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Abstract

Diffusion MRI has been widely used to assess brain tissue microstructure. However, the 

conventional diffusion tensor imaging (DTI) is inadequate for characterizing fiber direction or 

fiber density in voxels with crossing fibers in brain white matter. The constrained spherical 

deconvolution (CSD) technique has been proposed to measure the complex fiber orientation 

distribution (FOD) using a single high b-value (b ≥ 3000 s/mm2) to derive the intra-axonal volume 

fraction (Vin) from the calculated FOD. Recently, the spherical mean technique (SMT) was 

developed to fit Vin directly from a multi-compartment model with multi-shell b-values. Although 

different numbers of b-values are needed in the two techniques, both methods have been suggested 

to be related to the spherical mean diffusion weighted signal (S). The current study compared the 

two techniques on the same high-quality Human Connectome Project diffusion data and 

investigated the relation between S and Vin systematically. At high b-values (b ≥ 3000 s/mm2), S is 

linearly related to Vin, and S provides similar contrast with Vin in white matter. At low b-values (b 
~ 1000 s/mm2), the linear relation between S and Vin is sensitive to the variations of intrinsic 

diffusivity. These results demonstrate that S measured with the typical b-value of 1000 s/mm2 is 

not an indicator of Vin, and previous DTI studies acquired with b = 1000 s/mm2 cannot be re-

analyzed to provide Vin-weighted contrast.
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Introduction

Diffusion MRI is a valuable tool to study brain tissue microstructure (e.g. fiber direction, 

fiber density and fiber size) non-invasively. The conventional diffusion tensor image (DTI) 

model has been widely used to provide quantitative measurements of diffusivity, fractional 

anisotropy (FA), and direction for water diffusion in white matter [1,2]. The value of FA is 

strongly affected by radial diffusivity (RD) perpendicular to the main fiber direction which, 

in turn, is dominated by water diffusion in the extra-axonal space. For example, 

demyelination and axon loss in white matter injuries result in increased RD and decreased 

FA [3]. Thus, a higher value of FA is linked with higher fiber density, and FA has been used 

as a biomarker of white matter integrity [4]. However, the conventional DTI model cannot 

describe situations with fiber crossings and orientation dispersion appropriately, which are 

common in brain white matter [5,6]. For this reason, the interpretation of FA as white matter 

integrity has been questioned [7]. Moreover, it was recently observed that the crossing fiber 

problem cannot be solved by simply increasing spatial resolution [6].

A number of methods have been proposed to better describe the diffusion weighted signals 

and estimate fiber orientations from high angular resolution diffusion imaging. These 

methods include ball-stick model [8–10], Q-ball imaging [11], diffusion spectrum imaging 

[12], and spherical deconvolution [13,14] among others. Typically, the fiber orientation 

distribution (FOD) or the orientation density function (ODF) is derived to model the 

distribution of axonal fiber orientations in each voxel. Numerical simulations suggested that 

FOD amplitude computed using spherical deconvolution would be proportional to the intra-

axonal volume occupied by fibers along the corresponding fiber orientation [15]. The term 

apparent fiber density (AFD), as a measure of FOD amplitude, was proposed to be an 

indicator of intra-axonal volume fraction of axons in a given direction [15]. The total AFD 

(AFDtotal), which is the integral of FOD over all directions, is in turn proportional to the 

intra-axonal volume fraction of all axons within a voxel (Vin) [15–17]. Note that the surface 

integral of FOD is also linearly related to the spherical mean diffusion weighted signal 

averaged over all gradient directions (S) [14], which means the intra-axonal volume fraction 

can be linked with the spherical mean diffusion weighted signal ( Vin ⇔AFDtotal ⇔FOD⇔ 

S ) [15]. Recent analytical work derived that Vin = 2 ⋅ bλ
π ⋅ S

S0
 if the diffusion weighting b-

value is sufficiently large, where λ is the intrinsic diffusivity and S0 is the signal for b = 0 

[18].

Another diffusion-based approach to estimate Vin is multi-compartment modeling. Various 

methods have been developed to estimate Vin and/or axon diameter [19–26]. Briefly, the 

diffusion signals are expressed analytically to be from a simplified two- or three-

compartment model covering intra- and extra-axonal spaces, and then the measured signals 

are fit to the analytical model with different degrees of diffusion weighting (diffusion time, 

b-value, and gradient direction). A single fiber direction or a fixed fiber orientation 

distribution is usually assumed for simplicity. The more complex the orientation distribution 

the more parameters in the model [26]. Instead of fitting the raw signal at each gradient 

direction, the spherical mean technique (SMT) was proposed to focus on the direction-

averaged diffusion weighted signal, which is independent of the fiber orientation distribution 
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[27]. Hence, the SMT-based Vin estimation is not affected by the crossing fiber problem 

[28]. More recently, the rotationally invariant framework was generalized to the higher-order 

spherical harmonics [29–31].

Given the substantial advantage of S in estimating white matter intra-axonal volume fraction, 

in the current study we used high-quality Human Connectome Project diffusion data to 

investigate systematically the effect of b-value on the relation between S and Vin, at both low 

and high b-values. In addition, CSD-based AFDtotal and SMT-based Vin were estimated and 

compared on the same data. Only white matter was considered in the current study.

Materials and methods

Theory

Following the widely used two-compartment model of intra- and extra-axonal spaces, the 

diffusion weighted signals of white matter can be expressed as

S(b, θ, φ) = S0 ⋅ V in ⋅ Sn
in + 1 − V in ⋅ Sn

ex (1)

where θ and φ are the polar angle and azimuthal angle of gradient direction in spherical 

coordinates, and Sn
in and Sn

ex are the normalized signal attenuations per volume from the 

intra- and extra-axonal spaces, respectively. Note that T2 difference between intra- and extra-

axonal spaces is not considered, and thus, Vin is T2-weighted intra-axonal volume fraction. 

Since the myelin contribution is completely ignored, the term intra-axonal water fraction 

may be a better terminology [32].

Axons are modeled as cylinders with axial diffusivity equal to the intrinsic diffusivity 

(λin = λ). Due to the small axon size (~ 1 μm) in brain white matter [33] and relatively long 

diffusion time on human scanner [34], the intra-axonal radial diffusivity is reasonably 

assumed to be 0 λ⊥
in = 0 . To minimize the number of unknown parameters in the system, the 

extra-axonal water diffusion is modeled as a rotationally symmetric tensor [28] with axial 

diffusivity λex = λ and radial diffusivity λ⊥
ex = 1 − Vin ⋅ λ, which is based on the first-order 

tortuosity approximation for a system of randomly placed parallel cylinders [35]. As 

demonstrated previously [14,27–29,31], the spherical mean diffusion weighted signal is 

independent of the complex fiber orientation distribution, and it can be expressed as

S(b) = S0 ⋅ [V in ⋅ Sn
in + 1 − V in ⋅ Sn

ex]

Sn
in = π ⋅ erf( bλ)

2 bλ

Sn
ex =

π ⋅ erf bλV in
2 bλV in

⋅ exp −bλ 1 − V in

(2)

Li et al. Page 3

Magn Reson Imaging. Author manuscript; available in PMC 2020 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



where erf is the error function. The contribution of the extra-axonal water to the total mean 

signal can be neglected with sufficiently large b-values. In that case, Eq. (2) can be 

simplified to [18]

S(b) = S0 ⋅ V in ⋅ π
2 bλ

(3)

According to Eq. (2), SMT-based Vin and λ can be fit directly from the spherical mean 

signal decay as a function of b-value. And according to Eq. (3), if λ is known or assumed to 

be constant, Vin or Vin-weighted contrast can be derived from the normalized mean signal 

S
n

= S/S0  at a single high b-value.

CSD-based AFDtotal is computed from spherical deconvolution [13,14], where the diffusion 

weighted signals are expressed as the convolution of fiber FOD (P(θ, φ)) and the single fiber 

response function (R(b, θ)).

S(b, θ, φ) = P(θ, φ) ⊗ R(b, θ) (4)

S(b, θ, φ) = ∑
l = 0

∞
∑

m = − l

l
slmY lm(θ, φ) and P(θ, φ) = ∑

l = 0

∞
∑

m = − l

l
plmY lm(θ, φ) (5)

R(b, θ) = S0 ⋅ e−bλcos2θ (6)

AFDtotal = ∫
0

2π∫
0

π
P(θ, φ)sinθdθdφ = 4π ⋅ p00 = S(b)

S0
⋅ 2 bλ

π ⋅ erf( bλ) (7)

Details of the last equality in Eq. (7) can be found elsewhere [14]. It is evident from Eqs. (2) 

and (7) that AFDtotal is equivalent to S
n

/S
n
in

. Furthermore, AFDtotal is equal to Vin when the 

diffusion weighting b-value is sufficiently large. Practically, AFDtotal or the fiber FOD can 

be estimated from either single-shell single-tissue constrained spherical deconvolution 

(SSST-CSD) [15,36] or multi-shell multi-tissue constrained spherical deconvolution 

(MSMT-CSD) [37,38]. To differentiate the two situations, AFDtotal computed from SS-CSD 

will be referred to as AFDtotal
ss , and AFDtotal

ms  for MSMT-CSD.
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Data acquisition

High-quality data from 35 healthy adults, referred to as the MGH-USC Adult Diffusion 

Dataset of the Human Connectome Project (HCP), were downloaded from ConnectomeDB 

(http://db.humanconnectome.org). Data were acquired on a 3T CONNECTOM scanner with 

a custom-made 64-channel head coil. The scanner maximum gradient strength is 300 mT/m. 

T1-weighted images were acquired with a Multi-Echo Magnetization Prepared Rapid 

Acquisition Gradient Echo (MEMPRAGE) sequence at 1mm isotropic resolution. Diffusion 

data were acquired with 4 different b-values (i.e., 4 shells): 1000 s/mm2 (64 directions), 

3000 s/mm2 (64 directions), 5000 s/mm2 (128 directions), and 10,000 s/mm2 (256 

directions). One non-diffusion weighted b = 0 image was collected for every 13 diffusion 

weighted images. Other diffusion imaging parameters were: repetition time (TR) = 8800 ms, 

echo time (TE) = 57 ms, gradient duration (δ) = 12.9 ms, gradient separation (Δ) = 21.8 ms, 

image resolution = 1.5×1.5×1.5 mm3, parallel imaging acceleration factor = 3, and 

multiband factor = 1. The signal-to-noise ratio (SNR) was about 18.5 for white matter in b=0 

image, which was calculated from the first 21 b = 0 images using a maximum-likelihood 

approach [39]. Images with b = 10,000 s/mm2 were not used in the current study due to the 

low SNRs in these images. Among the 35 subjects in the dataset, there were slight residual 

parallel imaging aliasing artifacts on b = 0 images in most subjects. Thus, seven subjects 

with minimal residual aliasing artifacts were selected for current study.

Data analysis

As downloaded, the data were preprocessed with corrections for gradient nonlinearity 

distortions, head motion, and eddy current artifacts [40]. In addition, we corrected for spatial 

intensity inhomogeneity artifacts [41,42] with MRtrix [43]. Subsequently, the bias field 

corrected 21 b = 0, 64 b = 1000 s/mm2, 64 b = 3000 s/mm2, and 128 b = 5000 s/mm2 images 

were used for the following data analyses. DTI: FA, RD and axial diffusivity (AD) were 

estimated using iteratively reweighted linear least squares estimator in MRtrix. DTI was 

performed with b ≤ 1000 s/mm2. AFDtotal
ms : T1-weighted image was linearly co-registered to 

the corresponding b = 0 image and then segmented to gray matter, white matter, and 

cerebrospinal fluid using FSL [41,42]. The response functions for the three tissue types were 

estimated based on distinct b-value dependence for each tissue type [37]. Note that the 

experimentally estimated response function may depart from Eq. (6). Multi-component 

FODs were calculated using MSMT-CSD [37], and AFDtotal
ms  was estimated by the FOD of 

the white matter-like component. Track Density Imaging (TDI): anatomically-constrained 

tractography (ACT) [44] was performed with the FOD of the white matter-like component 

generating 100 million streamlines, which were subsequently filtered to 10 million using the 

spherical-deconvolution informed filtering of tractograms (SIFT) method [45]. SIFT reduces 

the number of streamlines, but provides more biologically meaningful results consistent with 

the underlying FOD [16]. The TDI map [46] was calculated as the number of streamlines 

after SIFT in each voxel. AFDtotal
ss :AFDtotal

ss  was estimated with b = 5000 s/mm2 only. The 

response function was computed using the iterative single fiber selection algorithm [47]. 

SSST-CSD was used for FOD estimation [36], and AFDtotal
ss  was calculated from the l = 0 
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term of the FOD following Eq. (7). The analysis of DTI, AFDtotal
ms , TDI after SIFT, and 

AFDtotal
ss  were carried out in MRtrix. SMT: Vin and λ were fit using the SMT software with 

default settings (https://ekaden.github.io). All other analyses (e.g. Pearson correlation, linear 

fitting, and statistics) were performed in MATLAB (Mathworks, Natick, MA, USA). 

Statistical results are given as mean ± standard deviation (n = 7) where applicable.

Results

Figure 1 shows the numerically calculated values of S
n
 and S

n
/S

n
in

 as a function of Vin based 

on Eq. (2) for water diffusion at typical λ and b-values (1 ≤ λ ≤ 3 μm2/ms and 1000 ≤ b ≤ 

5000 s/mm2). It is evident that S
n
 can be well described as a linear function of Vin. The solid 

line represents the linear fitting at each b-value. The slope of S
n

/S
n
in

 vs. Vin is close to 1 and 

the intercept is close to 0 when bλ ≥ 5, suggesting that the extra-axonal contribution can be 

neglected when bλ ≥ 5. At low b-value of 1000 s/mm2, S
n

/S
n
in

 or S
n
 is still linearly 

correlated with Vin.

Figure 2 shows the various maps acquired from a representative subject. The white matter 

was segmented from T1-weighted MEMPRAGE image and overlaid on b = 0 image. The 

threshold was set to 0.9 for white matter partial volume. With the increase of b-value, gray 

matter signal decays faster [48] and S
n
 shows better gray matter-white matter contrast. Vin, 

AFDtotal
ss , and AFDtotal

ms  have more homogeneous contrasts in white matter than FA.

Based on Eq. (3) and Figure 1, the mean signal at b = 5000 s/mm2 is linearly related to the 

intra-axonal volume fraction, and thus, can be regarded as a reasonable indicator of Vin. 

Figure 3 shows the correlations between diffusion metrics and the mean signal at b = 5000 

s/mm2. Note that FA, RD, and Vin were derived from the normalized signal attenuations 

(Sn), which were insensitive to the effects of T2 variations and RF inhomogeneity. However, 

AFDtotal
ss , AFDtotal

ms , and TDI after SIFT were based on the raw diffusion weighted signals 

without voxel-wise b = 0 normalization following previous CSD-based studies [15,37,45]. 

Thus, AFDtotal
ss , AFDtotal

ms , and TDI after SIFT were compared with S(b5000), while FA, RD, 

and Vin were compared with S
n
(b5000). The density scatter plot is from all the white matter 

voxels of the same subject shown in Figure 2. Red denotes higher density of points, and blue 

denotes lower density. The solid line indicates the result of linear least squares fitting. 

Pearson’s linear correlation coefficient (ρ) is also provided for each subplot. The statistical 

results of ρ for all seven subjects are summarized in Table 1. Consistent with Eq. (7), the 

correlation coefficient between AFDtotal
ss  and S(b5000) is 1, which means that AFDtotal

ss  and 

S(b5000) provide the same contrast. At high b-value of 5000 s/mm2, the contrast is the intra-

axonal volume fraction. AFDtotal
ms  was calculated with multi-shell b-values, here 1000, 3000 
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and 5000 s/mm2, and the correlation coefficient between AFDtotal
ms  and S(b5000) is slightly 

less than 1 (ρ = 0.91 ± 0.02). The correlation between TDI after SIFT and S(b5000) is also 

high (ρ = 0.86 ± 0.02). As expected, FA has a weak correlation with S
n
(b5000) (ρ = 0.65 

± 0.03). RD shows a negative correlation with S
n
(b5000) (ρ = −0.70 ± 0.02). The correlation 

coefficient between Vin and S
n
(b5000) is high (ρ = 0.85 ± 0.03).

Figure 4 (a) and Table 2 show the strong correlation between TDI after SIFT and AFDtotal
ms  (ρ 

= 0.95 ± 0.01). The correlations between AFDtotal and Vin are shown in Figure 4 (b-c) and 

Table 2. The correlation coefficient between AFDtotal
ss  and Vin (ρ = 0.69 ± 0.08) is slightly 

lower than that between AFDtotal
ms  and Vin (ρ = 0.74 ± 0.05).

Figure 5 and Table 3 show the correlations between the mean signals at different b-values. 

The correlation coefficient between S(b5000) and S
n
(b5000) is less than 1 (ρ = 0.78 ± 0.04), 

due to the varied S0 over the white matter regions. The correlation coefficient between 

S
n
(b3000) and S

n
(b5000) (ρ = 0.93 ± 0.01) is higher than that between S(b3000) and S(b5000)

(ρ = 0.85 ± 0.02). The correlation between S
n
(b1000) and S

n
(b5000) is weak (ρ = 0.57 

± 0.09), and there is little correlation between S(b1000) and S(b5000) (ρ = 0.29 ± 0.07). As 

expected, the fitted λ is larger than AD.

Discussion

The CSD-based AFDtotal technique was proposed to estimate the complex FOD using 

spherical deconvolution and calculate the intra-axonal volume fraction from the estimated 

FOD [15]. The SMT-based Vin technique was developed to model the spherical mean 

diffusion weighted signals independent of the confounding FOD and fit the intra-axonal 

volume fraction directly [28]. Both techniques are related to the spherical mean diffusion 

weighted signal, and the intra-axonal volume fraction (Vin) is linked with the spherical mean 

diffusion weighted signal (S) directly [18]. The current study compared the two techniques 

and investigated the relation between Vin and S systematically at different b-values. At high 

b-values (b ≥ 3000 s/mm2), S is linearly related to Vin, and S provides similar contrast with 

Vin in white matter. However, at low b-values (b ~ 1000 s/mm2), the linear relation between 

S and Vin is sensitive to the variations of λ, and S cannot be used as an indicator of Vin.

To the best of our knowledge, our work is the first to compare CSD-based AFDtotal and 

SMT-based Vin. CSD is mainly for fiber tractography and SMT is one of the tissue modeling 

methods. As mentioned in a recent AFDtotal study [16], the comparison of the tissue 

modeling methods and the CSD-based methods for measuring Vin remains to be determined. 

However, without a gold standard, the direct comparison of CSD and SMT may not provide 

any clear information. Based on previous analytical works, we can link the two methods 

mathematically. Both methods suggest that the spherical mean signal measured at a high b-

value (b ≥ 3000 s/mm2) can be regarded as a reasonable indicator of white matter Vin. Then 

Li et al. Page 7

Magn Reson Imaging. Author manuscript; available in PMC 2020 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



CSD-based AFDtotal and SMT-based Vin were compared indirectly through the spherical 

mean signal. Our study may help better interpret AFDtotal results at different b-values, and it 

can assist with protocol optimization for future SMT-based studies.

Data

Data analyses were performed on the high-quality MGH-USC Adult Diffusion Dataset of 

the Human Connectome Project. The high resolution, high b-value diffusion data are beyond 

what can be obtained on current clinical scanners. It should be noted that slight residual 

parallel imaging aliasing artifacts existed on b = 0 images of most subjects. They were 

noticeable on the S
n
(b1000) images. Seven subjects with minimal residual aliasing artifacts 

were selected for current study. Susceptibility induced image distortions were not considered 

as they were not significant in most of the brain. The existing susceptibility distortions 

affected the accuracy of the anatomically-constrained whole brain tractography since it 

relied on the undistorted T1-weighted structural image for tissue segmentation. All the 

tractography-based connectivity studies would then be compromised. However, it is not 

expected to affect the voxel-wise correlation between TDI after SIFT and AFDtotal
ms , because 

the voxel-wise values of TDI after SIFT were mainly dominated by local FODs rather than 

tractography [45]. Images with b = 10,000 s/mm2 were excluded in this study due to the 

significant Rician bias associated with low-SNR magnitude data [49]. As demonstrated 

recently, complex diffusion data could be used to extract real-valued diffusion data without 

Rican bias [50].

AFDtotal

In the original AFD work [15], the authors employed computer simulations to support the 

use of AFD as a quantitative measure of Vin. By combining two spherical deconvolution 

techniques [13,14], we describe AFDtotal mathematically as a function of the spherical mean 

signal, which is in turn related to Vin. Based on Eq. (7), AFDtotal could be derived from 

diffusion measurements with a single b-value. λ is assumed constant in the model, and then, 

AFDtotal
ss  is linearly related to S. At high b-values, AFDtotal

ss  is equivalent to Vin. AFDtotal
ms  is 

based on the linear least squares fitting of diffusion measurements with multi-shell b-values 

[37]. AFDtotal
ms  cannot be linked with a specific S, but it is highly correlated with S(b5000) as 

shown in Figure 3. Another difference between AFDtotal
ms  and AFDtotal

ss  is that AFDtotal
ms  is based 

on a multi-tissue model which is less sensitive to partial volume effects at gray matter/white 

matter interface [38]. Fiber tractography is usually biased by tracking algorithms and 

seeding options. SIFT was developed to reduce the number of streamlines and improve 

biological plausibility [45]. Consistent with previous results [16,45], TDI after SIFT is 

highly correlated with AFDtotal. It was also observed that AFDtotal had smaller intra- and 

inter-subject variations than TDI after SIFT [16]. AFDtotal is recommended for voxel-wise 

quantification of total tract density (i.e. without tract orientation information) and AFD for 

tract density along a specific direction [15,16].
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SMT-based Vin

There are two unknown variables (Vin and λ) in Eq. (2), which means a minimum of two b-

values may be sufficient to extract the intra-axonal volume fraction accurately. The b-value 

dependence has been investigated previously and the results suggested far separated b-values 

for better performance [28]. The current study highlights the importance of acquiring both 

low and high b-values. With only high b-values, Eq. (2) simplifies to Eq. (3) making it 

impossible to estimate Vin and λ independently. At low b-values, S is sensitive to λ 
variation, but poorly correlated with Vin. The maximal b-value used in typical multi-shell 

protocols is 3000 s/mm2, however, it is unclear whether b = 3000 s/mm2 is sufficient for 

SMT model. Our simulation and experiment results (Figure 1 and Figure 5) suggest that b = 

3000 s/mm2 is indeed sufficient for SMT-based studies in human brain white matter. The 

quantification of SMT-based Vin is based on a simplified two-compartment model with 

assumptions of λex = λ and λ⊥
ex = 1 − Vin ⋅ λ. Furthermore, the T2 difference is not 

considered. Recent studies [29–31] have proposed to expand the rotationally invariant 

framework and acquire more comprehensive diffusion and/or relaxation dataset to fit those 

extra variables (λex, λ⊥
ex, T2

in, and T2
ex). Future work will be needed to further validate the 

accuracy.

B = 0 normalization

The voxel-wise b = 0 normalization is able to remove the effects of T2 spatial variations and 

RF inhomogeneity. As shown in Figure 5, the correlation between S
n
(b3000) and S

n
(b5000) is 

higher than that between S(b3000) and S(b5000). But b = 0 normalization cannot remove the 

T2 difference between intra- and extra-axonal spaces. In addition, the normalized diffusion 

weighted signal may be affected by partial volume effects, especially at low image 

resolutions [51]. Thus, the SMT-based Vin is T2-weighted intra-axonal volume fraction. In 

white matter voxels with cerebral spinal fluid (CSF) partial volume, the fitted Vin will be 

lower than the real axonal volume fraction due to the long T2 of CSF. For this reason, 

previous CSD-based studies were based on the raw diffusion weighted signals without 

voxel-wise b = 0 normalization. At high b-values, CSF signal decays to 0 and the measured 

diffusion weighted signal is completely from the white matter intra-axonal space. However, 

it becomes challenging to perform global normalization across subjects [15]. Following 

previous studies, the current study used the raw diffusion signals for CSD-based measures, 

and the normalized signals for DTI and SMT.

Conclusion

The CSD-based AFDtotal technique and the SMT-based Vin technique were compared on the 

same MGH-USC Human Connectome Project diffusion data for estimating intra-axonal 

volume fraction. Both techniques are essentially based on the spherical mean diffusion 

weighted signal. The relation between S and Vin was investigated at both low and high b-

values. At high b-values (b ≥ 3000 s/mm2), S is linearly related to Vin. At low b-values (b ~ 

1000 s/mm2), S may be significantly affected by the variations of λ, which makes S an 

unreliable indicator of Vin. These results demonstrate that S measured with the typical b-
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value of 1000 s/mm2 is not an indicator of Vin, and previous DTI studies acquired with b = 

1000 s/mm2 cannot be re-analyzed to provide Vin-weighted contrast.
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Figure 1. 

Numerical values of S
n
 and S

n
/S

n
in

 as a function of Vin based on Eq. (2). The markers 

represent the calculated values, and the solid lines represent the corresponding linear fittings. 

The dashed line is identity line (y = x).
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Figure 2. 
Various maps acquired from a representative subject. The white matter region is outlined in 

red on b = 0 image.
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Figure 3. 
Density scatter plots and Pearson correlations between diffusion metrics and the mean signal 

at b = 5000 s/mm2 using all the white matter voxels of the same subject shown in Figure 2. 

Red denotes higher density of points, and blue denotes lower density. The solid line 

indicates the result of linear least squares fitting.
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Figure 4. 

Density scatter plots and Pearson correlations between TDI after SIFT and AFDtotal
ms  (a), 

AFDtotal
ms  and Vin (b), AFDtotal

ss  and Vin (c) using all the white matter voxels of the same 

subject shown in Figure 2. Red denotes higher density of points, and blue denotes lower 

density. The solid line indicates the result of linear least squares fitting.
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Figure 5. 
Density scatter plots and Pearson correlations between the mean signals at different b-values 

using all the white matter voxels of the same subject shown in Figure 2. Red denotes higher 

density of points, and blue denotes lower density. The solid line indicates the result of linear 

least squares fitting. The dashed line in (d) is identity line (y = x).
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Table 1.

Summary of Pearson’s linear correlation coefficients shown in Figure 3.

ρ AFDtotal
ss AFDtotal

ms
TDI after SIFT FA RD Vin

S(b5000) 1.00 ± 0.00 0.91 ± 0.02 0.86 ± 0.02 −−−−− −−−−− −−−−−

Sn(b5000) −−−−− −−−−− −−−−− 0.65 ± 0.03 −0.70 ± 0.02 0.85 ± 0.03
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Table 2.

Summary of Pearson’s linear correlation coefficients shown in Figure 4.

ρ AFDtotal
ms AFDtotal

ss

TDI after SIFT 0.95 ± 0.01 −−−−−

Vin 0.74 ± 0.05 0.69 ± 0.08
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Table 3.

Summary of Pearson’s linear correlation coefficients shown in Figure 5.

ρ Sn(b5000) S(b3000) S(b1000) λ Sn(b3000) Sn(b1000)

S(b5000) 0.78 ± 0.04 0.85 ± 0.02 0.29 ± 0.07 −−−−− −−−−− −−−−−

Sn (b5000) −−−−− −−−−− −−−−− −−−−− 0.93 ± 0.01 0.57 ± 0.09

AD −−−−− −−−−− −−−−− 0.62 ± 0.04 −−−−− −−−−−
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