIS) occurs following ART initiation. It reflects a heightened inflammatory response to 

MTb, with new or worsening symptoms [64]. TB-IRIS may present in one of two clinical 

forms: paradoxical TB-IRIS, when symptoms of TB develop or recur during antituberculosis 

treatment following ART initiation, or unmasked TB-IRIS with an initial clinical 

presentation of TB, often with a strong inflammatory component, during early ART. 

Although the pathogenesis of TB-IRIS is not well understood, recent gene expression 

studies suggest that inherent differences in gene expression by monocytes contribute to the 

development of TB-IRIS and that monocytes mediate important activities during TB-IRIS 

[65,66].

Role of monocytes in neuroAIDS

In the ART era, the incidence of HIV-associated dementia has declined, yet the prevalence of 

milder forms of HIV-associated neurocognitive disorders (HANDs) continues to increase 

[67,68]. Importantly, development of HAND is associated with higher rates of AIDS-

defining illnesses [69] and increased mortality [70]. The events leading to neuronal injury 

with HAND are not well understood; however, the presence of activated and productively 

infected macrophages and microglial cells are the best correlates of CNS disease severity 

[11,71–79] (Table 2). Recent data suggest that the event initiating macrophage activation and 

accumulation in the CNS is activation, expansion, and viral infection of monocytes 

trafficking from bone marrow [73–75,80,81]. Supporting this finding, elevated levels of 

cytokines [interleukin (IL)-6, IL-8, IFNγ] and proteins linked with monocyte activation 

(sCD14) and chemotaxis (MCP-1, CCL3, CXCL10) in the cerebrospinal fluid (CSF) of 
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HIV-infected individuals on ART are associated with impaired neurocognition and the 

severity of neuropathology [76,82].

Persistently increased numbers and/or percentages of CD16+ monocytes are more tightly 

linked to the development of neurological disease than the number of HIV-infected cells in 

the CNS or CSF viral load [75,83]. Infection of CD16+ monocytes increases the capacity of 

these cells to migrate across the blood-brain barrier (BBB) [84] wherein they can stimulate 

productive viral replication in the brain [80]. Monocytes expressing the CD16 receptor are 

immunophenotypically similar to perivascular macrophages in the CNS, in that the majority 

of CD16+ monocytes express the haptoglobin-hemoglobin scavenger receptor CD163, and 

all CD163+ perivascular macrophages in the CNS express CD16 [76,85,86]. Although HIV 

does not directly infect neurons, increased production of proinflammatory chemokines/

cytokines and other excitotoxic factors by perivascular macrophages and activated microglia 

contribute to neuronal injury and death [87,88] (Fig. 2). Release of inflammatory 

chemokines/cytokines (MCP-1, CX3CL1, CXCL10, CCL3, IL-1β, TNFα, IFNα) within the 

CNS also stimulates up regulation of adhesion molecules on the brain microvascular 

endothelia [89,90], thereby recruiting monocytes to the BBB and promoting their 

transmigration into the brain [91].

It is generally assumed that HIV enters the brain within infected monocytes, but this has not 

been directly demonstrated. Evidence that HIV enters the CNS soon after peripheral 

infection was demonstrated by accidental iatrogenic infection [92]. In SIV-infected rhesus 

macaques, gliosis, glial nodules, and scattered productively infected cells are evident in 

frontal lobes, temporal lobes, and white matter shortly after infection [93,94]. Interestingly, 

after initial seeding of virus, SIV RNA and p27 are not found until evidence of AIDS, 

probably the result of late seeding of the CNS by macrophages [95].

Evidence suggests that monocytes dictate the timing and severity of neurological sequelae 

during HIV infection. In virologically suppressed HIV-infected individuals on ART, levels of 

sCD163 in the plasma are associated with neurocognitive decline, suggesting that persistent 

activation of CD16+ monocytes plays a role in CNS disease [96]. Furthermore, experiments 

in rhesus monkeys using the thymidine analog 5′-bromo-2′-deoxyuridine (BrdU) to monitor 

monocyte dynamics during infection have underscored the importance of monocytes in CNS 

disease. In SIV-infected animals, the magnitude of BrdU+ monocytes released from bone 

marrow is a more accurate indicator of the rate of AIDS progression than plasma virus or 

CD4+ T-cell count [44]. Rapid development and histopathologic severity of SIV encephalitis 

are associated with the degree of BrdU+ monocyte expansion during the first 4 weeks of 

infection [97]. Moreover, sCD163 in plasma correlates with the percentage of BrdU-labeled 

monocytes and CD16+ monocytes [97]. These findings suggest that innate immune 

activation early in infection is critical for determining overall disease outcomes. Finally, in 

ART-naive individuals, HIV DNA levels in CD16+ monocytes are closely linked to the 

development and severity of neuropathology. This observation implicates the size of the 

monocyte HIV reservoir in neuropathogenesis [98,99].
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Role of monocytes in serious non-AIDS events

HIV-infected individuals are at increased risk for a range of comorbidities including 

cardiovascular disease (CVD), non-AIDS malignancies, neurocognitive disorders, renal, 

bone and liver dysfunction, and frailty [100]. These conditions, collectively known as 

serious non-AIDS events (SNAEs), now represent the major cause of mortality in 

virologically suppressed HIV-infected individuals [101]. Persistent HIV-related 

inflammation and innate immune activation, both incompletely restored by ART, are thought 

to underpin the increased risk of these diseases, rather than T-cell activation [102]. This is 

supported by high plasma levels of inflammatory markers (e.g., hsCRP and IL-6 [103]) and 

monocyte activation (sCD14) [104]) that predict all-cause mortality in HIV-infected 

individuals. Chronic low-level endotoxemia in HIV-infected individuals can result from 

microbial translocation across the gut mucosa [105]. Subsequent passage of microbial 

products via the portal vein into the liver can lead to monocyte activation, altered 

coagulation, and systemic inflammation. This eventually can result in end-organ damage and 

development of SNAEs.

Low bone mineral density (BMD; reviewed in [106]) and osteoporosis [107] are common in 

HIV-infected people. Although T-cell activation has been linked to low BMD [108], 

monocyte/macrophage activation has not been directly implicated [109]. HIV infection is 

also associated with an increased risk of frailty and a lower age of onset [110]. Markers of 

monocyte activation including neopterin and CXCL10 [111] are associated with frailty in 

uninfected persons, but data are limited in HIV-infected individuals.

Monocyte activation and cardiovascular disease in HIV infection

HIV infection is associated with an approximately two-fold relative risk of CVD [112], 

persisting after adjustment for traditional risk factors. Moreover, CVD risk prediction 

algorithms including the Framingham Risk Score may underestimate the degree of 

atherosclerosis during HIV infection, with 56.4% of HIV-infected individuals with a low 

estimated CVD risk having evidence of subclinical atherosclerosis [113]. The prevalence of 

atherosclerosis in this low-risk group was independently associated with levels of oxidized 

LDL and MCP-1 [113], which promote monocyte recruitment to the subendothelial space 

where atherosclerotic lesions develop (reviewed in [114]).

Measures of HIV disease progression including viral load and CD4+ T-cell count and 

markers of T-cell activation are poor predictors of CVD risk and events in HIV-infected 

individuals [115]. These clinical outcomes are increasingly being shown to correlate with 

inflammatory markers such as hsCRP, IL-6, and TNF, and monocyte activation [116–118].

Monocyte activation during HIV infection persists despite ART [45,58]. We and others have 

shown that monocyte expression of CD11b and CX3CR1 are associated with carotid intima–

media thickness (cIMT; a surrogate measure of atherosclerosis) in HIV-infected individuals 

[119,120], whereas others demonstrate that monocyte activation phenotype in HIV-infected 

individuals is similar to uninfected individuals with CVD [6]. The proportion of 

inflammatory CD16+ monocytes is increased in untreated HIV infection and predicts 

progression of coronary artery calcium, independent of traditional risk factors [115].
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Monocytes play a critical role in atherosclerosis; they migrate across activated endothelial 

cells into fatty streaks within the subendothelium, where they mature into macrophages and 

endocytose lipids (Fig. 3). Monocytes can egress from the subendothelial space and remove 

lipid to prevent plaque progression [121]; however under inflammatory conditions, they are 

more likely to be retained and develop into lipid-laden foam cells. Lipid uptake by foam 

cells results in necrosis, inflammation, and expansion of the atherosclerotic core, whereas 

increased matrix metalloproteinase activity by resident macrophages increases plaque 

instability and promotes rupture [122].

The relationship between monocyte/macrophage activation and CVD is supported by 

biomarker data. In HIV-infected individuals, plasma sCD163 levels are associated with 

noncalcified coronary plaques [123,124] and arterial inflammation [125]. Increased levels of 

sCD14 and LPS are independently associated with increased cIMT, in some [126,127] 

although not all cohorts [128]. Elevated sCD14 is also independently associated with 

coronary artery calcification [129]. Importantly, the association between monocyte 

activation and CVD risk (Table 3) [113,115,118,120,123–125,127,129,130] observed in 

cohorts of ART-treated individuals is independent of protease inhibitor use (linked to 

increased CVD risk in HIV infection) [131]. The increased prevalence of atherosclerosis and 

monocyte activation (evidenced by increased sCD163 levels) in HIV elite controllers who 

maintain viral suppression without ART [132] highlights the critical role of immune 

activation in HIV-related CVD risk independent of viral and ART parameters.

Despite these associations, mechanistic explanations for how monocytes contribute to CVD 

in HIV infection are lacking. We recently demonstrated that elevated numbers of CD163+ 

macrophages in the hearts of SIV-infected monkeys correlate with the severity of fibrosis 

and overall cardiac damage [133]. Further, we found an increased percentage of CD16+ 

monocytes by 8 days postinfection in animals that developed cardiac disease and fibrosis (K. 

Williams unpublished results). We have previously shown that HIV impairs the ability of 

monocytes to egress from an in-vitro plaque model [134], which may promote their retention 

in atherosclerotic lesions in vivo. Our recent findings indicate that monocytes from HIV-

infected individuals have a heightened potential to form foam cells [135]. Further work is 

essential to elucidate the association of HIV-associated inflammation and immune activation 

with atherogenesis.

Treatment and cure

In the era of effective ART, the new challenges in HIV treatment involve ameliorating the 

increased risk of SNAEs and moving toward a ‘functional HIV cure’, meaning undetectable 

viremia and no evidence of disease progression in the absence of ART.

Targeting inflammation to prevent serious non-AIDS events

Therapeutic strategies to prevent co-morbidities such as CVD in HIV-infected individuals 

need to target the component of this risk driven by inflammation and monocyte activation. 

The ability of the anti-inflammatory statin rosuvastatin to improve cardiovascular and 

skeletal health in HIV infection by simultaneously targeting inflammation and dyslipidemia 

is currently being evaluated in the SATURN-HIV trial. Preliminary data indicate 
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rosuvastatin can reduce markers of monocyte activation, including sCD14 and tissue factor 

expression on monocytes, independent of its lipid-lowering effects [7]. This activity is also 

associated with increased bone mineral density [109]. Thus, anti-inflammatory drugs may be 

able to ameliorate markers of inflammation and monocyte activation in ART-treated 

individuals. Whether this effect translates to a reduction in SNAEs will be an area of intense 

interest in coming years.

HIV eradication

Experiments involving the transplantation of HIV-resistant CCR5Δ32 stem cells into an 

HIV-infected individual (the ‘Berlin patient’) have demonstrated that a sterilizing cure for 

HIV infection may be possible; however, this approach is definitely not a universal option 

for cure [136]. In this regard, after a period of sustained virologic suppression, cessation of 

ART was associated with HIV rebound in two HIV-infected individuals who received bone 

marrow transplantation with wild-type CCR5 stem cells [137]. This observation indicated 

that latent infection in long-lived cells and tissues can persist despite bone marrow 

transplantation and long-term ART [138].

HIV-infected individuals may also be ‘functionally cured’ of HIV, meaning that although 

HIV DNA and RNA persist in cells and tissues, they maintain undetectable plasma viral 

loads without ART [139]. Despite low levels of HIV in the plasma of elite controllers, 

replication-competent virus can be found in resting CD4+ T cells [140] and infrequently in 

circulating monocytes [141]. Elucidating the molecular mechanisms by which replication-

competent virus is suppressed in these cellular reservoirs will be critical to design a 

therapeutic strategy that might affect a functional cure.

Persistent infection in latently infected cells

In the vast majority of virologically suppressed HIV-infected individuals on ART, reservoirs 

of latently infected cells (including resting CD4+ T cells and CD16+ monocytes in the bone 

marrow, thymus, blood, brain, and other tissues) persist, containing replication-competent, 

transcriptionally silent, latent provirus. This represents a major barrier to the eradication of 

HIV [142–144] (Fig. 4).

Although latently infected CD4+ T cells, particularly central memory T cells, comprise the 

majority of the HIV reservoir, analysis of viral sequences isolated during episodic increases 

in viral load in ART-treated individuals suggests this virus is coming from cells other than 

CD4+ T cells [145]. Importantly, even in the presence of ART, activated CD16+ monocytes 

are capable of perpetuating HIV replication through ongoing cell-to-cell transfer of virions 

and efficient infection of CD4+ T cells [146,147].

Efficacy of antiretroviral therapy in targeting monocytes and macrophages

Intensification of ART using maraviroc and raltegravir can reduce the size of the peripheral 

latently infected CD4+ T-cell reservoir [148]; however, specific data on the impact of ART 

intensification on the monocyte/macrophage reservoir are lacking. Initiating therapy early 

after seroconversion reduces the number of latently infected CD4+ T cells in the blood, GIT 

[149], and brain [150] and decreases HIV DNA to levels that are similar to that in elite 
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controllers [151]. These findings suggest that both intensifying treatment and initiating ART 

during early infection can decrease the overall size of the latent HIV reservoir.

The biologic characteristics of monocytes and macrophages, however, may reduce the 

efficacy of such strategies in these cells. HIV-infected monocytes are more resistant than 

CD4+ T cells to the effects of antiretroviral compounds, although newer classes of drugs 

may hold more promise. Early in-vitro work indicated that chronically infected monocytes/

macrophages are less susceptible to the effects of the nucleoside reverse transcriptase 

inhibitor (NRTI) zidovudine than acutely infected CD4+ T cells [152]. Although protease 

inhibitors are effective in stopping the release of infectious virions from productively 

infected macrophages, these drugs are less effective against latent infection [153,154] and 

high concentrations of protease inhibitors are required to suppress HIV replication in these 

cells [155].

The CCR5 inhibitor maraviroc can reach high concentrations in the GIT and reduce the size 

of the gut reservoir [156]. Maraviroc can also directly prevent infection of monocyte-derived 

macrophages ex vivo, thus potentially impacting the size of reservoirs in these cells in vivo. 

However, specific studies in HIV-infected individuals are currently lacking [156].

The integrase inhibitor raltegravir is equally potent in macrophages as in lymphocytes [157] 

and can reach therapeutic concentrations in the CSF [158]. This result is advantageous for 

targeting infected cells including macrophages in the brain. However, although multiple 

mutations are required to confer raltegravir resistance in T cells, this can be achieved via a 

single mutation in macrophages [159].

Factors contributing to persistent inflammation and HIV infection in the CNS despite 

effective therapy include limited neuropenetrance of many antiretroviral drugs [160,161] and 

neurotoxicity of some antiviral drugs capable of penetrating the CNS [162,163]. They may 

potentiate inflammation and immune activation. Even when therapy is initiated during 

primary infection, CNS immune activation is still evident more than 4 years after effective 

ART [164] and 80–90% of virologically suppressed HIV-infected individuals at autopsy 

have prominent activated and productively infected macrophages in the CNS [165]. This 

finding suggests that neuropenetrance of ART may not be sufficient to prevent HIV-related 

neuronal damage and target macrophage reservoirs of HIV in the brain. Three recent studies 

indicate that the ability of an antiviral drug to target CNS macrophages is the most accurate 

indicator of its utility in treating clinical symptoms associated with CNS HIV infection 

[75,83,151]. These data, along with the fact that viral sequences from the brains of HIV-

infected individuals have macrophage-tropic motifs [56,166], demonstrate that to be 

effective in the CNS the therapy needs to target monocytes and macrophages.

Strategies other than activation of latent T-cell reservoirs are needed to achieve HIV 
eradication

Recent research toward a cure for HIV has focused on activation of latently infected T cells 

to induce HIV transcription, followed by elimination of these infected cells (reviewed in 

[167]). Although a number of drugs such as the phorbol ester prostratin [168] and histone 

deacetylase inhibitors including vorinostat [169,170] may also activate latent infection in 
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monocytes and macrophages, there is no defined strategy to subsequently reduce the size of 

the viral reservoir, as these cells are resistant to ART-induced cell death. Thus, more 

plausible biologic approaches are required, particularly those that target immune cells in 

addition to lymphocytes, including monocytes and macrophages. These tactics merit serious 

consideration as a strategy to eradicate HIV or to effect significant and sustained change on 

the size of the HIV reservoir. Although directly eliminating HIV-infected monocytes/

macrophages would seem an attractive approach to eradicate viral reservoirs, to date there 

are no current approaches for this. But, immune therapies that target monocyte/macrophage 

activation or differentiation might be considered to slow or stop HIV-related diseases or 

pathogenesis.

Conclusion

HIV-infected monocytes and macrophages contribute to viral persistence throughout 

infection providing an important reservoir of HIV and perpetuating HIV replication through 

ongoing cell-to-cell transfer of virions. These cells also play a critical role as inflammatory 

mediators of HIV-associated CNS disease, CVD, and other SNAEs. Eradication of HIV is 

not possible with current therapy. Strategies toward a cure thus far have overlooked the 

contributions of non-T-cell reservoirs to ongoing viral persistence. The future challenges for 

both treatment and toward a cure require the development of innovative and more effective 

therapeutics that target persistent HIV in these additional cellular reservoirs.
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Fig. 1. Monocytes and macrophages are important targets of HIV.
Variable levels of expression of HIV co-receptors, as well as intracellular inhibitory factors, 

are responsible for differences in HIV infection and replication between macrophages and 

monocytes, and between monocyte subsets.
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Fig. 2. Role of monocytes and macrophages in the development of neurocognitive impairment 
during FI IV infection.
(a) Infection of CD16+ monocytes by HIV promotes transmigration into the brain where (b) 

productive infection allows for the evolution of CCR5/macrophage tropic virus. (c) 

Chemokines and cytokines produced by infected cells promote further transmigration and 

ongoing infection and (d) induce the neuronal damage that leads to neurocognitive decline.
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Fig. 3. A model for the role of monocytes in the development of atherosclerosis in HIV-infected 
individuals.
Migration of monocytes across the blood vessel endothelium and the development of foam 

cells is the initiating step in the development of atherosclerosis. Alternatively, these 

monocytes can migrate out of the intima, carrying pro-atherosclerotic LDL away from the 

vessel wall. During HIV infection, several alterations in monocyte dynamics promote 

migration of monocytes and foam cell formation, rather than reverse migration. oxLDL, 

oxidized low density lipoprotein.
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Fig. 4. The relevance of monocytes to HIV treatment and cure strategies.
Overview of the barriers which limit the ability of antiretroviral therapy (ART) to target 

monocytes and macrophages in tissues, and potential strategies to address these.
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