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Abstract

This pilot work examined associations of brain grey matter volumes (GMV) with perceived 

fatigability in older adults to elucidate disablement mechanisms. A subsample (n=29; 

age=77.2±5.5; 86% female) of participants from the Lifestyle Interventions and Independence for 

Elders (LIFE) Study was utilized to quantify GMV for regions of interest in the basal ganglia and 

limbic system normalized to intracranial volume. The Pittsburgh Fatigability Scale measured 

physical and mental fatigability (score 0–50; higher physical fatigability ≥15; higher mental 

fatigability ≥13). We used an exploratory alpha level of p<0.1. Nineteen (66%) participants had 

higher physical fatigability, 19 (66%) had higher mental fatigability, of these, 17 (57%) had both. 

Right hippocampal volumes/ICV were smaller in participants with higher verses lower physical 

fatigability (0.261±0.039 vs. 0.273± 0.022, p=0.07); associations were similar for right putamen 

and bilateral thalamus. Higher mental fatigability was associated with smaller right hippocampus, 

thalamus, and posterior cingulum and bilateral amygdala. Higher fatigability in older adults may 

be associated with smaller volumes of the basal ganglia and limbic system, indicating mechanisms 

for further exploration.
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1.0 Introduction

Among older adults, fatigue may precede decline in physical performance and subsequent 

impaired or reduced mobility (Ekmann, Petersen, Manty, Christensen, & sAvlund, 2012; 

Simonsick et al., 2016; Simonsick et al., 2018). Fatigue is an independent predictor of both 

mortality and incident disability; therefore, managing fatigue levels may be important for 

maintaining functional independence (Ekmann et al., 2012; Eldadah, 2010; Simonsick et al., 

2016). Fatigability is a whole-body measure of an individual’s fatigue anchored to a 

standardized task or activity of a specific duration (Eldadah, 2010). Compared to global 

fatigue, fatigability provides better insight into the degree to which an individual is limited 

either physically or mentally by fatigue because it accounts for self-pacing bias (Eldadah, 

2010; Glynn et al., 2015; Simonsick et al., 2016).

Past research on fatigue and the brain suggests a neural component to fatigability, which 

may contribute to our knowledge in the underlying pathophysiology of age-related 

fatigability. Strong evidence exists that the neurotransmitter dopamine may have an 

important role in fatigue (Dobryakova, Genova, DeLuca, & Wylie, 2015; Lin et al., 2016; 

Karshikoff, Sundelin & Lasselin, 2017). Neuroimaging studies have identified neural 

correlates of fatigue in disease states such as Parkinson’s disease, traumatic brain injury, 

stroke and multiple sclerosis (Delcua, Genova, Capili & Wylie, 2009; Harrington, 2012; 

Kluger, Krupp, & Enoka, 2013; Rocca et al., 2014); however, neural correlates of fatigability 

have not been identified in older adults free of neurologic disease (Nakagawa et al., 2016). 

Based on this previous fatigue work we will examine regions of interest including the limbic 

cortex (amygdala, hippocampus, orbitofrontal cortex, medial superior frontal gyrus), basal 

ganglia (caudate, putamen, thalamus), and cingulate cortex (Harrington, 2012; Kluger et al., 

2013; Nakagawa et al., 2016; Rocca et al., 2014).

Therefore, this cross-sectional pilot study aims to identify brain regions that may be 

responsible for, or related to, perceived physical fatigability levels in older adults. We 

hypothesize that there will be an inverse relationship between lower cortical grey matter 

volumes and higher perceived physical fatigability scores. An exploratory aim is to examine 

the relationship between brain regions and mental fatigability, as validation of this construct 

is ongoing.

2.0 Materials and methods

2.1 Study population

The Lifestyle Interventions and Independence for Elders (LIFE) Study was a phase three, 

single-masked randomized controlled clinical trial evaluating the effects of long-term 

moderate-intensity physical activity compared to a health education intervention on physical 

function in sedentary older adults (N=1635) age 70–89 with compromised physical function 

at baseline (Pahor et al., 2014). After randomization and prior to starting the assigned 

intervention program, participants from the University of Pittsburgh field center were given 

the opportunity to enroll, if interested and eligible, in brain magnetic resonance imaging 

(LIFE-MRI) and/or muscle mitochondria and fatigability (LIFE-Mito) ancillary studies 
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(Rosano et al., 2016; Santanasto et al., 2016). Published elsewhere are the details on 

screening and eligibility for both ancillary studies (Rosano et al., 2016; Santanasto et al., 

2016). In brief, all participants had to meet MRI inclusion criteria (e.g., no metal implants or 

claustrophobia). Since these ancillary studies recruited late in LIFE enrollment, lower 

functioning participants and African Americans were oversampled to meet overall study 

target criteria. Thirty-two participants enrolled in both ancillary studies; however, we 

excluded three participants from our analyses due to flagged MRI findings or missing PFS 

data. Thus, the final analytic sample was 29 participants that had complete data for both the 

7T MRI scan and PFS.

2.2 Assessment of perceived physical and mental fatigability

At baseline, before intervention activities began, and within approximately 2–3 weeks of the 

brain MRI, participants from LIFE-Mito completed the Pittsburgh Fatigability Scale (PFS), a 

10-item self-administered questionnaire that assessed perceived physical and mental 

fatigability (Glynn et al., 2015). Participants were asked to rate on a scale from 0 (no 

fatigue) to 5 (extreme fatigue) the level of physical and mental fatigue they expected or 

imagined they would feel after completing ten different activities ranging in type and 

intensity. Responses were summed to create separate total physical and mental fatigability 

scores ranging from 0 (no physical/mental fatigue) to 50 (extreme physical/mental fatigue).

A cutpoint for higher physical fatigability, (PFS score ≥15) versus lower fatigability (PFS 

score <15), was established during the initial validation of the scale. Midpoint values (mean 

adjusted higher PFS fatigability score – half of the adjusted mean difference) were 

calculated by comparing higher versus lower fatigability for several non-PFS fatigability and 

performance measures used in the validation study and then averaged to obtain the cutpoint 

(Glynn et al., 2015; Cooper et al. 2018; Simonsick et al. 2018). We used a similar approach 

to assign a higher mental fatigability cutpoint of ≥13 versus lower mental fatigability <13 

(Simonsick et al. 2018).

2.3 Assessment of brain regions

Magnetic Resonance images were acquired at the MR Research center at the University of 

Pittsburgh on a 7-Tesla human scanner (Magnetom, Siemens Medical Solutions, Erlangen 

Germany) using an eight-channel head coil (Rapid Biomedical GmbH, Rimpar, Germany). 

High-resolution T1-weighted 3D MPRAGE sequences were used for volumetric analyses 

and were acquired in the axial orientation (TR/TE = 3,430/3.54, voxel size: 0.7 × 0.7 × 0.7 

mm, 256 slices) (16). As previously described, a semi-automated skull stripping of each 

MPRAGE image was conducted and a linear, hierarchical, demon-based registration was 

used to segment images (Wu, Carmichael, Lopez-Garcia, Carter, & Aizenstein, 2006).

We assessed neuroimaging variables for normality and transformed non-normal variables as 

appropriate. Regions of interest (ROIs) were identified using the Automated Anatomical 

Labeling (AAL) atlas, selected based on studies of fatigue and included the limbic cortex 

(amygdala, hippocampus, orbitofrontal cortex, medial superior frontal gyrus), basal ganglia 

(caudate, putamen, and thalamus), cingulate cortex, and the middle frontal gyrus 

(Harrington, 2012; Kluger et al., 2013; Nakagawa et al., 2016; Rocca et al., 2014; Tzourio-
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Mazoyer et al., 2002). We used a specialized atlas to identify ROIs in order to account for 

the contrast specific to our 7T acquisition. Gray matter volume (GMV) was obtained using 

Brain Extraction Tool as the volume contained within the “inner skull”(Smith, 2002). The 

ratio of GMV to intracranial volume (ICV) was used in all analyses.

2.4 Assessment of covariates and performance measures

Age, sex, race, education level, body mass index (BMI), medical conditions including 

cardiovascular disease and diabetes/high blood sugar (both self-report of physician 

diagnosis), and depression measured by the Center for Epidemiologic Study Depression 

Scale (depression: ≥16) were collected as part of the main LIFE baseline visit (Fielding et 

al., 2011; Pahor et al., 2014). Further, physical and cognitive performance measures were 

obtained from the main LIFE study baseline examination and were used for descriptive 

characteristic purposes only. Measures included: usual gait speed (m/s), usual paced 400-m 

walk time (seconds), Short Physical Performance Battery score (SPPB, 0–12), Modified 

Mini-Mental State Examination (3MS) score (range 0–100) and the Digit Symbol 

Substitution Test (DSST) score (Guralnik et al., 2000; Guralnik et al., 1994; Radloff, 1997; 

Teng & Chui, 1987).

2.5 Statistical analyses

Descriptive statistics for the analytic sample by fatigability status were calculated. We 

examined average brain regions by fatigability status, and T-tests and Wilcoxon Rank Sum 

Tests were performed. As this was an exploratory, hypothesis generating initial study to 

identify potential associations, the significance level was set at p<0.1. T-tests and Wilcoxon 

Rank Sum tests assessed continuous covariates of fatigability (higher versus lower for both 

physical and mental). To assess categorical covariate associations with higher versus lower 

fatigability, chi-squared tests were performed, including Fisher Exact tests when expected 

cell counts were less than 5.

Separate bivariate and multivariable logistic regression models examined the odds of having 

higher, compared with lower, fatigability associated with the GMV/ICV of each brain ROI. 

Physical and mental fatigability were assessed separately and covariates calculated were 

entered into models one at a time to determine whether each covariate explained any 

observed associations between brain region volumes and fatigability. Covariates were 

included in final multivariable models if they were significant at the p≤0.1 level. Due to the 

small sample size and exploratory nature of these analyses, we did not correct for multiple 

comparisons. The ratios obtained for GMV to ICV were adjusted by a factor of 100 before 

they were added into the model for meaningful interpretation of parameters estimates.

3.0 Results

The mean age (±standard deviation [SD]) of the study population was 77.2 ± 5.5 years, 

range 70 to 88 years, predominately female (86.2%, n=25), 37.9% white (n=11) and were 

lower functioning with a mean SPPB score of 7.6±1.4 (Table 1). Physical and mental 

fatigability scores were 20.2±9.1 and 15.8±9.7, respectively, and 65.5% of participants were 

categorized as having higher fatigability for both the physical and mental subscales. There 
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was overlap between participants in higher physical and mental fatigability categories; of the 

participants who had higher physical fatigability, 89.9% (n=17) reported higher mental 

fatigability. Of the participants who had higher mental fatigability, 89.5% (n=17) had higher 

physical fatigability. There were no differences by physical fatigability status in any 

demographic, lifestyle, medical history or cognitive function measures, except for SPPB, 

gait speed and 400m walk time (Table 1). Higher mental fatigability was associated with 

older age, smoking status, SPPB score, gait speed and 400m walk time.

In bivariate analyses, mean (SD) grey matter volume (GMV) of the right hippocampus was 

lower for those with higher compared to lower physical fatigability, p=0.07 (Table 2). 

Similar associations were found for physical fatigability in the right putamen (p=0.05) and 

left and right thalamus, p=0.04 and p=0.08, respectively. For mental fatigability, the 

associations were similar for the right hippocampus and thalamus with addition of the right 

posterior cingulum (p=0.05) and left (p=0.02) and right amygdala (p=0.05) (Table 2). Figure 

1 highlights significant GMV ROIs with p<0.1.

Table 3 includes the logistic regression models for each brain region that was significantly 

associated with physical and mental fatigability identified by bivariate t-tests from Table 2. 

For the left thalamus, every one unit increase in normalized GMV/ICV was associated with 

28.6% lower odds of having higher physical fatigability after adjusting for smoking (OR: 

0.714, 95%CI: 0.517, 0.985, p=0.04). We found similar results for the left thalamus and 

mental fatigability after adjusting for smoking (OR: 0.646, 95% CI: 0.444, 0.939, p=0.02) 

(Table 3). For every one unit increase in GMV/ICV of the right thalamus, the odds of having 

higher mental fatigability was reduced by 39% (OR: 0.610, 95% CI: 0.407, 0.912, p=0.02). 

This relationship remained significant after adjusting for age and smoking (Table 3). No 

other regions of interest remained significant after adjustment.

4.0 Discussion

Lower GMV/ICV of the hippocampus, putamen, and thalamus were associated with greater 

odds of having higher physical fatigability in a sample of lower functioning older adults. The 

direction of these findings is consistent with our hypothesized association between brain 

volumes and fatigability status. The strongest relationship for physical fatigability was with 

the putamen, a component of the basal ganglia that has previously been identified as a neural 

correlate of fatigue in healthy younger adults (Nakagawa et al., 2016).

To our knowledge, this is the first study of neural correlates of fatigability in a sample of 

older adults without neurologic disorders, but our results can be informed by studies in 

younger adults and those with neurological diseases to elucidate plausible mechanisms from 

these preliminary findings. The putamen, a primary component of the basal ganglia, has 

previously been implicated in motor control and learning habits and skills and has been 

identified as a neural correlate of fatigue in healthy younger adults (Durieux, Schiffmann, & 

de Kerchove d’Exaerde, 2011; Nakagawa et al., 2016; O’Doherty & John, 2009). Motivation 

and reward theories related to fatigue are also associated with dopamine, a key 

neurotransmitter in the basal ganglia (John.Salamone & Mercè, 2012). Relationships 

between dopamine functioning and basal ganglia were not explored in the present study. 
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However, we speculate that the relationship between physical fatigability and the putamen 

may be related to dopamine functioning that plays a role in motivation and reward. Direct 

measures of dopamine functioning may be useful in future work to better understand if the 

association observed between the putamen and physical fatigability was attributed to 

changes or interruptions in dopaminergic function.

The hippocampus, which is deeply involved in the stress response, has previously been 

identified as a region of the brain that interacts with dopaminergic systems related to 

motivational behavior (Calabresi, 2013). A recent study of younger adults identified the 

basal ganglia as a critical region involved in fatigue, but not the hippocampus (Nakagawa et 

al., 2016). To our knowledge, we are the first group to identify the hippocampus as a 

potential brain region involved in the perception of physical fatigability. Plausible 

mechanisms for the hippocampus’ role in fatigability may be related to neuronal loss in 

dopaminergic pathways seen in the hippocampus, which has previously been explored in the 

context of fatigue (Calabresi, 2013). Fatigue may result from the disruption of 

communication of the associative network between the striatum and prefrontal cortex 

(Dobryakova et al., 2015). Although our work could not explore these mechanisms, previous 

evidence of hippocampal involvement in the dopaminergic pathway that has been related to 

fatigue outcomes supports our finding that the hippocampal grey matter volume may be 

related to fatigability in older adults (Nakagawa et al., 2016).

The thalamus, an important relay center in the brain, may be related to fatigability as all 

pathways that project to the cerebral cortex do so after synapsing in the thalamus 

(Blumenfeld, 2012). A change in thalamic activity has also been proposed as a reason for 

perceived higher fatigability (Chaudhuri & Behan, 2000). An increase in thalamic inhibition 

or a shift in reciprocal state of activation between the thalamus and the subthalamic nucleus 

may result in a modified cortical response to the basal ganglia (Chaudhuri & Behan, 2000). 

In the event the dopaminergic drive to the pallidothalamic cortical loop is reduced, frontal 

activation will be suppressed. As such, motivational influences or emotion may contribute to 

goal-oriented cognition and behavior and perceived fatigability. It is important to note that 

alterations in the thalamo-cortical loop have been shown to be associated with Parkinson’s 

Disease and depression, which commonly include symptoms of fatigue (McCormick, 1999).

We also identified associations for lower GMV/ICV of the amygdala, posterior cingulate and 

thalamus with greater odds of having higher mental fatigability. These results suggest that 

there is overlap in the neurobiology of physical and mental fatigability, but with some key 

differences. Notably, the thalamus is an area associated with both physical and mental 

fatigability and, as stated above, plays a key role as a central relay center in the brain 

involved in regulation of many different functions.

Lower GMV of the amygdala was associated with higher mental fatigability but not with 

physical fatigability. Lower activity in the amygdala has previously been associated with 

fatigability in patients with multiple sclerosis (Spiteri et al., 2017). The amygdala may play a 

partial role in the relationship between mental fatigability and motivation, as mental fatigue 

and motivation are closely related concepts with shared neuro-biological mechanisms 

(Karshikoff, Sundelin & Lasselin 2017). The feeling of fatigue has long been thought to be a 
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conscious manifestation of the body maintaining homeostatic control (Gibson et al., 2003; 

Stephan et al., 2016). The conscious sensation of fatigue or perception of fatigability may 

also be related to other emotions such as anger, fear and memory of a prior activity (Gibson 

et al., 2003).

In the present study, we defined mental fatigability as a measure of the body’s susceptibility 

to fatigue related to physical and mental activities that engage cognitive function. In our 

results, the posterior cingulate cortex was associated with mental fatigability outcomes but 

not physical fatigability. A study in MS patients also identified associations of the posterior 

cingulate with fatigue outcomes (Pardini et al., 2015). Based on our definition, it is plausible 

that mechanisms related to mental fatigability through the posterior cingulate cortex may be 

related to inefficient cognitive function, which is implicated in perceptions of mental 

fatigability related to demanding tasks that specifically involve cognitive control (Leech & 

Sharp, 2014). The posterior cingulate cortex has notably been identified as a highly 

connected region of the brain that has a high baseline metabolic rate (Hagmann et al., 2008; 

Raichle et al., 2001). The high metabolic state of the posterior cingulate is responsive to an 

individual’s cognitive state, where a demanding task such as a perceptual decision or a 

motor response is required. Additionally, the activity of the posterior cingulate cortex in a 

healthy brain is related to cognitive load where failure to appropriately deactivate the brain 

region is associated with inefficient cognitive function in both the healthy and damaged 

brain (Bonnelle et al., 2011; Crone et al., 2011; Singh & Fawcett, 2008; Sonuga-Barke & 

Castellanos, 2007; Weissman, Roberts, Visscher, & Woldorff, 2006).

Due to the novel nature of this work, we are limited in our ability to compare findings to the 

work of others. An oversampling of African Americans in the second half of the main LIFE 

study recruitment period when these ancillary studies were conducted resulted in >60% of 

African Americans in our analytic sample. Consequently, the racial imbalance coupled with 

lower physical function of our participants may result in limited generalizability. The cross-

sectional design prevented investigation of causality between brain regional volume and 

fatigability. In addition, we interpret these results with caution due to the small sample size, 

multiple comparisons, and our limited ability to assess confounders. However, this work 

serves as an important first step for development of future studies that aim to explore the 

pathophysiology of physical and mental fatigability in older adults without neurologic 

disease.

We have identified a number of strengths in this pilot work. This is the first study to examine 

brain volumes in relation to both perceived physical and mental fatigability. Measuring 

fatigability instead of fatigue accounts for the inherent issue of self-pacing bias and thus 

provides greater capacity to assess fatigue’s role in the disablement pathway. Also, 7T MRI 

is a novel neuroimaging modality that allows accurate volumetric measurement of regions of 

interest at high resolution.

5.0 Conclusions

Lower brain volumes of the hippocampus, putamen, and thalamus were associated with 

higher physical fatigability in a small sample of older adults. Further, we assessed neural 
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correlates of mental fatigability that contribute to evidence for mental and physical 

fatigability as separate constructs. A smaller thalamus was associated with higher mental 

fatigability, but the posterior cingulate and amygdala were related with mental fatigability 

but not physical fatigability. Plausible mechanisms for higher fatigability include alterations 

in dopaminergic function, regulation of sleep and sensory interpretation, emotional 

formation and processing, learning and memory, and/or motivational behavior, which are 

supported by our findings. Future studies at the intersection of epidemiology, neurobiology 

and population neuroscience research will help us better understand the pathophysiology and 

brain regions related to perceived physical and mental fatigability in healthy older adults and 

may illuminate vulnerable structural neuronal networks related to the disablement pathway.
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Highlights

• Provides initial evidence that fatigability in aging has a neurobiological 

component

• Specific regions in the basal ganglia and limbic system may be related to 

fatigability

• Regions were similar for physical and mental, but more regions associated 

with mental fatigability
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Figure 1. 
Axial Images of Grey Matter Volumes for Significant Regions of Interest by a) Physical 

Fatigability, b) and c) Mental Fatigability
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Table 1.

Baseline Characteristics of the Analytic Sample from the LIFE Study by Perceived Fatigability Status (N=29). 

Mean (standard deviations) or numbers (%) are reported.

Perceived Fatigability Status

Physical Mental

Higher Lower Higher Lower

Characteristic
Total (≥15) (<15) (≥13) (<13)

N=29 (n=19) (n=10) (n=19) (n=10)

 Age, years 77.2±5.5 77.5±5.9 76.6±4.9 78.5±5.6 74.9±4.6*

 Race, Caucasian/White 11(37.9) 9(47.4) 2(20.0) 8(42.1) 3(30.0)

 Sex, Female 25(86.2) 17(89.5) 8(80.0) 17(89.5) 8(80.0)

 Education≥ High School, years 9(31.0) 6(31.6) 3(30.0) 5(26.32) 4(40.0)

 Smoking Status, Former or Current 10(34.5) 5(26.3) 5(50.0) 4(21.1) 6(60.0)*

 Body Mass Index, m/kg2 31.4±4.9 31.6±5.2 30.8±4.4 31.3±5.0 31.5±5.0

 Cardiovascular Disease, Yes, self-report 6(20.7) 5(26.3) 1(10.0) 4(21.1) 2(20.0)

 Diabetes/high blood sugar, Yes, self-report 10(34.5) 7(36.8) 3(30.0) 7(36.8) 3(30.0)

 Depression Score, ≥16 4(13.8) 4(21.1) 0(0.0) 4(21.1) 0(0.0)

 Usual gait speed, m/s 0.81±0.20 0.73±0.15 0.96±0.20* 0.76±0.20 0.90±0.16*

 Usual-paced 400-m walk time, seconds 491.8±119.6 523.2±131.0 432.2±64.1* 519.5±127.2 439.3±86.1*

 Short Physical Performance Battery Score, 0–12 points 7.6±1.4 7.2±1.5 8.5±0.7* 7.3±1.5 8.2±1.3*

 Mini-Mental State Examination score, Points 90.9±5.7 91.1±6.0 90.3±5.2 90.5±5.7 91.7±5.8

 Digit Symbol Substitution Score, points 44.8±13.0 47.0±13.0 40.8±12.8 46.4±12.5 41.9±14.2

*
P<0.1 for the test of mean differences between higher and lower fatigability within physical or mental fatigability status
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Table 2.

Mean (Standard Deviation) Grey Matter Volume as a Percentage of Intracranial Volume (nm3) by Perceived 

Fatigability Status (The LIFE Study, N=29)

Perceived Fatigability Status

Physical Mental

Region of Interest
a Higher Lower Higher Lower

(≥15) (<15) (≥13) (<13)

(n=19) (n=10) (n=19) (n=10)

Whole brain 27.21(1.44) 27.54(1.05) 27.20(1.49) 27.56(0.91)

Right Subcortical Structures

Amygdala 0.08(0.02) 0.09(0.01) 0.08(0.01)
0.09(0.01)

*

Hippocampus
b 0.26(0.04)

0.27(0.02)
* 0.26(0.04)

0.28(0.02)
**

Frontal Middle Orbital gyrus
b 0.14(0.02) 0.13(0.02) 0.14(0.02) 0.13(0.02)

Frontal Superior Medial gyrus 0.33(0.05) 0.33(0.04) 0.32(0.06) 0.33(0.04)

Anterior Caudate 0.29(0.04) 0.29(0.06) 0.29(0.04) 0.28(0.04)

Putamen
b 0.27(0.05)

0.29(0.03)
** 0.27(0.04) 0.30(0.06)

Thalamus 0.28(0.03) 0.31(0.02)* 0.28(0.03)
0.31(0.02)

***

Anterior Cingulate cortex 0.23(0.04) 0.22(0.03) 0.22(0.03) 0.23(0.04)

Middle Cingulate cortex 0.31(0.06) 0.30(0.04) 0.31(0.07) 0.30(0.04)

Posterior Cingulate cortex
b 0.05(0.01) 0.05(0.01) 0.04(0.01)

0.05(0.01)
**

Frontal Middle gyrus 0.67(0.07) 0.67(0.05) 0.68(0.07) 0.64(0.02)

Left Subcortical Structures

Amygdala 0.07(0.01) 0.08(0.01) 0.07(0.01)
0.09(0.01)

**

Hippocampus
b 0.28(0.04) 0.28(0.02) 0.27(0.04) 0.28(0.02)

Frontal Middle Orbital gyrus
b 0.12(0.03) 0.12(0.02) 0.12(0.03) 0.11(0.02)

Frontal Superior Medial gyrus 0.41(0.06) 0.42(0.04) 0.41(0.06) 0.41(0.04)

Anterior Caudate 0.26(0.03) 0.26(0.03) 0.26(0.03) 0.26(0.04)

Putamen
b 0.25(0.04) 0.27(0.04) 0.25(0.03) 0.28(0.06)

Thalamus 0.29(0.03)
0.31(0.02)

** 0.29(0.03)
0.31(0.02)

**

Anterior Cingulate cortex 0.24(0.05) 0.23(0.04) 0.24(0.03) 0.24(0.04)

Middle Cingulate cortex 0.28(0.06) 0.25(0.04) 0.27(0.06) 0.26(0.04)

Posterior Cingulate cortex
b 0.07(0.02) 0.06(0.01) 0.07(0.02) 0.07(0.01)

Frontal Middle gyrus 0.69(0.06) 0.69(0.05) 0.69(0.06) 0.68(0.05)

a
Gray Matter Volume divided by Intracranial Volume multiplied by a factor of 100

b
Non-parametric test

*
P<0.1 for test of mean differences between higher and lower fatigability within physical or mental fatigability status
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**
P<0.05 for test of mean differences between higher and lower fatigability within physical or mental fatigability status

***
P<0.01 for test of mean differences between higher and lower fatigability within physical or mental fatigability status
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Table 3.

Logistic Regression Models for the Odds of Higher Perceived Fatigability being associated with GMV/ICV 

Anatomical Brain Regions (The LIFE Study, N=29)

Perceived Physical Fatigability

Model 1. Model 2. Model 3.

Unadjusted Adjusted for age Adjusted for smoking status

Region of Interest
a OR (95% CI) OR(95% CI) OR(95% CI)

Amygdala (L) 0.60(0.26, 1.37) 0.60(0.25, 1.44) 0.62(0.27, 1.45)

Amygdala(R) 0.72(0.39, 1.33) 0.73(0.38, 1.38) 0.82(0.41, 1.65)

Posterior Cingulate (R) 1.02(0.48, 2.17) 1.04(0.48, 2.24) 0.92(0.41, 2.04)

Hippocampus(R) 0.90(0.71, 1.13) 0.90(0.71, 1.14) 0.87(0.68, 1.12)

Putamen(R) 0.91(0.76, 1.09) 0.91(0.76, 1.09) 0.94(0.77, 1.14)

Tdalamus(L) 0.75(0.55, 1.01) 0.75(0.55, 1.01) 0.71(0.52, 0.99)

Tdalamus(R) 0.75(0.55, 1.02) 0.73(0.52, 1.03) 0.72(0.52, 1.02)

Perceived Mental Fatigability

Model 1. Model 2. Model 3.

Unadjusted Adjusted for age Adjusted for smoking status

Region of Interest
a OR (95% CI) OR(95% CI) OR(95% CI)

Amygdala (L) 0.41(0.16, 1.07) 0.49(0.18, 1.30) 0.39(0.13, 1.15)

Amygdala(R) 0.50(0.24, 1.04) 0.56(0.26, 1.17) 0.61(0.27 1.36)

Posterior Cingulate (R) 0.66(0.31, 1.42) 0.71(0.31, 1.59) 0.49(0.20, 1.19)

Hippocampus(R) 0.87(0.68, 1.10) 0.88(0.68, 1.12) 0.81(0.62, 1.05)

Putamen(R) 0.87(0.71, 1.06) 0.85(0.66, 1.08) 0.91(0.73, 1.14)

Tdalamus(L) 0.72(0.53, 0.99) 0.72(0.51, 1.01) 0.65(0.44, 0.94)

Tdalamus(R) 0.61(0.41, 0.91) 0.64(0.42, 0.96) 0.46(0.24, 0.87)

Note. (OR) = Odds Ratio; (CI) = Confidence Interval; (L)=Left subcortical; (R)=Right subcortical; Bolded values denote p<0.05

a
Gray Matter Volume divided by Intracranial Volume multiplied by a factor of 100
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