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Abstract

Purpose—Magnetic resonance imaging (MRI) provides non-invasive evaluation of patient’s 

anatomy without using ionizing radiation. Due to this and the high soft-tissue contrast, MRI use 

has increased and has potential for use in longitudinal studies where changes in patients’ anatomy 

or tumors at different time points are compared. Deformable image registration can be useful for 

these studies. Here we describe two data sets that can be used to evaluate the registration accuracy 

of systems for MR images, as it cannot be assumed to be the same as that measured on CT images.

Acquisition and Validation Methods—Two sets of images were created to test registration 

accuracy. (1) A porcine phantom was created by placing ten 0.35 mm gold markers into porcine 

meat. The porcine phantom was immobilized in a plastic container with movable dividers. T1-

weighted, T2-weighted, and CT images were acquired with the porcine phantom compressed in 4 

different ways. The markers were not visible on the MR images, due to the selected voxel size, so 

they did not interfere with the measured registration accuracy, while the markers were visible on 

the CT images and were used to identify the known deformation between positions. (2) Synthetic 

images were created using 28 head and neck squamous cell carcinoma patients who had MR scans 
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pre-, mid-, and post-radiotherapy treatment. An inter- and intra-patient variation model was 

created using these patient scans. Four synthetic pre-treatment images were created using the inter-

patient model, and four synthetic post-treatment images were created for each of the pre-treatment 

images using the intra-patient model.

Data Format and Usage Notes—The T1-weighted, T2-weighted, and CT scans of the porcine 

phantom in the four positions are provided. Four T1-weighted synthetic pre-treatment images each 

with four synthetic post-treatment images, and four T2-weighted synthetic pre-treatment images 

each with four synthetic post-treatment images are provided. Additionally, the applied deformation 

vector fields to generate the synthetic post-treatment images are provided. The data is available on 

TCIA under the collection MRI-DIR.

Potential Applications—The proposed database provides two sets of images (one acquired and 

one computer generated) for use in evaluating deformable image registration accuracy. T1- and 

T2-weighted images are available for each technique as the different image contrast in the two 

types of images may impact the registration accuracy.

II. Introduction

Magnetic resonance imaging (MRI) allows for non-invasive assessment of patients without 

ionizing radiation, which conventional imaging techniques, i.e. digital radiography and 

computed tomography (CT), do not allow. Additionally, MRI provides high soft-tissue 

contrast. Due to these advantages, MRI use has more than tripled in the United States over 

the past 20 years with similar trends in other developed countries 1. The advantages of MRI 

and its increased use put it in a position to be used for longitudinal studies, a study of the 

same patients over a period of time 2. If deformable registration is used to compare these 

images, the deformable image registration accuracy should be high as large errors could 

produce misinterpretation of the data, or misdiagnosis or mistreatment of the patient.

Many image registration software systems have been evaluated using CT images 3–8. The 

image contrast and intensity histograms are typically very different between CT and MRI. 

Additionally, MRI has geometric distortion and often artifacts are present at interfaces of air 

and bone. Due to these differences the registration accuracy of a system must be measured 

separately for each imaging modality. There have been several in-house systems that have 

been evaluated using MR images for different anatomic sites, including liver 9,10, prostate 
11–13, and breast 14,15. However, there has been limited reporting on commercial systems’ 

accuracy with MR images. There are published databases with MRI longitudinal patient 

data, but they often do not contain anatomical T1- and T2-weighted images and do not have 

markers within the patients to measure registration accuracy with 16–23. These databases are 

mostly for predicting response which often assumes an accurate MR image registration or 

separate contours on each image.

This dataset contains two different sets of images to test MR image registration accuracy. 

The lack of MR image registration studies compared to CT may be due to the lack of 

available datasets. This dataset can help with this need and facilitate testing commercial and 

in-house systems’ registration accuracy. Additionally, this data set can aid in verifying 

registration systems which can then be used for the longitudinal databases that already exist 
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for prediction. The dataset fills a need in a baseline step that should not be overlooked before 

proceeding with higher level studies that utilize deformable image registration with MR 

images.

III. Acquisition and Validation Methods

A. Porcine Phantom

A porcine shoulder cut was selected as it contained muscle, fat, and bone. Ten 0.35 mm gold 

markers were implanted in the porcine meat. The porcine meat with markers was then 

placed in a plastic container and secured with movable dividers (United States Plastic 

Company, Lima, OH). The container is 27.6 cm long with 7 notches, 21.0 cm wide with 5 

notches, and 12.7 cm tall. The notches are 3.25 cm apart and 1.6 cm from the corner in the 

width, and 1.8cm from the corner in the length. There were two sets of dividers: long 

dividers that went into the notches on the width of the container and short dividers that went 

into the notches on the length of the container. The porcine meat was placed in four different 

positions within the container and imaged on CT and MRI in each position. Figure 1 shows 

the porcine phantom and dividers. The four positions consisted of: (1) one long divider in 

the first notch, (2) one long divider in the first notch and one short divider in the first notch, 

(3) one long divider in the first notch, one long divider in the last notch, and one short 

divider in the first notch, and (4) one long divider in the first notch, one long divider in the 

last notch, one short divider in the first notch, and one short divider in the last notch. Table 1 

has the locations of the gold markers within the image and Table 2 has the applied 

deformations.

The CT images were captured on a GE Discovery CT 750HD (GE Healthcare, Waukesha, 

WI) in helical mode. The protocol for all four images was 120 kVp, 150 mA, 0.516 pitch, 

0.8-s rotation time, 0.625-mm slice thickness, 0.625-mm spacing between slices, pixel size 

0.39 mm × 0.39 mm, and CTDIvol 41.07 mGy.

T1-weighted and T2-weighted MR images were acquired on a 3.0T Discovery 750 MRI 

scanner with an 8US TORSOPA coil (GE Healthcare). The T1-weighted scans used a three-

dimensional spoiled gradient recalled echo sequence with the following acquisition 

parameters: flip angle 12°, repetition time 4.96 ms, echo time 2.1 ms, effective number of 

excitations 2, pixel bandwidth 325 Hz, field of view 25.6 cm, slice thickness 1 mm, and 

pixel size 1 mm × 1 mm. The T2-weighted scans used a two-dimensional fast spin echo 

sequence with the following acquisition parameters: flip angle 90°, repetition time 5884 ms, 

echo time 98 ms, effective number of excitations 2, pixel bandwidth 325 Hz, field of view 

25.6 cm, slice thickness 2.5 mm, gap 1.5 mm, acquisition pixel size 1 mm × 1 mm, and zero 

filling interpolation × 2 (producing an image pixel size of 0.5 mm × 0.5 mm). The voxel size 

selected for both T1 and T2 weighted sequences were large enough for the gold markers to 

not be visible, therefore not interfering/affecting/biasing the results of the registration 

algorithms.
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B. Synthetic Images

Twenty-eight patients with human papillomavirus-positive oropharyngeal squamous cell 

carcinoma who were treated with definitive chemoradiotherapy were selected from a 

prospective trial under a protocol approved by the institutional review board at MD 

Anderson Cancer Center with study-specific informed consent. Patients were imaged with 

T1- and T2-weighted MRI sequences at pre-treatment (within 1 week before treatment), 

mid-treatment (3–4 weeks after initiation of treatment), and post-treatment (6–8 weeks after 

conclusion of treatment). The first 28 patients to complete all three time point scans were 

selected. Patients selected for the generation of the synthetic images were scanned between 

December 2013 and October 2015. The patient median age was 57 (range 46–70), with 26 

men and 2 women. Organ segmentation was performed on each patient’s T1-weighted 

images by the treating physician. The median left parotid volume was 30.9 cm3 (range 22.4–

47.1 cm3), median right parotid volume was 33.5 cm3 (range 18.0–46.7 cm3), median left 

submandibular volume was 9.6 cm3 (range 5.7–19.7 cm3), median right submandibular 

volume was 9.4 cm3 (range 4.3–17.5 cm3), and median sublingual volume was 4.8 cm3 

(range 1.6–9.4 cm3).

The T1- and T2-weighted scans were acquired on a 3.0T Discovery 750 MRI with a 6-

element flex coil and flat insert table (GE Healthcare). The scans each had thirty slices with 

a 25.6cm axial field of view and covered the region encompassing the palatine process 

region cranially to the cricoid cartilage caudally in the superior-inferior direction with 4 mm 

slice thickness. The T1-weighted scans used a three-dimensional spoiled gradient recalled 

echo sequence with the following acquisition parameters: flip angle 15°, repetition time 3.6 

ms, echo time 1 ms, effective number of excitations 0.7 (GE terminology, number of 

averages = percent sampling * number of signal averages/number of excitations), pixel 

bandwidth 325 Hz, acquisition pixel size 2 mm × 2mm, and zero filling interpolation × 2. 

This resulted in reconstructed voxel sizes of 1 mm × 1 mm × 4 mm. The T2-weighted scans 

used a two-dimensional fast spin echo multi-slice sequence with the following acquisition 

parameters: flip angle 90°, repetition time ~3600 ms, echo time ~100 ms, effective number 

of excitations 1, pixel bandwidth 195 Hz, slice thickness 2.5 mm, gap 1.5 mm, acquisition 

pixel size 1 mm × 1 mm, and zero filling interpolation × 2. This resulted in reconstructed 

voxel sizes of 0.5 mm × 0.5 mm × 4 mm.

T1- and T2-weighted synthetic image models were created separately. Each model was built 

using the following steps. Each patient’s mid- and post-treatment images were registered to 

his/her pre-treatment image. These deformations were used to create an intra-patient 

variation model. A template patient was selected from the 28 patients based on median age 

and median salivary gland volume. Each patient’s pre-treatment image was deformed to the 

template patient’s pre-treatment image. An inter-patient variation model was created using 

these deformations. All deformations were conducted using an in-house demons-based 

deformable image registration tool 5,6. Ninety-five percent of the variation was included in 

both the intra- and inter-patient variation models.

The intra- and inter-patient variation model consistent of a range of values and use a random 

number generator to pull from the distribution, therefore each time the model is run to create 

a synthetic image, a different image is created. The template patient’s pre-treatment image 
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was deformed using the inter-patient variation model to create synthetic pre-treatment 

images. The synthetic pre-treatment image was deformed using the intra-patient variation 

model to create synthetic post-treatment images. The inter-patient variation model was run 4 

times to create 4 distinct synthetic pre-treatment images. For each synthetic pre-treatment 

image, the intra-patient variation model was run 4 times to create 4 distinct synthetic post-

treatment images. This process is demonstrated in Figure 2. Due to differences in scan extent 

between patients, the number of usable slices for image registration accuracy assessment 

was reduced to 14 slices for T1-weighted images and 18 slices for T2-weighted images. 

More information on the intra- and inter-patient variation models is described by Yu et al. 25.

C. Computational Tools

The synthetic images are generated using computational tools that are in-house. The 

methodology of the in-house tool is described in-depth by Yu et al. 25. The deformation 

vector field used to generate the synthetic post-treatment images is in binary format with an 

accompanied text file describing the basic information of the vector field. The deformation 

field data has been decomposed in MATLAB (MathWorks, Natick, MA) for previous studies 

with synthetic images 24,25 and the MATLAB code for this decomposition has been included 

for ease of use. There are separate MATLAB scripts for the T1- and T2-weighted images 

included in the data set.

D. Data Validation

The T1- and T2-weighted MR sequences used for the porcine phantom were derived from 

patient T1- and T2-weighted sequences used in dynamic contrast enhanced MRI studies 

conducted at MD Anderson 26,27. These were chosen as they produce typical signal to noise 

ratios as seen in patient images, thus providing a more accurate estimate of deformable 

image registration software accuracy in practice.

The synthetic images were created using an established and verified methodology 25. The 

demons-based registration algorithm, which is a central component to the method, was 

shown to be accurate for MR images 24.

IV. Data Format and Usage Notes

The data is available on The Cancer Imaging Archive (TCIA) under the collection MRI-DIR 

(http://dx.doi.org/10.7937/K9/TCIA.2018.3f08iejt) (Data Citation 1). The data upload is 

separated by porcine phantom and synthetic images. The porcine phantom data is organized 

by the position of the dividers as described in Section IIIa. The series/study/acquisition date 

is set to January 1, 1990 for the first position, February 2, 1990 for the second position, 

March 3, 1990 for the third position, and April 4, 1990 for the fourth position. The series 

description is set to CT, T1, or T2 to identify the image. TCIA images can have two different 

structures: (1) ..\DOI\PatientID\StudyInstanceUID\SeriesInstanceUID\xxxxxx.dcm where 

xxxxxx starts at 000000.dcm and increments by 1 for each image within a series if 

downloaded from the TCIA wiki page or (2) ..\CollectionName\PatientID\StudyDate-

StudyDescription\SeriesDescription\xxxxxx.dcm if downloaded from the Search function 

within TCIA.
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The synthetic image data is similarly organized. The pre-treatment images have a series/

study/acquisition date of January 1, 1990 and the post-treatment images have a series/study/

acquisition date of February 2, 1990. The series description of the pre-treatment scans is set 

to T1Pre or T2Pre corresponding to the MR sequence. The post-treatment scans series 

description is set to T1Post1, T1Post2, T1Post3, and T1Post4 or T2Post1, T2Post2, T2Post3, 

T2Post4 corresponding to the MR sequence and the synthetic post-treatment image. The 

patient name and ID are set to T1_1, T1_2, T1_3, T1_4, T2_1, T2_2, T2_3, or T2_4, 

corresponding to the MR sequence and which synthetic image series is created. There is a 

DICOM RT structure file for each of the synthetic pre-treatment images located with pre-

treatment images. This file contains 5 regions of interest (ROIs) that are identified: left/right 

parotid gland, left/right submandibular gland, and sublingual gland. The images and DICOM 

RT structure files when downloaded from TCIA have the same structure as described for the 

porcine phantom.

There are two deformation vector field data folders labeled T1DVFData and T2DVFData 

that correspond to the deformation vector field data for the synthetic T1- and T2-weighted 

images, respectively. Inside each of the deformation vector field folders are folders labeled 

Post1, Post2, Post3, and Post4. These folders contain a field and header file. There are two 

sets, designated as D2T or T2D. The D2T files are mapping the pre-treatment image to the 

post-treatment image (pre-treatment image is the secondary image) and the T2D files are 

mapping the post-treatment image to the pre-treatment image (pre-treatment image is the 

primary image). The header file contains the x, y, z dimension of the field file, the x, y, and z 

voxel dimension (unit: centimeters), the x, y, and z starting point of the reference and 

secondary location used for the rigid central alignment before deformation is applied (unit: 

centimeters). The field file stores all deformations along x direction (dx) followed by all 

deformations along y direction (dy) and all deformation along z direction (dz). In each 

deformation field block (dx, dy, or dz), the field data is arranged by scanning x direction 

first, then y direction, and finally z direction. The unit of the field data is the number of 

voxels. There is a MATLAB file supplied to decompose the T1 and T2 DVF data in their 

respective folders. The field and header file store data in centimeters while typically 

deformation vector fields are exported in millimeters from DICOM images. This has been 

corrected for in the MATLAB file.

V. Discussion

This data set provides two image sets to verify deformable image registration accuracy when 

using MR images. All images are in DICOM format, therefore, they can be imported to any 

image registration software that allows this format, e.g. all medical image registration 

software. These images can be used as a reference check for accuracy of image registration 

software using MR images. This was done for Velocity (Varian Medical Systems) and an in-

house demons-based algorithm 24. Many commercial and in-house systems have been 

verified using CT images, but public repositories of MR images for testing are sparse. These 

two different image sets can act as an easily accessible option for researchers when 

deformable image registration software (whether in-house or commercial) accuracy needs to 

be checked with MR images before proceeding with other experiments.
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A limitation of this data set is that all images were acquired under a specific protocol. The 

protocol for the patients and porcine phantom was very similar. Changes in acquisition 

parameters, such as number of averages, and changes in the image noise and artifacts could 

impact registration accuracy. There are several limitations specific to the patient data set. 

Firstly, it contains only head and neck patients and had displacements that were usually less 

than the slice thickness. Therefore, extending the results from the synthetic data alone to 

another site must be done with caution. Also, only the salivary glands were contoured for 

this data set. Additionally, the inter- and intra-patient variation models were created using an 

in-house demons-based algorithm. Other algorithms similar to the one used to create the 

inter- and intra-patient variation models may be biased in the results of the registration 

accuracy when using the synthetic images.

There are several limitations pertaining to the porcine phantom: the phantom did not shrink 

and the deformations are larger than those seen in patients. Not all sites of interest shrink or 

grow with time, so the lack of volume change in the meat does not impact all evaluations. 

The deformations that could be applied were limited due to the setup and thus can provide 

an extreme registration scenario to test registration accuracy with.

VI. Conclusion

The data set contains two separate techniques, synthetic and acquired images, to evaluate 

deformable image registration accuracy. Each technique contains T1- and T2-weighted 

images as registration accuracy may differ between the MR image types.
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Figure 1. Porcine Phantom Representative Deformation
A deformation was applied to the porcine phantom by moving the dividers. The red box 

represents the container with the grooves for the movable dividers and the position of the 

dividers is shown in blue. The original position is shown on the left and a deformed position 

using more movable dividers to secure the phantom in place is shown on the right. 

(Reproduced with permission from Wiley 24.)
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Figure 2. Workflow of Synthetic Image Generation
The generation of synthetic images is represented visually. The selected patient’s pre-

treatment image is deformed by the inter-patient variation model to generate the synthetic 

pre-treatment images (highlighted in pink). For each of the synthetic pre-treatment images, 

four synthetic post-treatment images (highlighted in blue) are generated by deforming the 

synthetic pre-treatment image using the intra-patient variation model. (Reproduced with 

permission from Wiley 24.)
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