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Abstract

Diffusion MRI (dMRI) fiber tractography has become a pillar of the neuroimaging community due 

to its ability to noninvasively map the structural connectivity of the brain. Despite widespread use 

in clinical and research domains, these methods suffer from several potential drawbacks or 

limitations. Thus, validating the accuracy and reproducibility of techniques is critical for sound 

scientific conclusions and effective clinical outcomes. Towards this end, a number of international 

benchmark competitions, or “challenges”, has been organized by the diffusion MRI community in 

order to investigate the reliability of the tractography process by providing a platform to compare 

algorithms and results in a fair manner, and evaluate common and emerging algorithms in an effort 

to advance the state of the field. In this paper, we summarize the lessons from a decade of 

challenges in tractography, and give perspective on the past, present, and future “challenges” that 

the field of diffusion tractography faces.
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INTRODUCTION

Diffusion magnetic resonance imaging (dMRI) fiber tractography [1, 2] has become a pillar 

of the neuroimaging community, revealing fundamental insights into how connectivity 

underlies brain function, development, and cognition, and leading to a better understanding 

of brain dysfunction in aging, mental health disorders, and neurological disease [3]. 

Additionally, in the neurosurgical setting, tractography has provided clinically relevant 

information during pre-operative planning as well as intra-operative mapping of brain tumor 

resections [4]. Despite its widespread use in both clinical and research domains, the process 

from data acquisition to generation of 3D connectivity maps is a multi-step procedure with 

numerous assumptions and uncertainties that can ultimately affect the ability of tractography 

to faithfully represent the true axonal connections of the brain. Because of this, validating 

the accuracy and reproducibility of these techniques is critical for sound scientific 

conclusions and effective surgical outcomes. It is necessary to measure the ability of these 

techniques to track white matter fibers from region to region, and to also quantify the ability 

of dMRI to assesses the underlying fiber orientation distribution (FOD) within each voxel. 

Towards this end, there have been a large number of dMRI community-wide efforts, or 

“challenges”, which aim to investigate the reliability of the tractography process.

Publicly organized challenges are widespread in biomedical image analysis. In this domain, 

an algorithm or solution may be developed to address a particular challenge in the field - a 

challenge that is likely being, or has already been, tackled by multiple laboratories, 

researchers, and algorithms. However, for many problems, there is no public database and 

reference standard available, and results are typically reported on proprietary datasets which 

may vary widely due to differences in acquisition and hardware, making fair comparisons 

between algorithms not practical. For this reason, public challenges are organized to provide 

a platform to compare algorithms and results in a fair manner, and evaluate common and 

emerging algorithms in an effort to advance the state of the field. In biomedical image 

analysis, challenges have included a number of imaging modalities, anatomies, and 

evaluation goals. Examples include segmenting tumors and lesions from MR, CT, and PET 

scans [5–7], detecting pulmonary nodules in chest CT [8], particle tracking [9], evaluating 

neuronal reconstructions [10, 11], estimating knee cartilage [12], motion correction on 

cardiac data [13], segmenting histological images [14], and segmenting a number of organs 

[15–18]. A comprehensive list of past and ongoing challenges can be found at https://grand-

challenge.org/all_challenges/.

In the tractography community, these challenges provide a unique opportunity for 

neuroscientists, computer scientists, biomedical engineers, and MRI physicists to fairly 

compare tractography algorithms in an unbiased format. Traditionally, most have focused on 

either local modeling of the fiber geometry, or on the evaluation of tractography as a whole. 

These challenges have provided us with valuable lessons regarding the tractography process 

- resulting in quantitative measures of the reliability and limitations of existing approaches - 

and left us with unique opportunities for advancements in brain mapping using ideas and 

algorithms from different disciplines, research labs, and scientific communities. In this 

manuscript, we aim to summarize the lessons learned from a decade of challenges in 
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tractography, and to give perspective on the past, present, and future “challenges” that the 

field of diffusion tractography faces.

We begin with a brief review of “The Challenges” that have provided insight into fiber 

orientation reconstruction, tractography, and brain connectivity. Next, we summarize the 

insights and “Lessons Learned” from these studies, and conclude with a discussion on the 

“Opportunities and Perspectives” on open issues in the field and the future of tractography.

1 . THE CHALLENGES

The basic anatomy of a challenge includes (1) defining the challenge itself, i.e. the task and 

desired output, (2) providing a set of images for participants to apply their algorithm on, (3) 

creating the reference standard, or ground truth, against which all submissions are compared, 

(4) defining an evaluation procedure, or metrics to quantify performance, and (5) final 

evaluation of all submissions. In this section, we present a brief history of past tractography 

challenges in chronological order. We note that several past challenges have focused on the 

microstructural modelling problem (ISBI 2015: White Matter modelling Challenge [19]; 

MICCAI 2014: Sparse Reconstruction Challenge [20]), or diffusion harmonization (CDMRI 

MICCAI 2017 and 2018: Multi-shell Diffusion MRI Harmonisation Challenge), but this 

review focuses only on the challenges investigating fiber tractography and FOD 

reconstruction.

The basic anatomy of each challenge is presented, with highlights summarized in Table 1. In 

all cases, the data and ground truth remain publicly available at the websites listed in the last 

column of the table, and detailed formulations of evaluation criteria are given in Appendix 

A.

FiberCup: MICCAI 2009

The FiberCup [21] was the first community effort at a quantitative evaluation of 

tractography algorithms on a common dataset. The challenge was to find 16 existing 

connections on a physical fiber phantom [22] (Figure 1A). The phantom was composed of 

hydrophobic acrylic fibers positioned within a 2D frame in order to simulate a coronal 

section of the human brain, containing a number of distinct bundles with geometries known 

to hinder tractography, including fiber crossings, kissing, and splitting, and configurations 

with varying curvatures. Because the phantom was physically manufactured, the true 

pathways trajectory and orientation are well-defined. Contestants were asked to submit a 

representative fiber of the bundle traversing each of 16 known pathways - in this case, these 

16 ground truth pathways were actually single streamlines as opposed to the delineation of a 

full bundle (as done in the ISBI 2013 Tractometer challenge run on the same FiberCup 

phantom). Participants were given 16 seed voxels and were asked to reconstruct the path 

associated with each. Each submission was evaluated based on spatial proximity to the 

ground truth and orientation accuracy of the streamline trajectory. In all, 10 reconstruction 

methods were evaluated.
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DTI Challenge: MICCAI2011–2015

This multi-year challenge focused on the validity of tractography findings for making 

neurosurgical decisions [23]. The challenge was to reconstruct the “best” cortico-spinal tract 

(CST) as judged by a panel of experts (Figure 1B). The pyramidal tract was chosen due to its 

well defined anatomical origin and terminations, contributions to motor function, and 

clinical relevance [24, 25]. In each edition of the DTI Challenge, MRI data were acquired on 

four patients presenting with a glioma near the motor cortex area, thus the patient data was 

of quality expected from clinical scanners (30 diffusion directions, b=1,000 s/mm2). Two 

datasets were release for training and testing algorithms, while the remaining two were 

processed on site live at the challenge forum. Thus, the notion of “speed” of processing (and 

reliability of systems) was important, the method needed to run in less than 1 hour on the 

day of the challenge. Qualitative evaluation was performed by a panel of two neurosurgeons 

and three DTI experts by assessing the presence of false-positive and false-negative tracts, 

with a quantitative comparison performed to calculate the distances between reconstructed 

pathways estimates. Twenty five international teams submitted reconstructions on both the 

affected and contra-lateral hemispheres.

HARDI Reconstruction Challenge: ISBI 2012

This challenge focused on validating the local fiber orientation distribution from diffusion 

MRI data, with the aim to recover the best local estimation of single and crossing 

configurations [26]. The diffusion signal was numerically simulated from two generated 

fields of crossing, kissing, and bending fiber bundles (Figure 1C). This numerical data 

synthesis offered a versatile way to assess performance of algorithms across a broad range of 

experimental conditions, including varying sampling schemes, noise levels, fiber 

configurations, and signal generation models. Participants, in effect, requested their own 

acquisition scheme (including b- values and gradient schemes), and applied their algorithm 

of choice to the received data. Performance was assessed based on the correct estimation of 

the number of fiber compartments in each voxel, and the angular accuracy in their 

orientation. In total, 20 algorithms for recovering fiber structure were compared, ranging 

from standard DTI schemes and sparse reconstructions with minimal data, to DSI-like 

schemes containing hundreds of diffusion volumes.

HARDI Reconstruction Challenge (Tractometer): ISBI 2013

In a continuation of the previous year’s challenge, the 2013 ISBI conference featured a local 

reconstruction challenge that was evaluated by assessing the resulting tractography [27]. 

Here, algorithms were run on a dataset numerically created using the Phantomas library 

[27]. Importantly, running this challenge led to the refinement and widespread adoption of 

the Tractometer [28], an online evaluation and validation system for tractography processing 

pipelines (Figure 1D). This system accepts as input any acquisition scheme, pre-processing 

of data, orientation estimation technique, or tracking strategy, and explores the rest of the 

variables and parameter space. For example, if a new reconstruction technique is developed, 

this can be added to the software, and tractography can be run using all other existing 

pipelines (i.e. all other pre-processing and tracking strategies) in combination with the 

proposed reconstruction. Tractography was assessed by evaluating how well streamlines 
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covered the true physical pathway, the percent of valid (true positive) and invalid (false 

positive) streamline connections, and the number of valid and invalid bundles. This 

evaluation strategy resulted in more than 57,000 fiber tractograms created on the FiberCup 

dataset.

Tractography Challenge: ISMRM 2015

This challenge was to provide the best possible reconstruction of fiber pathways in a 

realistically simulated replication of a whole brain diffusion-weighted dataset with 

properties typical of a clinical acquisition [29]. Twenty-five manually segmented white 

matter bundles served as the ground truth, from which challenge data was synthesized using 

Fiberfox signal simulation tool (Figure 1E) [30]. Evaluation metrics were the same as those 

implemented in Tractometer, including valid connections and bundles, invalid connections 

and bundles, as well as the volume-based measures of bundle overlap and bundle overreach. 

A total of 96 tractography submissions from 20 international research groups were evaluated 

and analyzed.

TraCED Reproducibility Challenge: ISMRM 2017

The Tractography-reproducibility Challenge with Empirical Data (TraCED) [31] featured a 

scan-rescan of a single subject, on two different scanners, with 5 acquisition repetitions per 

session, resulting in 20 diffusion datasets (2 sessions x 2 scanners x 5 repetitions). 

Participants were asked to reconstruct 10 white matter pathways on each dataset (Figure 1F). 

Rather than validating the accuracy of tractography, the goal of TraCED was to assess the 

reproducibility of emerging pipelines using clinically feasible imaging sequences by 

evaluating Dice overlap and Intra-class correlation coefficients (ICC) of tractography within 

sessions, across sessions, and across scanners. Nine research groups submitted 46 

tractography algorithms for evaluation.

3D VoTEM Challenge: ISBI2018

The 3-D Validation of Tractography with Experimental MRI (3D-VoTEM) [32]presented 

three different validation strategies, composed of three separate ground truth datasets with 

which diffusion tractography can be compared and evaluated against (Figure 1G). This 

included a physical phantom with 16 fiber bundles (Synaptive Medical, Toronto, Canada), a 

high-resolution ex vivo macaque dataset [33] with an atlas of known connections [34], and 

an ex vivo squirrel monkey dataset with histological tracer injections [35–37]. The 

challenge, then, is to estimate the ground truth bundles and connections in all datasets. 

Anatomical accuracy was evaluated based on connectivity, using sensitivity and specificity, 

as well as based on spatial overlap, using bundle overlap and overreach. Across all three 

datasets, a total of 176 distinct tractography reconstructions across 9 research groups was 

submitted.

2. LESSONS LEARNED

These challenges have resulted in a number of insights into the tractography process, its 

interpretations, strengths, and limitations. We summarize here the main lessons learned from 

these challenges.
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Following local orientations can reconstruct valid connections

A common, and encouraging, theme of these challenges is that diffusion tractography is able 

to reconstruct valid fiber bundles, and these connections are typically very close spatially to 

the ground truth. For example, on the FiberCup phantom [21], given a single seed voxel, 

multiple algorithms are able to successfully delineate the starting and ending regions of the 

bundle, even across regions that cross, split, and curve sharply (Figure 2). In the Tractometer 

evaluation of 57,000+ algorithms, over 6,000 recovered 100% of the valid bundles [28]. 

While this represents only 10% of the pipelines tested, this is reassuring because it means 

that there is a large number of different parameters, combinations, and strategies that 

produce good streamline outputs. In addition to phantoms, valid reconstructions can be 

reconstructed in datasets on the human and monkeys. In human-like geometries, algorithms 

reconstructed a median 23/25 valid bundles [29] (ISMRM 2015 Tractography Challenge), 

and adequately reconstruct the CST even in the presence of a tumor [23] (DTI Challenge). In 

monkeys, a number of algorithms result in true positive rates (sensitivity) of 80% or above 

(3D-VoTEM). In all cases, a majority of these correctly reconstructed streamlines are 

spatially close to the ground truth, consistently within 1–2 voxels from the true pathway 

along the entire length of the streamline, for all physical bundles [21]. These algorithms that 

are successful at reconstructing valid connections, intuitively have streamlines that tend to 

align well with the underlying structure, highlighting the importance of accurately predicting 

fiber orientation [21].

Despite successes in reconstructing valid bundles that are spatially and orientationally 

correct, a number of limitations are immediately apparent. This includes complications in 

crossing fiber regions (a well-known hindrance to DTI), incorrect splitting and branching 

decisions, low overall bundle coverage, and a low percent of valid connections relative to 

invalid connections or no determined connections. Together, these results have emphasized 

several important messages that should be kept in mind when implementing these techniques 

[21, 28]: (1) signal averaging, or more recently, denoising, (in order to increase image SNR) 

improves tractography quality, (2) sharp estimates of fiber distributions improve results, (3) 

priors on spatial smoothness make reconstruction and tractography more robust to noise, (4) 

seeding strategies have a large impact on tractography results, (5) probabilistic tractography 

results in larger bundle coverage, and (6) deterministic tractography tends to have the best 

valid/invalid connection trade-offs, but at the expense of spatial bundle coverage.

There are limitations to the use of Tractography for clinical decision-making

Using the neurosurgical glioma datasets, the DTI Challenge [23] provides interesting insight 

into the use of tractography for neurosurgical planning. In this context, identifying the 

pyramidal tract, and its location relative to the tumor, is necessary for tractography to be a 

useful pre- or post-operative tool. Notably, experts noted the consistent presence of false- 

negative and false-positive pathways in the submitted tractograms. Qualitatively, 

tractography algorithms were able to delineate some pathway from the cerebral peduncles, 

through the internal capsule, and continuing to some portion in or near the motor cortex 

[23]. However, most were limited to the medial portion of the motor strip, and only a few 

could trace the lateral projections associated with the hand, face, and tongue movements 

(Figure 3, from DTI Challenge). In addition to the absence of pathways in the lateral regions 
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of the motor cortex, other false-negatives were consistently found in the edematous regions, 

and false-positives in the frontal and parieto-occipital portions of the corona radiata and even 

in the surgical cavities (known to contain no pathways). Of the 8 submissions judged by 

experts, one was graded as excellent in reconstructing the CST, six as good, and one as fair 

[23], with results generally consistent across patients.

Interestingly, tractography did quite well in determining the presence or absence of white 

matter infiltration in tumorous regions [23]. For example, in lesions which were cystic, or 

not expected to contain tracts (anaplastic oligoastrocytoma grade III, anaplastic 

oligoastrocytoma grade III, and glioblastoma grade IV), all algorithms consistently resulted 

in little or no streamlines visiting the lesion volume (less than 1.5% volume of tumors 

visited). Conversely, in a tumor of infiltrative nature (anaplastic oligodendroglioma grade 

III), the volume fraction of tumor visited by tractography was much higher (up to 22% of the 

tumor volume). Despite successes in tumor infiltration measures, a large difference in 

reconstructions was noted (see “Tractography is reproducible” below), as indicated by large 

Hausdorff and mean distances between the 8 tractography submissions. However, the 

presence of tumor did not affect inter-algorithm variability, as disagreement between 

methods was similar on healthy side as on pathological side with distortions and 

pathological tissue.

In summary, the large inter-algorithm variabilities, presence of false negative pathways, and 

disagreement among methods suggests that there are still limitations to the clinical use of 

tractography for neurosurgical decision making. It is important to point out that the model 

pathway used in this system is one of the most commonly studied, with relatively clear 

anatomical definition. Difficulties encountered in the pyramidal tract are likely to be more 

challenging for less well-defined pathways with surgical relevance, e.g., optic radiation and 

arcuate fasciculus. In short, these shortcomings suggest that differences in algorithms and 

results can potentially affect clinical decisions, and advocate caution in interpreting 

tractography results in the clinical settings. Further, this motivates the need for benchmarks 

and datasets on which test-retest reproducibility can be evaluated.

We are good at estimating local orientations

Since the recognition that DTI fails in regions of crossing and complex fibers - which may 

occur in as many as 90% of all voxels - a large number of algorithms have been proposed 

which aim to resolve crossing fibers [38–45]. Typically, these are referred to as high angular 

resolution diffusion imaging (HARDI) methods to distinguish them from DTI, and indicate 

the need for a typically larger number of diffusion images. When a new algorithm is 

proposed, large consideration is given to the number of resolvable fiber populations and the 

crossing angle of the populations. For example, a more acute crossing angle is generally 

harder to “resolve” than orthogonal crossings [46], thus, a proposed algorithm able to 

resolve smaller angles might be considered “better” at reconstruction than others.

The 2012 HARDI Reconstruction challenge is currently the largest quantitative validation of 

voxel-wise fiber reconstruction methods on a common dataset with known ground truth [26]. 

The main takeaway from this study is that the relationship between the diffusion signal and 

underlying fiber distribution is generally well understood, and, despite the large number of 
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modeling strategies in literature, in general they all adequately reflect the underlying fiber 

geometry and orientations in each voxel (Figure 4). Methods do show differences in 

minimum resolvable angle, angular accuracy, and success rates, but there was no “optimal” 

method for a given acquisition, and none outperformed others in every experimental 

condition [26]. In fact, good crossing estimation is possible with a low number of sampling 

directions, thanks to sparse-estimation approaches, with results on par with HARDI-like 

approaches, and even approaches with 200+ directions (i.e., DSI-like approaches). The 

authors point out that noise removal procedures, in the form of image denoising or spatial 

regularization, tend to improve reconstruction performance in all metrics, and the main 

sources of inaccuracy is caused by overestimation of fiber populations for low SNR data and 

underestimation for high SNR data [26].

While it is certainly quite an overstatement to say that the “reconstruction problem is 

solved”, it is clear there are a number of techniques that perform quite well at estimating 

fiber numbers and orientations across a range of acquisition and experimental conditions.

Good local performance does not guarantee good tractography performance

It is intuitive to think that better local reconstructions lead to better tractography 

performance. And it is not a stretch to think that perfect representation of local fiber 

orientations could, or should, lead to perfect tractography. Several challenges have had the 

opportunity and data available to investigate this, including the 2013 ISBI HARDI 

Reconstruction Challenge and the 2015 ISMRM Tractography Challenge. On the physical 

phantom, and in agreement with simulations from the previous year, most techniques 

performed well in local orientation estimation, yet connectivity metrics varied greatly [28]. 

Reconstructions resulted in coherent geometries reconstructed in single fiber regions, and 

crossing geometries resolved in crossing fiber regions, but a good local performance on 

average did not guarantee a good average performance for tractography. Many algorithms 

still suffered from a high percent of invalid or no-connections, low percent of valid 

connections, and low bundle coverage. Tracking parameters, rather than reconstruction 

quality, greatly influenced results. For example, seeding and masking strategies greatly 

impacted the fiber count and density of bundles, and subsequent measures of valid/non-valid 

connections. In addition, the choice of deterministic versus probabilistic methodologies 

influenced results, with probabilistic methods generally producing large numbers of no-

connections and invalid connections, but also resulting in the largest bundle coverage for 

valid bundles. This study highlighted that some errors are more costly than others, and that 

connectivity metrics are largely driven by tractography parameters rather than orientation 

estimation [28].

The simulated human brain dataset from the 2015 ISMRM Tractography challenge [29] 

confirmed many of the findings of previous phantom challenges. Submissions were able to 

reconstruct most of the ground truth bundles, with over 70% of submissions reconstructing 

23 or more of the 25 valid pathways. However, tractography pipelines again had poor 

recovery of the spatial extent of bundles, with mean overlap values of only 36% of the true 

volumes. Most notably, even though many correct pathways were identified, an average of 

more than 4x as many invalid bundles were reconstructed. The false positive bundles were 
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consistently identified across submissions as dense, thick, structured pathways, despite not 

being a part of the ground truth (Figure 5). Further investigation revealed that many of these 

invalid bundles could be attributed to the ill-posed nature of tractography in “bottle-neck” 

regions [29]. These bottlenecks typically consist of groups of voxels where the number of 

valid bundles outnumber the number of “peak” directions in the diffusion signal (Figure 5), 

due to many bundles temporarily aligning and re-emerging. Current tractography algorithms 

cannot differentiate the large number of possible end-point combination possibilities, 

making it very easy to track non-existent tracts.

These challenges facing tractography, including low bundle overlaps and low percent of 

valid connections, were improved with high image resolution, although the number of 

invalid bundles remained high [29]. Going one step further, these ambiguities were not 

resolved even when running tractography on the ground truth field of orientations, which 

still resulted in 4x as many invalid as valid bundles [29]. Thus, even with perfect local 

orientation reconstruction, accurate tractography is not guaranteed. However, several 

strategies improved tracking, including good pre-processing (distortion, motion, artifacts 

corrections), anatomical priors, post-filtering of streamlines, and manual intervention or tract 

cleaning.

Tractography is reproducible, but algorithms can give very different results

For tractography to be a useful biomedical tool, it must not only be anatomically faithful, but 

also reproducible. Despite the wide range of validation challenges (and even more individual 

validation studies in the literature), only the TraCED challenge has focused solely on the 

reproducibility of tractography. The main takeaway is that the process of tractography is 

largely reproducible, but different tractography processes result in fundamentally different 

reconstructions [31].

Encouragingly, a majority of tractography algorithms are relatively stable within sessions, 

across sessions or time, and even across scanners, and for varying acquisition conditions 

[31]. For several algorithms, ICC reached values of 0.90 or higher indicating high 

reproducibility, with a majority of algorithms resulting in ICCs of 0.6 or more (moderate 

reproducibility). Importantly, reproducibility was maintained across imaging sessions and 

scanners. However, differences in reproducibility were observed based on the specific white 

matter pathway of interest. Highly reproducible pathways included the forceps minor, 

corticospinal tract, inferior longitudinal fasciculus, superior longitudinal fasciculus, and 

inferior fronto-occipital fasciculus, while those at the lower end of the spectrum included the 

uncinate fasciculus and fornix.

Alarmingly, a large variability was observed across algorithms [31]. Because of this 

variability, essentially any voxel in the brain could be attributed to any given pathway using 

at least one of the algorithms. For example, when all submissions are viewed together, a 

selected white matter pathway would appear to cover the full spatial extent of the brain 

hemisphere, however all individual submissions resulted in plausible pathway 

reconstructions (Figure 6). The authors chose to further investigate how well the 

submissions are contained, or nested, within the others. If reconstructions are able to be 

nicely nested within each other when re-ordered from smallest to largest, much like a stack 
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of Russian dolls, then this would suggest that all algorithms are identifying the same 

connection “patterns” with only differences in sensitivity/specificity. This can be likened to 

varying the visitation threshold of probabilistic tractograms. For larger pathways (which are 

also the more reproducible), this nesting explains a large percentage of the variance in 

results. However, for smaller pathways, less than 50% of the variance is explained by these 

sensitivity/specificity tradeoffs, which means that the different algorithms are resulting in 

reconstructions of fundamentally different structures. In summary, although most individual 

tractography algorithms are reproducible, different algorithms result in highly variable 

reconstructions.

Despite known pitfalls, the accuracy of tractography is still limited

These challenges, and the large collection of validation studies in literature, have revealed a 

number of pitfalls, uncertainties, and sources of error in the tractography processes. As 

described above, the sources of error occur and accumulate throughout the tracking process, 

from image acquisition, to local reconstruction, and finally to tracing streamlines from voxel 

to voxel. In image acquisition, artifacts associated with susceptibility distortions, head 

motion, and eddy currents can all result in failure in the tracking process. At the 

reconstruction stage, although algorithms are largely successful, any angular orientation 

error or unresolved fibers, as well as ambiguous orientational information, could results in 

inaccurate streamline propagation. Finally, the tracking process itself has been shown to be 

subject to biases, parameter selection, and ambiguities in pathways selection. Together, this 

has led to several authors, in both challenges and classic literature, to suggest that inferring 

connectivity from diffusion information alone is complex inverse problem, that may also 

lead to inherently limited anatomical accuracy. The most recent tractography challenge, 3D 

VoTEM [32], combines three separate, classic, validation studies - all of which have 

previously been used in individual validation studies - and asks “given known pitfalls, and 

advances in image acquisition, modeling, computation, and tracking algorithms that aim to 

address these pitfalls, has the anatomical accuracy improved in recent years?”.

The results of this study show that the anatomical accuracy of the most modern algorithms, 

implemented and optimized by the algorithm developers themselves, is still quite limited, 

both in assessing the spatial extent of pathways, and in determining connectivity between 

regions of interest [32] . Not only are false positive (invalid) bundles a source of error, in 

agreement with the 2015 ISMRM Tractography challenge, but many algorithms are also 

dominated by false negative connections, and low spatial overlap with true fiber pathways. A 

tradeoff in tracking sensitivity and specificity is apparent (Figure 7), with most algorithms 

lying at one of the two extremes of the ROC curve. Importantly, these results hold across all 

three sub-challenges, or validation strategies, which vary significantly in image quality, 

image acquisition (b-value, number of diffusion directions), and geometric complexity of the 

ground truth pathways (e.g. a complex motor pathway of a monkey versus a simple coherent 

fiber bundle in a phantom). This challenge confirms what individual research groups have 

shown for a long time in validating and testing their methods and algorithms, that the overall 

anatomical accuracy of tractography remains limited, and highlights that the ROC curves 

have not shifted significantly in recent years.
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3. OPPORTUNITIES AND PERSPECTIVES

We end with a discussion on perspectives on the challenges and the future of tractography, 

opportunities for advancements, and open issues in the field.

Building phantoms is hard

The most “challenging” aspect of a community challenge (from the organizers perspective) 

is defining the ground truth against which submissions are evaluated against. Building 

phantoms with realistic geometries and realistic signal is hard. In addition, very few 

institutions have the resources (both MR and optical imaging), algorithms (image processing 

and registration), and know-how (MR, histology, and animal surgery) required to validate 

tractography with ex vivo and histological ground truths.

While simulated data offers a versatile way to assess reconstruction and tractography 

performance across a range of experimental conditions, they may be an over-simplification 

of the geometry when compared to the enormous complexity of in vivo tissue. In addition, 

assumptions must be made about the relationship between the diffusion signal and the 

synthesized tissue, which may favor algorithms that make similar assumptions. Physical 

phantoms introduce realism with respect to data acquisition conditions and signal 

generation, but are still an over-simplification of geometry. However, even simple physical 

and synthetic phantoms allow the ability to quantitatively compare algorithms, evaluate 

accuracy, and find limitations, as demonstrated in many challenges of both local 

reconstruction [26] and connectivity analyses [21, 28, 29]. These phantoms show the same 

sensitivity/specificity and overlap/overreach tradeoffs as the more complex histological 

validations (3D-VoTEM challenge), although algorithms were generally better at recovering 

the full phantom pathways than ex vivo datasets.

There are opportunities for the design of newer, more complex, phantoms to be used as 

benchmarks to compare algorithms. A number of phantoms have been designed by the 

microstructural community for validating tissue models, with realistic microstructural 

features of compartment sizes, axon densities, axon diameters, and fiber dispersions [47–50] 

(See [51] for a review). Despite an improved realism obtained using electrospining, 

hardware phantoms are still far from being able to mimick real brain tissues because they 

only reproduce axonal fibers, but miss the glial cells also populating white matter including 

astrocytes and oligodendrocytes, and the microvasculature. To our knowledge, there does not 

exist any process to create such complex cell geometries. However, their presence has an 

impact on the diffusion NMR signal and should be taken into account.

An alternative to hardware phantoms are in silico phantoms elaborated using numerical 

simulation tools. Their realism relies on three factors: the ability of the software tool to 

create realistic microstructural tissue environment, the ability of the software tool to simulate 

the underlying biophysical processes occurring in the brain (diffusion, relaxation, perfusion, 

etc.) and the ability of the software tool to create large field-of-view phantoms. Developing 

an algorithm to generate ultra-realistic virtual brain tissues requires a computationally 

efficient approach to prevent overlaps of generated cells, and requires defining generative 

parameters for each type of cell population in an optimal way in order to reduce the global 
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number of parameters to a few tens of them. For instance, the generation of a single fiber 

population requires definition of: its main direction, its volume fraction, the distribution 

tuning the axon diameters, the distribution tuning the distance between Ranvier nodes, the 

distribution tuning the thickness of the myelin sheath, the global fiber dispersion, the local 

tortuosity, the distribution of permeability of fibers - already amounting to more than a 

dozen of parameters. The second aspect concerns the simulation of the diffusion-weighted 

NMR signal. Contrary to existing simulators relying of mixtures of analytical response 

functions, Monte-Carlo simulators are probably the most general approaches to simulate the 

diffusion process occurring in tissues, since they do not put any a priori on the response of 

cells to the diffusion process, and must be preferred to analytical generative models.

A key advantage of in silico phantoms is obviously that it theoretically allows to simulate 

the diffusion process for any ultra-realistic tissue environment and for any diffusion-

weighted pulse sequence [52, 53], contrary to hardware phantoms that generally mimic a 

reduced set of fiber configurations. However, Monte-Carlo-based numerical simulations are 

computationally expansive and requires access to high-performance computing (HPC) 

centers. This is the price to pay to have access to a dense sampling of the plethora of 

possible microstructural configurations and their associated diffusion-NMR signatures, but 

then, it offers the possibility to efficiently create any numerical phantom with a field of view 

able to reach the size of a human brain. There is potential to use these constructions over 

extended distances for tractography validation, potentially varying microstructural 

parameters along or between pathways, or including orientation complexity at multiple 

scales, including bending and curving over many voxels as well as curving (or fiber 

undulations) within voxels. This would enable evaluating the efficacy of microstructural 

informed techniques [54, 55], or post-processing of streamlines based on tissue components 

[54, 56].

While tracers in animals are considered the “gold standard” to determine white matter 

connectivity, they are not without their own limitations. Tracer uptake, staining sensitivity, 

and distortions in image processing all contribute to potential error in creating the ground 

truth connections. In addition, the number of tracers in an animal is limited (with all tracers 

in diffusion validation containing only a single injection per brain), and validation in one 

tract does not necessarily validate other pathways.

Polarized-light imaging (PLI) is an alternative to the use of tracers to reveal axonal 

connections at the microscopic scale, since it does not have such limitations [57]. The 

birefringence of myelin is exploited using a polarized source of light applied along various 

angles in the plane of histological sections and several tilting angles that, in combination 

with a microscope, provides a series of PLI scans allowing computation of a map of 3D 

orientation distribution functions that can be used to perform tractography at a microscopic 

resolution, much smaller than current ex vivo diffusion datasets. This ultra-high spatial 

resolution allows drastically reducing the number of voxels corresponding with complex 

configurations such as crossings, kissings or splittings. One limitation of PLI is that there 

does not exist any analytical method to reconstruct ODF in the case of two crossing fibers, 

where the birefringence model is not valid anymore due to the higher complexity of the 

underlying optical paths.
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These difficulties, in addition to difficulties associated with generating or manufacturing 

physical or numerical phantoms, stresses the need for sharing and distribution of MRI 

datasets with reference standards, with community challenges being the perfect platform to 

do so. The 3D-VoTEM challenge was the first attempt to tackle the validation problem using 

a variety of approaches, but there is opportunity for more. Much like the white matter 

microstructure database (https://osf.io/yp4qg/) provides freely-accessible and curated 

microscopy data that can be used for validating microstructural models (or any quantitative 

MRI method), it is necessary to collate a collection of gold standards for tractography, and 

implement a Tractometer-like system to evaluate future algorithms based on a number of 

quantitative accuracy metrics.

We do not know our anatomy

Not only do most challenges highlight the extreme variation in reconstructed pathways, but 

the DTI Tractography challenge actually underscores a large variation in how we define and 

interpret pathways. Specifically, in the CST, arguably the most studied pathway in not only 

diffusion but also anatomical literature, discrepancies were described in the way experts 

judged the quality of reconstructions [23]. In addition, the pathway was defined differently 

by nearly every team in the challenge. For example, defined as the pathway that courses 

through the cerebral peduncles to the pre- and post-central gyrus, or as the pathway that 

passes through the pons to the temporal lobes and somatosensory cortex. Although, strictly, 

these are the regions of interest used to extract streamlines, they still represent how the 

pathway is defined by the diffusion streamlines. Stated another way, even if a pathway is 

relatively well-defined anatomically, there is a wide variation in how image analysts chose to 

interpret that definition. This highlights that no single strategy, even with prior anatomical 

knowledge, was particularly successful in all neurosurgical cases. Thus, there is an 

opportunity, or rather a need, for computational diffusion MRI experts to work closer with 

expert neuroanatomists - neurosurgeons, MDs, and dissectionists.

Collaboration is necessary not only to better understand definitions and “what” we should 

strive to represent, but also to better understand “how” these techniques are being used, 

particularly in the operating room. This could prompt relevant questions that could shape 

future validation studies and algorithms. For example, how important is it to be exactly 

accurate in delineating pathways, or connectivity? The answer to this certainly varies 

between surgeons and anatomists, by procedure, or by hypotheses. In some practice, it could 

be that the spatial pathway is more important than connection strengths, or the presence/

absence of infiltration into tumor, or tumor zones themselves. Anatomists may be interested 

simply in the presence or absence of connections, or may need some measure of connection 

strength, which could include some measure(s) of axon density, axon number, axon sizes, or 

conduction abilities. Further, this could clarify the metrics that have traditionally been used 

to quantify algorithms, lending insight into what metric we should be validating accuracy 

with.

It is also important to mention that not all the white matter anatomy is known, even from 

neuroanatomists. This is particularly the case for the sub-cortical white matter that the 

Klinger’s dissection technique is technically unable to reach, but that diffusion MRI can 
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reveal [58]. The sub-cortical connectivity is intrinsically related to the advanced brain 

functions supported by the neocortex and the beauty here is that a tight collaboration 

between neuroanatomists and diffusion MRI experts is prone to offer new insights about the 

fine anatomy of the human brain connectivity.

Finally, it is crucial to emphasize to those utilizing these algorithms that tracking truly is an 

art, and not a singular process that always results in exact reconstruction of neuronal 

pathways. Thus, be careful about the impact of tractography “beauty” on emotions, 

interpretation, and use of data.

A revolution in tractography?

A consistent result across the challenges, and existing validation literature, is that the 

anatomical accuracy of the current state of tractography is limited, and tract reconstruction 

based on orientation information alone is not enough to overcome current challenges in 

tractography. Even with more data, and better data, simply stepping through a 3D vector 

field will likely not solve these problems [29]. Tractography needs something more from this 

data, or from modalities, contrasts, or knowledge outside of diffusion itself [29, 32].

An obvious first step is to use the decades of neuroanatomy research, functional imaging, 

animal tracer studies, and human dissections to improve the definition of white matter 

pathways, and better define where streamlines should start and where they should end. This 

may reduce variability across the methodologies, but may not improve overall measures of 

both sensitivity and specificity. In addition to better priors, maybe more priors would 

advantageous, both logical ANDs and NOTs, defining exactly where a pathway goes and 

where it does not go [59, 60]. Although if this were known at such a fine scale, tractography 

would not be providing that much additional knowledge.

Methodological innovations are needed, with several strategies to overcome these limitations 

currently under investigation. Microstructural measures along the fiber orientations could 

improve specificity by helping to trace orientations belonging to the same pathway [55], 

which should have the same properties. A number of these techniques are actively being 

developed, with these algorithms broadly referred to as “Microstructure-Informed 

Tractography”[61]. Currently, this has been implemented utilizing microstructural models of 

axon diameters and densities [54, 55], but could in the future include (1) other tissue 

properties derived from conventional diffusion data, including axon dispersion, volume 

fractions, and compartment diffusivities [55, 62–67], (2) those derived from non-

conventional diffusion acquisitions including double diffusion encoding [68, 69], multiple 

diffusion encoding [70, 71], oscillating gradients [72, 73], (3) those derived from alternate 

contrasts such as myelin water imaging [74, 75], T1/T2 relaxometry [76], tract-steering with 

functional imaging [77–79], or even EEG and EMG [80, 81], and (4) utilizing 

microstructural or anatomical priors [82]. However, when informing tractography with 

microstructural or novel features, it is critical to ensure biological plausibility, model 

validation, and the ability of the model to adequately separate multiple fiber populations 

[61].
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Global tractography approaches can provide a convenient framework to take into account 

any anatomical priors since it only requires adding a regularization term to the objective 

function to be optimized. For instance, the trajectory of fibers entering the cortical mantel 

can be efficiently monitored using anatomical prior like the pial surface to infer the direction 

perpendicular to that surface as well as microstructural prior knowledge like the orientation 

dispersion to release the constraint on fiber curvature when the dispersion is high, allowing 

sharp turns to be created [83]. Some efforts still need to be made to further regularize the 

inference of connections by using all the available anatomical priors able to constrain their 

creation during the generative process.

Alternatively, with the terabytes of data generated by submissions in these challenges, as 

well as initiatives such as the Human Connectome Project [84], Alzheimer’s Disease 

Neuroimaging Initiative [85], and the Baltimore Longitudinal study of Aging [86], among 

others, there are opportunities to learn both reconstructions and tracking. We could learn 

from the ground truth itself in combination with submissions to better determine successes 

and failures, or optimal tracking parameters. Algorithms could also learn artifacts and errors 

in diffusion data, could learn structures on individuals given large numbers of existing 

tractograms, or could learn individualized ROI placement for optimal tracking [87, 88].

Overall, there is a need to possibly rethink tractography. It is necessary to think about the 

algorithm logic we use to create these streamlines, and compare this to the logic or anatomy 

that real tissue uses to determine its pathways, locations, and connectivity [89]. Axons 

elongate following guidance cues, both attractive and repulsive cues, that differ over time 

and space. While tractography traditionally uses orientation as a guide, and ROIs as logical 

cues, these are typically unchanging. There has been some exploration into, in effect, 

changing orientation based on streamline obstacles allowing exploration of new spaces, but 

tractography could still benefit from anatomical knowledge of axon growth, connectivity 

targets, and how axons and development influence brain geometry and vice-versa.

Solving tractography in phantom does not solve tractography in humans

Perfect reconstructions in simulations and physical phantoms does not necessarily guarantee 

perfect reconstruction in the human brain. However, even using simple geometries allows a 

better understanding of the mistakes and pitfalls of tractography, as well as the behavior of 

algorithms in different acquisition or geometric scenarios. Similarly, solving this in a more 

geometrically complex animal model also does not mean the same in the in vivo human. 

Verifying the accuracy of one pathway does not validate the others, and this is especially 

true when comparing white matter across species. Rather, the aim of validating tractography 

is not necessarily to reconstruct the “perfect” animal pathway (for that, we have tracers), but 

to better understand its reliability in the human. Towards this end, there is, again, need for 

better phantoms that both combine well-defined ground truths with the geometric 

complexity of the human brain system.

While the lessons learned from these challenges largely highlight limitations, and may seem 

to take a pessimistic view of tractography, there are several positive takeaways. First, the 

crossing fiber problem is relatively solved locally. Extracting orientations can be done quite 

well, for a number of acquisition settings, fiber geometries, and reconstruction methods. 
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Second, despite differences between algorithms, there are a number of algorithms which are 

able to capture the full spatial extent of pathways. Alternatively, others have high 

specificities, where the presence of connecting streamlines may more confidently indicate 

the presence of true connections. Third, reassuringly, with neurosurgical cases in particular, 

there will almost always be human involvement in the tracking process. Depending on goals 

and/or hypothesis, manual editing, varying of parameters, or changing of ROIs is possible in 

order to generate desired pathways, and with current software this is now both easy and in 

real-time (although ideally we would advocate for a fully automated, reproducible 

processing and tractography pipeline). Finally, even though most lessons learned are made 

through mistakes and errors in tractography, it is reassuring that all challenges reach 

consistent conclusions regarding reliability: (1) we can reconstruct true connections, (2) but 

should be cautious in interpreting reconstructions in a clinical environment; (3) local 

orientations are largely consistent with ground truth, (4) but this does not guarantee accurate 

tractography; (5) tractography is reproducible, (6) but the anatomical accuracy is still 

limited.

Validation is important

Mapping the structural connectivity of the human brain has been a fundamental goal of 

neuroscience for decades. A 3D network of the brains fiber pathways has the potential to 

help in better understanding brain injury and disease, as well as providing insights into basic 

neuroscience. New techniques are constantly introduced, not only in tractography but also in 

the microstructural community. Application of tractography continually results in findings 

and advances in understanding conditions such as stroke, multiple sclerosis, Parkinson’s 

disease, and schizophrenia, as well as normal brain development, leading to excitement in 

the use and application of these techniques. However, the application of these methods is 

racing ahead of our ability to understand the data and their limitations. For these techniques 

to be used in safe and effective manners, we must be sure of their effectiveness. For these 

reasons, it is important to take a step back and ask what it is we are really measuring, how 

accurate and precise these results are, and how reliably are these results interpreted. There 

are several hard inverse problems that we must solve: reconstructing fiber geometries from 

the diffusion signal, and reconstructing continuous white matter pathways from discrete 

estimates of orientation. Thus, these techniques can, and should be validated on both levels. 

Community challenges provide the ideal platform for investigations and comparisons of all 

aspects of the tracking process, for both algorithms of the past, and emerging algorithms. 

There is still room for improvements and innovations in the challenge process itself [90]. For 

example, combining the knowledge and skillsets of the tractography community with the 

microstructural community could lead to improvements in phantoms, ground truth 

evaluations, and potentially unique features that could increase tracking accuracy. On the 

other end, there is potential to collate all validation datasets from the literature to not only 

assess tracking accuracy, but to compare individual algorithms across datasets to uncover 

successes and failures under different acquisition or geometrical conditions.
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APPENDIX A. CHALLENGE EVALUATION METRICS

FiberCup: MICCAI 2009

Evaluation was performed for all 16 pairs of submitted/ground-truth fibers to evaluate both 

the spatial matching of curves as well as trajectories and smoothness [21]. All metrics are 

based on a symmetric Root Mean Square Error (sRMSE) between the candidate fiber and 

the corresponding ground truth:

sRMSE( f 1, f 2) = 1
2 ∫0

1
dist2( f 1(s), f 2(c1(s)))ds + ∫0

1
dist2( f 2(s), f 1(c2(s)))ds

where f1 and f2 are the two fibers being compared, s the arc length in the range [0, 1], c a 

function giving for each arc length s of f1 the corresponding arc length of f2, and dist a 

metric measuring how similar the points f1(s) and f2(c(s)) are. The choice of c is made to 

associate fiber points which are closest spatially, and the RMSE is symmetrized (sRMSE) 
because the mapping c is not guaranteed to be symmetric.

Importantly, the sRMSE depends on the chosen metric dist. In this work, the spatial metric is 

calculated when dist is formulated as an L2 norm (high values when fibers are distant from 

each other, and vice-versa), the tangent metric when dist is formulated as the angular 

difference between tangents (sRMSE is low when fibers are parallel, and vice-versa), and 

the curve metric when dist is formulated as the difference of curvature between two fiber 

points.

Spatial metric

The spatial metric expresses the distance metric as the L2 norm between two fiber positions. 

With pi and P2 as two spatial positions, the metric is:

dist(p1, p2) = ∥ P1 − P2 ∥2 = P2 − P1 T P2 − P1

Tangent metric

The tangent metric measures agreement of orientation. With v1 and V2 as normalized 

tangent vectors along streamlines, the tangent metric is:

dist v1, v2 = acos(|v1
Tv2|)180

π

Curve metric

The curvature at any position of a curve is given by K f = f ′ × f "
f ′ 3 . The curvature metric 

is then expressed as the absolute difference of curvature between two fibers points as the dist 
measure in the sRMSE:
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dist K1, K2 = k2 − k1

DTI Challenge: MICCAI 2011–2015

Qualitative Evaluation

Tractography results were evaluated qualitatively based on the 3D viewing of tracts by a 

panel of five judges (two neurosurgeons and three DTI experts) [23]. Tractography results 

were evaluated based on the presence of false-positive and false-negative tracts and 

anatomical accuracy of the reconstructed bundles. Submissions were graded ranging from A 

(excellent) to D (poor).

Quantitative Evaluation

Quantitative evaluation measures the distance between two fiber bundles, fx and fy (from 

submission x and y) using the Average Mean Distance (AMD) and the Hausdorff distance. 

The AMD is defined as the average of the closest distance between fiber fx and fiber fy, and 

the Hausdorff distance is the maximum of the closest distances between fiber fx and fiber fy. 

These measures were computed for all pairs of fiber bundles for each time, separately 

calculated on the tumor side and contralateral side, for all patient datasets.

HARDI Reconstruction Challenge: ISBI 2012

Quality of local reconstructions were assessed by focusing on 1) correct assessment of the 

number of fiber populations in each voxel, and 2) angular accuracy in their orientation [26]. 

These metrics were computed by comparing the fiber populations (or simulated fiber 

compartments) of the ground truth dataset with those estimated by each submission.

In order to assess the correct estimation of number of fiber components, the success rate 
(SR) was employed. The SR is simply the proportion of voxels in which a reconstruction 

algorithm successfully estimates the correct number of fiber populations. Additionally, the 

number of overestimated fiber populations and underestimated fiber populations in each 

voxel were computed in order to better understand incorrect assessment of the number of 

fiber populations. These measures were calculated by simply counting the number of fiber 

populations in each voxel and comparing to the number simulated. All three measures were 

also recomputed using a tolerance cone, where estimated directions are successfully resolved 

only if they fall within a tolerance cone around a real, simulated, fiber population (set to 20° 

in the challenge).

The angular accuracy in orientation of the estimated fiber compartments was then computed 

by calculating the average error (in degrees) between the estimated fiber directions and the 

true ones present in a voxel:

θ− = 180
π arccos( dtrue ⋅ destimated )
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where unit vectors dtrue and destimated are the true fiber population orientation and the closest 

estimated direction.

All submissions were assessed as a function of SNR, as well as the crossing angle of the 

simulated fiber populations.

HARDI Reconstruction Challenge (Tractometer): ISBI 2013

The Tractometer proposed six new tractography validation metrics [28]:

Average Bundle Coverage (ABC): the proportion of the true fiber bundle covered by 

submitted streamlines, reported as a percentage. Calculated as the average number of voxels 

crossed by streamlines divided by the total number of voxels in the bundle.

Valid Connections (VC): the percent of streamlines connecting expected ROIs and not 

exiting the expected fiber bundle mask.

Invalid Connections (IC): the percent of streamlines connecting unexpected ROIs or 

streamlines connecting expected ROIs but exiting the expected fiber bundle mask.

No Connections (NC): the percent of streamlines that do not connect two ROIs, primarily 

composed of streamlines that stopped prematurely due to angular constraints or exiting the 

tracking masks.

Valid Bundles (VB): the number of bundles connecting expected ROIs. In this challenge, the 

maximum number of VB was 7.

Invalid Bundles (IB): the number of bundles connecting unexpected ROIs. Similar to IC, but 

at the scale of bundles (rather than streamlines). In theory, there could be a total of 39 

possible IB in this challenge.

Tractography Challenge: ISMRM 2015

This challenge [29] utilized and adapted many of the Tractometer metrics for submission 

evaluation [28]. Streamlines (and bundles) are classified and the following metrics were 

calculated:

Valid Connection (VC) Ratio: The number of VC divided by the total number of 

streamlines, expressed as a percentage.

Valid Bundles (VB): the number of bundles connecting expected ROIs. The maximum 

number of VB in this challenge was 25.

Invalid Bundles (IB): the number of bundles connecting unexpected ROIs. There are 1250 

potential IB connections in this challenge.

Bundle Overlap (OL): the proportion of voxels that contain the ground truth volume that are 

traversed by at least one streamline. The OL describes how well tractography is able to 

describe the volume occupied by the ground truth.
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Bundle Overreach (OR): the number of voxels containing streamlines that are outside of the 

ground truth volume divided by the total number of voxels within the ground truth bundle. 

The OR describes how much the streamlines extend beyond the ground truth bundle volume.

TraCED Reproducibility Challenge: ISMRM 2017

Tractograms within a submission were evaluated based on reproducibility of tracts using the 

intra-class correlation coefficient (ICC) and the Dice Overlap coefficient, calculated for 

intrasession, inter-session, same scanner, and inter-scanner analysis, for each reconstructed 

fiber bundle and all submissions (20 tractograms per submission) [31].

ICC: The ICC is a measure of conformity among observations, and, in this case, measures 

consistency between k tractographic segmentations of a given reconstructed white matter 

bundle:

ICC =
MSb − MSw

MSb + (k − 1)MSw

where MSb is the mean squares between segmentations (between group mean squares) and 

MSw denotes the mean squares within segmentations (within group mean squares).

Dice Overlap Coefficient (D): measures the overall similarity between repeated 

segmentations, X and Y, by taking twice the shared information (intersection) over the sum 

of the cardinalities:

D = 2 X ∩ Y
X + Y

Containment index (CI): this metric examines how well the different submitted tract 

volumes can be nested within one another, defining the containment index for two tract 

volumes X and Y as:

CI (X, Y) =
X = 0:1

X ≠ 0 and Y = 0:0
otherwise : X ∩ Y / Y

For example, if tract Y is fully contained within X, the resulting containment CI(X,Y) = 1. 

From this, an optimal ordering (or nesting) of tractograms can be computed by maximizing 

the containment energy (CE), which is the sum of CI for all tracts versus the tracts earlier 

than the one under consideration:

ar gmaxo ∈ perm(1… Entry )CE = ar gmaxo ∈ perm (1... Entry )∑
i

∑
j ≤ i

CI Entry oi , Entry i j

where perm denote the permutation operator, and Entry is a list of all entered tractograms. 

The main idea behind the CE is to find the ideal order to stack the tractograms inside each 
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other, where the first tract is the “most inside” subsequent tracts and the last is “most 

outside” all others. This analysis allows investigation of whether differences in results (in 

this case, differences in reproducibility) are caused by fundamentally different reconstructed 

pathways, or simply driven by differences in volumes around the same “core” structures of 

the tracts.

3D VoTEM Challenge: ISBI 2018

This challenge featured “ROI-based” and “voxel-wise” anatomical accuracy measures [32]. 

The ROI-based measures characterized the validity of tract region-to-region connectivity, 

while the voxel-wise measures assessed the spatial extent of reconstructed pathways on the 

scale of individual voxels.

ROI-based measures

For the sub-challenges featuring the macaque and squirrel monkey, ROI-based connectivity 

to the seed regions was assessed using white matter and gray matter ROIs.

Sensitivity: True positive rate; measures the proportion of positives (regions that are 

occupied by ground truth) that are correctly identified as such (using tractography). 

Sensitivity measures the ability to correctly detect all connections of the seed region.

Specificity: True negative rate; measures the proportion of negatives (regions that do not 

contain ground truth) that are correctly identified as such (do not contain streamlines). 

Specificity measures the ability to correctly identify voxels that do not have connections 

with the seed region.

Youden’s J statistic: Sensitivity+Specificity-1; a statistic that captures the performance of a 

diagnostic test, and estimates the probability of an informed decision, ranging from −1 to 1. 

A value of 1 indicates a perfect test with no false positives or false negatives.

Voxel-wise measures

Phantom and squirrel monkey sub-challenges featured ground truth volumes that were 

defined voxel-wise. Spatial accuracy of pathways was assessed using Tractometer metrics 

[28].

Bundle Overlap (OL): The proportion of voxels that contain the ground truth volume that are 

traversed by at least one streamline.

Bundle Overreach (OR): the number of voxels containing streamlines that are outside of the 

ground truth volume divided by the total number of voxels within the ground truth bundle:

Dice Overlap Coefficient (D): measures the overall similarity between ground truth and 

tractography volume by taking twice the shared information (intersection) over the sum of 

the cardinalities.
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Figure 1. 
Past challenges in fiber tractography. Detailed description of data, ground truth, and 

evaluation are described in the text. (A) FiberCup Phantom pathways with 16 ground truth 

bundles [21]. (B) Eight example CST reconstructions from the DTI Challenge [23]. (C) 

Synthetic fiber fields from the HARDI Reconstruction Challenge [26]. (D) Phantomas [27] 

dataset for Tractometer evaluation [28]. (E) Creation of simulated in vivo human dataset for 

the ISMRM Tractography Challenge [29]. (F) Example submissions from the TraCED 

Reproducibility Challenge for two white matter pathways. (G) 3D-VoTEM ground truths 
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defined on the macaque, squirrel monkey, and phantom (from left to right). Reproduced and 
modified from Fillard et al. (2011), and Schilling et al. (2018) with permission from 
Elsevier; from Pujol et al. (2105) with permission from Wiley; from Daducci et al. (2014) 
with permission from IEEE, and from Maier-Hein et al. (2017) under a Create Commons 
license from Nature Publishing Group.
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Figure 2. 
Following local orientations, many algorithms are able to reconstruct valid connections. 

Images show the reconstructed fiber of all submissions (Methods #1–10) for each seed of the 

phantom (S1-S16). Variability across methods is apparent, and some pathways are more 

successful than others. Compare to Figure 1A for ground truth connections of each seed. 

Reproduced from Fillard et al. (2011) with permission from Elsevier.
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Figure 3. 
There are limitations to the use of tractography in clinical decision making - reconstruction 

of the CST results in a number of false positive and false negative connections. The figure 

shows eight tractography reconstructions of the pyramidal tract for patient 2 (top), patient 3 

(center), and patient 4 (bottom). Each view presents the tracts (yellow: tumor side; orange: 

contralateral side) overlaid on axial and coronal T2-weighted image. Reproduced from Pujol 
et al. (2105) with permission from Wiley.

Schilling et al. Page 31

Magn Reson Imaging. Author manuscript; available in PMC 2020 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
Most reconstruction methods adequately resolve the fiber orientation distribution, even with 

limited data. A representative diffusion profile (e.g., ODF or FOD) as reconstructed by 

varying algorithms is shown for four different crossing configurations (90°, 60°, 45°, and 

30°), with an SNR = 30. Reproduced from Daducci et al. (2014) with permission from 
IEEE.
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Figure 5. 
Challenges in tractography include bottle-necks and ambiguities cause by the ill-posed 

nature of tractography. (A) Example invalid bundles consistently identified in a majority of 

submissions, where tractography cannot differentiate the valid pathways due to the high 

amount of possible connections through a bottle-neck region. (B) For example, in the 

temporal lobe, six ground truth bundles converge in a parallel manner, resulting in more 

valid bundles per voxel than the number of unique peak directions, contributing to the 

tracking ambiguity. Reproduced and modified from Maier-Hein et al. (2017) under a Create 
Commons license from Nature Publishing Group.
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Figure 6. 
Tractography is reproducible within an algorithm, but highly variable across algorithms. (A) 

Overlay of all 46 Traced Challenge submissions from all sessions for several white matter 

tracts shows widespread spatial extent of various pathways. (B) Visualization of a single 

submission shows reasonable results for all pathways. White matter pathways include: A) 

Uncinate B) Fornix C) Cingulum D) Corticospinal tract E) Inferior Longitudinal Fasciculus 

F) Inferior Fronto-Occipital Fasciculus G) Superior Longitudinal Fasciculus H) Forceps 

major.
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Figure 7. 
Anatomical accuracy of tractography is limited. (A) Region-to-region connectivity 

validation is shown as ROC curves for the macaque (PCG seed and V4v seed) sub-challenge 

and squirrel monkey (M1 seed) sub-challenge. (B) Voxel-wise spatial overlap validation is 

shown with plots of overlap versus overreach for the squirrel monkey sub-challenge and 

phantom sub-challenge (scanner A and scanner B). One marker is shown for each 

submission, with marker colors indicating unique research groups. A common theme in this, 

and other challenges, is that a specificity/sensitivity (or overlap/overreach) tradeoff is 

inherent in all tractography algorithms and pipelines. Reproduced and modified from 
Schilling et al. (2018) with permission from Elsevier.
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Table 1.

Challenges in fiber tractography.

YEAR CONFEREN
CE

NAME VALIDATIO
N

STRATEGY THE
CHALLENG

E

INFORMATION

2009 MICCAI FiberCup Tractography Physical
Phantom

Find 16 
existing 

connections
http://www.tractometer.org/original fibercu p/

2011-
2015 MICCAI DTI Challenge Tractography

In Vivo Data 
reviewed by 
neurosurgeo 

ns

Reconstruct 
Pyramidal 
Tract in 4 

Neurosurgic 
al Cases

http://dti-challenge.org

2012 ISBI
HARDI 

Reconstructi 
on Challenge

Fiber
orientation

Simulated
orientation

fields

Estimate local 
single and 

crossing fiber 
configuratio 

ns

http://hardi.epfl.ch/static/events/2012_ISBI/

2013 ISBI

Tractometer: 
HARDI 

Reconstructi 
on Challenge

Local
modeling
evaluated

with
tractography

Physical 
Phantom + 

Online 
evaluation 

tool

Recover valid 
connections 

and fiber 
bundles

http://hardi.epfl.ch/static/events/2013_ISBI/index.html

2015 ISMRM Tractography
Challenge Tractography

Simulated 
diffusion 

data based 
on in vivo 

human 
acqusition

Find 25 
ground truth 

bundles
http://www.tractometer.org/ismrm_2015_challenge/

2017 ISMRM
TraCED 

Reproducibili 
ty Challenge

Tractography
Reproducibili

ty

Scan-rescan 
data of single 

subject on 
two scanners

Submit most 
reproducible 
tractogram 
for 10 fiber 
structures

https://my.vanderbilt.edu/ismrmtraced2017/

2018 ISBI 3D VoTEM Tractography

Physical 
Phantom + 

Histological 
Validation

Find ground 
truth bundles 

and 
connections 

in all datasets

https://my.vanderbilt.edu/votem/
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