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Abstract
Purpose of Review The concept of cellular senescence has been evolving. Although originally proposed based on studies of
serum-driven replication of cell lines in vitro, it is now clear that cellular senescence occurs in vivo. It has also become clear that
cellular senescence can be triggered by a number of stimuli such as radiation, chemotherapy, activation of oncogenes, metabolic
derangements, and chronic inflammation.
Recent Findings As we learn more about the mechanisms of cellular aging, it has become important to ask whether accelerated
cellular senescence occurs in lupus and other systemic rheumatologic diseases.
Summary Accelerated cellular aging may be one explanation for some of the excess morbidity and mortality seen in lupus
patients. If so, drugs targeting cellular senescencemay provide new options for preventing long-term complications such as organ
failure in systemic lupus erythematosus patients.
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What Is Cellular Senescence?

In a population, aging is associated with an exponential in-
crease in the mortality rate [1]. At the organismal levels, aging
is seen as a progressive loss of function and resilience. At the
cellular level, aging is associated with a number of “hall-
marks” [2]. Cellular senescence, defined as stable arrest of cell
cycle in association with several stereotypic phenotypic
changes, is one of the hallmarks of aging. Cellular senescence
was first described in 1961 as the grown arrest after 40 to 60
population doublings of human embryonic fibroblasts grown
in tissue culture. With growth arrest, cells did not die but
flattened out and became larger. Other characteristics of cel-
lular senescence include: a persistent DNA damage response,

activation of cyclin-dependent kinase inhibitors, enhanced se-
cretion of pro-inflammatory and tissue remodeling factors,
increased anti-apoptotic genes, alterations in cellular metabo-
lism, endoplasmic reticulum stress, accumulation of lyso-
somes and mitochondria, and changes in nuclear morphology
and composition [3]. Despite all of these abnormalities, there
is no perfect, universal biomarker for cellular senescence.
Thus, a panel of biomarkers is commonly used to help decide
whether there is cellular senescence [3, 4•] (Table 1).

The growth arrest of normal cells after a certain
number of divisions has been termed the “Hayflick lim-
it.” In Hayflick’s experiments, cellular senescence was
induced by replication, and subsequent studies have
shown this is dependent on telomere shortening.
Expression of telomerase, which lengthens telomeres,
allows cells to continue dividing past their normal
Hayflick limit. Cellular senescence is now recognized
to occur with a number of other stimuli including ex-
pression of oncogenes, genotoxic agents such as radia-
tion or chemotherapy, and chronic cellular stress from a
number of factors including hyperglycemia or pro-
inflammatory cytokines [3, 4•]. On the other hand, since
telomere shortening can also be accelerated by chronic
stress, e.g., chronic inflammation, determining the pri-
mary mechanism inducing cellular aging in any given
clinical situation can be a significant challenge [5].
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A common theme in most, but not all types of cellular
senescence is DNA damage, especially DNA damage that is
persistent [6, 7••]. Persistent DNA damage induces growth
arrest, reactive oxygen species (ROS), secretion of pro-
inflammatory cytokines, and production of IFNβ [7••]. The
cGAS-STING pathway senses cytoplasmic DNA and is a crit-
ical link between DNA damage and cellular senescence [8, 9•,
10]. Micronuclei and other cytoplasmic DNA activates cGAS
producing GMP–AMP that binds and activates STING.
Downstream signals from STING include NFκB and IRF-3
which activate IFNβ and cytokine secretion. Cytoplasmic
DNA can also be sensed indirectly via Mitochondrial antiviral
signaling (MAVS) protein, a key to sensing cytoplasmic viral
RNAs and another potent activator of IFNβ and pro-
inflammatory cytokines. Cytoplasmic DNA can be tran-
scribed into RNA by RNA polymerase III. RIG-1 can sense
this newly transcribed RNA, activating MAVS [11].
Genotoxic stress can also induce small non-coding RNAs that
translocate to the cytoplasm, bind RIG-1, and activate MAVS
and IFNβ [12]. In addition, ROS, which are frequently asso-
ciated with cellular senescence and other forms of cellular
stress, can also activate MAVS [13••]. Since IFNβ can induce
mitochondrial production of ROS and DNA damage, there
can be a ROS-MAVS-IFNβ feedback loop in addition to an
ROS-DNA-cGAS/STING or RIG/1MAVS-IFNβ [7••, 14•,
15, 16••].

Telomeres also mediate damage to DNA. With telomere
shortening, telomeric DNA becomes uncapped and more sus-
ceptible to damage. However, even without shortening, telo-
meres are more likely to have persistent DNA damage because
the repair process for double-strand break repair is less active
in telomeres [17, 18]. Thus, cellular senescence induced by
DNA damage may be dependent on telomeres but indepen-
dent of telomere shortening [19•, 20]. Therefore, while telo-
mere shortening can induce cellular senescence, it is not syn-
onymous with cellular senescence (Fig. 1).

Although senescent cells do not divide, they are metaboli-
cally very active. Possibly the most important characteristic of
senescent cells is their production of paracrine factors
impacting surrounding cells. These factors include a variety
of pro-inflammatory cytokines that can recruit inflammatory
cells and activate surrounding non-senescent cells, growth
factors that can promote tissue repair or growth of neoplastic

cells, ROS that can cause DNA damage in surrounding cells,
and exosomes that can transfer miRNA and other intracellular
macromolecules. These factors can promote senescence of
adjacent normal cells. Thus, a small number of senescent cells
can have a major impact on function and survival.

Senescent cells permanently withdraw from the cell cycle
and they cannot be induced to proliferate. In contrast, cell
cycle arrest in quiescent cells is reversible and they can be
induced to proliferate [21]. Cellular senescence can be viewed
as a multi-step process: (1) cessation of cell growth, (2) met-
abolic changes regulated by AMPK, (3) activation of mTOR
which promotes proliferation of mitochondria, generation of
ROS, and secretion of several of the cytokines involved with
senescence associated secretory phenotype (SASP), and final-
ly, (4) permanent cell cycle arrest [22•, 23••, 24•]. Therefore,
near-senescent cells may have several of the biomarkers of
senescent cells but still able to reenter the replication cycle
given the right conditions. The transition from temporary to
permanent cell cycle arrest has been termed geroconversion
[21]. In cells with growth arrest activation of the mTOR path-
way appears to play a key role in geroconversion. Inhibitors of
mTOR such as rapamycin prevent the transition from tempo-
rary to irreversible cell cycle arrest in several models of cellu-
lar senescence (overexpression of p21, genotoxic drugs such
as etoposide) [25, 26]. Certain conditions of cell culture, e.g.,
hypoxia or cell confluence inhibition of growth, also prevent
geroconversion [27, 28•, 29]. Interestingly, these culture con-
ditions also prevent mTOR activation. Although the mecha-
nisms responsible for permanent, irreversible cell cycle arrest
in senescent cells have not been worked out, there is evidence
for the involvement of the transcription factor ATRX. With
genotoxic stress ATRX localizes to senescence-associated het-
erochromatin foci (SAHF) [30, 31••, 32]. Reduction of
ATRX does not decrease the DNA damage response or
the induction of p53 and phosphorylated Rb but it does
prevent accumulation of SABG and SAHF positive cells
and induction of SASP. Most importantly, silencing
ATRX prevents permanent growth arrest. Thus, localiza-
tion of ATRX to SAHF may provide a marker for perma-
nent cell cycle arrest in cells treated with genotoxic drugs.
Whether ATRX plays a role in other types of cellular senes-
cence remains to be seen.

Why Does Cellular Senescence Matter?

Aging is the major risk factor for mortality and for many of the
chronic, non-infectious diseases, e.g., cardiovascular diseases,
cancers, Alzheimer’s, Parkinson’s, osteoarthritis, osteoporo-
sis. Cellular senescence also increases with age and appears
to play an important role in each of these diseases. Thus, the
development of senolytic drugs that specifically target senes-
cent cells as well as the development of drugs that target the

Table 1 Biomarkers of cellular senescence

• Grown arrest

• DNA damage response—γH2AX, pATM, ATR, p53BP, p53, p21

• Activation of INK4/ARF locus—p16INK4a

• Senescence-associated secretory phenotype (SASP)—IL1α, IL-6, IL-8,
TNFα (and many more)

• Senescence-associated β-galactosidase (SABG)

• Senescence-associated heterochromatin foci (SAHF)
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senescence-associated secretory phenotype has the potential
to revolutionize our treatment of many of these age-
associated diseases.

The effects of cellular senescence can extend well beyond
the effects on the senescent cells themselves. Senescent cells
have a much more general effect locally or systemically
through secretion of cytokines, the production of ROA, and
the generation of exosomes. Thus, even though senescent cells
may be a minor population in a tissue or an organism, their
effects can be disproportionate to their number. The potency
of senescent cells was seen most clearly in transplantation
studies where mice received senescent cells equivalent to
1/10,000 of their own non-senescent cel ls [33] .
Transplanting this small numbers of senescent cells into
youngmice can cause persistent decrease in physical function.
In addition, senescent cell transplantation increased cellular
senescence in recipient cells and tissues. Transplanting senes-
cent cells in older mice similarly decreased physical function
and also reduced survival. Thus, senescent cells shortened
health and life span. Conversely, treating mice with senolytic
drugs after transplantation with senescent cells eliminated the
transplanted cells and prevented the deleterious effects of the
transplant. More impressively, older non-transplanted mice
treated with senolytic drugs had improved physical function,
increased life-span, and decreased senescent cells. Therapies
targeting senescent cells also appear to be beneficial in murine
models of age-related diseases, e.g., osteoporosis and cardio-
vascular disease, or the adverse effects of genotoxic therapies.
Elimination of senescent cells using a genetic approach (ex-
pression of suicide gene using enhancer for p16INKa) or
blocking senescence-associated secretory phenotype (SASP)
using a JAK inhibitor resulted in higher bone mass and
strength and better bone microarchitecture. [34••, 35] Using
a genetic elimination of senescent cells in normal-aged mice

also improved cardiac histology and resilience to stress and
prevented glomerular sclerosis [36, 37].

Cellular Senescence in Stem Cells

By definition, stem cells cannot be fully senescent. They can-
not have permanent cell cycle arrest because they are defined
by their ability to divide and repopulate cell populations.
Thus, full senescence of stem cells is seen as stem cell exhaus-
tion. Partial senescence of stem cells, i.e., less than full senes-
cence, is generally inferred by quantitative or qualitative ab-
normalities in their progeny. Telomerase-knockout mice pro-
vide one opportunity to observe stem cell senescence [7••].
These animals have distortions in the crypt and villus archi-
tecture, and intestinal epithelial cell have increased DNA dam-
age response, elevated p53 and p16INK4a, increased SABG
expression, decreased proliferation, and increased activation
of apoptosis. Telomerase-knockout mice had decreased hema-
topoietic stems cells as assessed by flow cytometry (lineage-/
Sca1+/c-Kit+ LSK stem cells and long-term self-renewing
LSK CD150+/CD48- stem cells) and the limited ability of
bone marrow to form colonies in vitro. Furthermore, these
animals also had skewing towards the myeloid lineage and
away from the lymphoid lineage. Interestingly, all the abnor-
malities in intestinal cells and hematopoietic stem cells in
telomerase-knockout mice were absent when the interferon
receptor I was also knocked out [7••]. Similar abnormalities
in hematopoietic stem cells have been observed in aging ani-
mals [38]. Moreover, hematopoietic cells and muscle stem
cells prematurely aged by irradiation could be eliminated
using a senolytic agent. Treating irradiated animals with a
senolytic agent rejuvenating stem cell function [39••].

Fig. 1 Cellular senescence
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Cellular Senescence in Lupus Mesenchymal
Stem Cells

The strongest case for cellular senescence in lupus can be
made for bone marrow mesenchymal stem cells (BMSC). In
part, this is an accident of interest, i.e., this is where investi-
gators have looked. However, BMSC have been a favorite
focus in many studies of cellular senescence in part because
osteoporosis is such a prevalent disease of aging and in part
because BMSC are easy to grow and study in tissue culture.
Also, compared to some other organ systems, e.g., the im-
mune system, cellular senescence in BMSC represents a rela-
tively simple system.

During in vitro culture of human, bone marrow mesenchy-
mal stem cells (BMSC) grow very well for 20 population
doublings (PD) but develop cellular senescence around 40
PD [40, 41]. Late passage BMSC compared to early passage
cells have slower proliferation, markedly increased cell size
(area increases from 5 to 50 μm2), and increased expression of
senescence associated β galactosidase (SABG), p53, and
p16INK4a. Moreover, late passage BMSC did not repair DNA
damage as well as early passage BMSC and were much more
sensitive to oxidative stress. Thus, with extended in vitro rep-
lication BMSC exhibit the typical finding of cellular senes-
cence. Moreover, BMSC obtained from older donors develop
these biomarkers of cellular senescence more rapidly than
BMSC from younger donors.

Multiple papers have reported BMSC from lupus patients
have many of the same characteristics of BMSC that have
undergone replicative senescence. Initial studies found that
BMSC from lupus patients compared to matched controls
proliferated more slowly, and had a flattened morphology,
increased ROS, increased expression of p16INK4a, and in-
creased activation of the p53/p21 pathway [42–46].

Downregulation of p16INK4a or p21 mRNA was able to
reverse several of these abnormalities [45, 46]. Thus, the bio-
markers of senescence in lupus BMSC are at least partial
reversible. Since the short-term cultures used in these experi-
ments are a mixture of cells at different stages of aging on their
way to cellular senescence, the reversal of biomarkers may
have been due to effects on cells early in the course of senes-
cence before changes become irreversible.

Several recent papers have investigated the signaling
pathways activated in lupus BMSC and have identified sev-
eral “druggable targets” including mTOR [47], JAK-STAT
[48], and the Wnt/β-catenin pathway [49]. The mTOR in-
hibitor rapamycin has already been shown to be beneficial
for disease activity in murine models of lupus [47].
Rapamycin administration in the MRL/lpr murine model
of lupus decreased proteinuria and the number of crescentic
glomeruli. Moreover, rapamycin also reversed the cellular
senescence of BMSC from lupus mice [47]. In vitro
rapamycin treatment of human BMSC from lupus patients

also reversed many of the abnormalities associated with
cellular senescence including activation of the mTOR path-
way, SABG expression, and cellular hypertrophy. BMSC
from lupus patients have been shown to be defective in their
immunomodulatory activity when transferred to lupus-
prone mice [50]. Treating human lupus BMSC with
rapamycin reversed this defect and enhanced immunomod-
ulatory effects when transplanted into the MRL/lpr mice
[47]. There is enhanced activation of the JAK-STAT path-
way in BMSC from lupus patients. Treating lupus BMSC
with a JAK2 inhibitor for 48 h. blocked phosphorylation of
STAT3, increased proliferation, markedly decreased SABG
positive cells. Nuclear levels of β-catenin were found to be
markedly elevated in SLE BMSC [49]. Wnt/β-catenin path-
way inhibition in SLE BMSC using Dickkopf WNT
Signaling Pathway Inhibitor 1 (DKK1) or β-catenin
siRNA reversed many of the biomarkers of cellular senes-
cence. For example, Wnt/β-catenin pathway inhibition in-
creased proliferation, decreased the number of SABG pos-
itive cells, and decreased expression of p53 and p21.

Our own studies have found that lupus BMSC have many
of the hallmarks of cellular senescence including a reduced
proliferation rate, increased DNA damage and repair, in-
creased production of reactive oxygen species, increased ex-
pression of p53 and p16, and increased secretion of pro-
inflammatory cytokines. Notably, SLE BM-MSCs had a 5-
fold increase in interferon-β (IFNβ) levels and increased
IFNβ-induced messenger RNAs (mRNAs). In addition,
MAVS expression was elevated, and the level of MAVS was
highly correlated with IFNβ levels (r > 0.9, P < 0.01). Since
MAVS is known to be a potent inducer of IFNβ, we hypoth-
esized that there is a positive feedback loop between MAVS
and IFNβ. We also found that silencing MAVS markedly
decreased IFNβ, p53, and p16 protein levels and expression
of mRNA for proinflammatory cytokines. Increased levels of
IFNβ are seen in human diploid fibroblasts from patients with
Werner or Hutchinson-Gilford progeria syndromes compared
to normal controls [7••]. Increased levels of IFNβ have also
been seen in late passage compared to early passage human
fibroblast. Treatment of late passage normal fibroblasts or fi-
broblast from patients with progeria syndrome with anti-IFNβ
increased cell proliferation, decreased cells positive for
SABG, and decreased p16, p21, and p53 protein expression.

In summary, multiple investigators have found human
BMSC from lupus patients have the hallmarks of cellular se-
nescence and have demonstrated potential therapies that re-
verse these biomarkers in vitro. Thus, there is a strong case for
accelerated cellular senescence in lupus MSC and a strong
case for the potential of interventions. However, the clinical
significance of BMSC cellular senescence in lupus is still
unclear. Moreover, whether using any of these interventions
will reverse the abnormalities in lupus BMSC in vivo remains
an open question.
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Cellular Senescence in Organ Systems
with Lupus

DNA damage, a key inducer of cellular senescence, is associ-
ated with SLE in multiple studies [51–53, 54••]. Metabolic
abnormalities and increased production of mitochondrial re-
active oxygen species are part of the problems but defects in
DNA repair have also been seen [13••, 52, 55, 56]. Thus,
cellular stress with increased reactive oxygen species and
DNA damage is a major feature of SLE and may contribute
to accelerated cellular senescence.

Markers of cellular senescence have been reported in many
types of renal disease including several types of glomerular
nephritis [57•, 58•, 59, 60•, 61]. Moreover, knocking out one
of the primary pathways of cellular senescence prevents inter-
stitial fibrosis and tubular atrophy with renal injury, in
transplanted kidneys, or in kidneys with premature aging
[62, 63]. Interestingly, evidence of senescence in the kidney
can occur without evidence of telomere shortening [64]. Very
recently, data shows biomarkers of cellular senescence in mu-
rine and human lupus including upregulation of SABG and
p16ink4a [65••, 66]. These studies have shown a potential role
for wnt9a in renal cellular senescence and fibrosis [65••]. As
discussed above, wnt signaling has also been shown to play a
role in cellular senescence of lupus BMSC [49]. Thus, there is
a reasonable chance that cellular senescence will play an im-
portant role in lupus nephritis, which is one of the most intrac-
table manifestations of lupus.

Cardiovascular disease, the leading cause of death in de-
veloped countries, is closely associated with aging, and there
is a strong case for cellular senescence mediating initiation
and progression of cardiovascular disease [37]. Inducers of
cellular senescence such as telomere shortening and oxidative
stress are associated with age and cells expressing biomarkers
of aging accumulate in the heart and blood vessels. Moreover,
in animal models, genetic or pharmacologic elimination of
senescence cells block the effect of aging on cardiovascular
function and the development of cardiovascular disease.
Lupus is well known to have a striking excess of atheroscle-
rotic disease [67, 68]. A recent nationwide cohort study in
Korea found that lupus is associated with markedly increased
hazard ratio for myocardial infarction (2.74), stroke (3.31),
heart failure (4.60) and cardiac death (3.98) [69]. However,
to the best of our knowledge, excess cardiovascular disease in
lupus has not yet been linked to accelerated cellular
senescence.

A new twist to the story of cellular senescence involves
post-mitotic cells such as neurons. Neurons in old mice show
several hallmarks of cellular senescence such as severe DNA
damage, production of ROA, secretion of pro-inflammatory
cytokines, IL-6 production, and senescence-associated β-ga-
lactosidase activity [70]. Moreover, these changes were de-
pendent on p21 which is also a necessary link between the

DNA damage response and senescence-like phenotype in pro-
liferative cells such as fibroblasts. Thus, it will be interesting
to see if drugs targeting cellular senescence, e.g., drugs
inhibiting SASP, are also beneficial in models of age-
associated CNS disease. On the other hand, this observation
suggests senolytic drugs, drugs that induce apoptosis in
senescing cells, might have unintended adverse effects on
neurons. Initial studies of senolytic drugs in a murine model
of Alzheimer’s look promising but muchmore work is needed
[71••, 72]. CNS disease in lupus is extremely heterogeneous
and probably has several pathogenic mechanisms including
autoantibodies and type I interferon [73–75]. However, to
the best of our knowledge, cellular senescence in the CNS
has not been evaluated in lupus.

The changes in the innate and adaptive immune system
seen in lupus are complex. There is a recent review that does
a superb job discussing the similarities and differences be-
tween the immune changes seen with lupus and the immune
changes seen with aging [76••]. Suffice to say that although
there are many similarities at the molecular levels, there are
major differences in function, i.e., the immune changes in
lupus are very distinct from immunosenescence.

Summary

SLE is a chronic inflammatory disease that affects all major
organ systems. Inflammation has long been proposed as a
cause for accelerated aging. At this point, there is a moderate
amount of evidence indicating cellular senescence may play
an important role in lupus. However, not all inflammation is
the same and not all cells with biomarkers of senescence have
reached the stage where changes are irreversible. Therefore,
interventions targeting interferons and pro-inflammatory cy-
tokines or signaling pathways may be able to reverse many of
the abnormalities suggesting cellular senescence in patients
with lupus. Alternatively, it may be possible using senolytic
drugs to selectively eliminate senescence cells the rejuvenate
tissues and organs adversely affected by lupus.
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