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Abstract

Microbial communities are key engines that drive earth’s biogeochemical cycles. However, existing ecosystem models have
only limited ability to predict microbial dynamics and require the calibration of multiple population-specific empirical
equations. In contrast, we build on a new kinetic “Microbial Transition State” (MTS) theory of growth derived from first
principles. We show how the theory coupled to simple mass and energy balance calculations provides a framework with
intrinsically important qualitative properties to model microbial community dynamics. We first show how the theory can
simultaneously account for the influence of all the resources needed for growth (electron donor, acceptor, and nutrients)
while still producing consistent dynamics that fulfill the Liebig rule of a single limiting substrate. We also show consistent
patterns of energy-dependent microbial successions in mixed culture without the need for calibration of population-specific
parameters. We then show how this approach can be used to model a simplified activated sludge community. To this end, we
compare MTS-derived dynamics with those of a widely used activated sludge model and show that similar growth yields and
overall dynamics can be obtained using two parameters instead of twelve. This new kinetic theory of growth grounded by a
set of generic physical principles parsimoniously gives rise to consistent microbial population and community dynamics,

thereby paving the way for the development of a new class of more predictive microbial ecosystem models.

Introduction

Microbes are the most abundant living things on earth [1] and
are the key engines that drive earth’s biogeochemical cycles
[2]. Developing models able to capture and predict their
dynamics and community assembly patterns is therefore of
the outmost importance for the study of global earth ecolo-
gical equilibria and the development of innovative microbial
biotechnology processes [3—5]. However, current microbial
growth models are based on empirical equations, such as
those from Monod [6], Contois [7] or Haldane-Andrews [8]
and require extensive parameter calibration based on
experimental data. Calibrated models are bound to specific
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experimental conditions, thus limiting their predictive abil-
ities to a narrow domain. In order to build more generic
models, there is a need to more thoroughly capture the fun-
damental drivers of microbial growth and to mathematically
express how they contribute to the emergence of the many
community assembly patterns observed in nature.

An increasing number of observations show that envir-
onmental physical-chemical factors shape the metabolic
niches within a given biotope, resulting in stable functional
microbial community structures despite random invasions
[9]. This “functional convergence” phenomenon, i.e., the
tendency of microbial functional groups to converge toward
defined patterns in specific biotopes, has been observed in
systems as diverse as sea water [10, 11], soil [12, 13],
activated sludge [14], plant foliage [9], cheese [15], and
numerous human body biomes [16]. These observations
suggest that mechanistic processes may largely determine
the functional patterns of microbial communities. Up to
now, the search for mechanistic physics-based models of
microbial community structure has been somewhat over-
looked, as the very existence of general principles govern-
ing the structuring of ecosystems is still the subject of
debate [17-20]. As complex as community dynamics can
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be, it is nevertheless recognized that an ecosystem complies
with general laws such as those of thermodynamics, and the
rule of stoichiometry [18], and that these laws play a role in
ecosystem structure [21]. Whether achievable or not, trying
to build on these laws to create a general framework that
could result in ecologically consistent population and
community patterns is a highly desirable research target [5].

The seeds for such a general framework were sown by
the pioneering work of McCarty [22], followed by several
other highly detailed studies [23-27] of the thermodynamic
balance of microbial growth. This framework relies on
thermodynamic and stoichiometric rules to describe the
yield and output of microbial metabolism in terms of che-
mical species, heat, and entropy. These contributions led to
the development of generic methods to predict the stoi-
chiometry and the energetic balance of microbial growth
(for a review see refs. [28] and [29]).

Several attempts have also been made to link thermo-
dynamic balance calculations to the computation of
microbial growth rates (reviewed in refs. [3] and [28]). For
that purpose, some approaches combined balance calcula-
tions with heuristic Monod-like relationships between the
concentration of the substrate and the absorption rate [24]
and were used to simulate virtual microbial ecosystem
dynamics [30]. Some authors made assumptions about the
structure of the metabolic network, the electron transport
chain or the organization of the pathway to establish a link
between energy balances and rates [31-34]. It was also
suggested to rely on the fact that the rate of microbial
reactions is governed by enzyme kinetics in order to use the
Michaelis—Menten theory and derive microbial rate equa-
tions encompassing thermodynamic constraints [35]. A
collision frequency theory for microbial growth was also
proposed [36] and coupled to thermodynamic considera-
tions [37], which was the first attempt to conceptualize the
growth phenomena on a physical basis. Recently, a more
fundamental kinetic theory of microbial growth grounded
by statistical physics principles was introduced [38]. For the
sake of brevity, this theory is hereafter called “Microbial
Transition State” (MTS) theory.

Here we investigate using the MTS approach for the
modeling of microbial ecosystems. The theory underlying
this approach analyzes an elementary microbial division
event using first principles. The probability of a single cell
to be surrounded by a sufficient amount of resources
(electron donors, acceptors and nutrients) to allow divi-
sion is expressed, considering their microscopic distribu-
tion in the culture medium. Thence, a growth rate formula
is derived at the population level, as the statistical out-
come of the probability of division computed at the level
of each individual. This ab initio analysis is sufficiently
fundamental to be independent of the microbial species
and growth conditions. This implies that the growth of
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any chemotrophic microbial population catalyzing a
defined metabolic reaction can be readily implemented
with the MTS model. In cases where the model parameters
are not calibrated, what is predicted is the dynamics of
functional microbial populations as directly derived from
the first principles grounding the MTS theory. The
resulting equations of growth are seen here as the first
fundamental layer determining microbial dynamics, as a
result of physical laws, on top of which parametric
equations can be added in the future to account for the
complexity of biological or ecological phenomena that are
beyond the scope of the current analysis. The approaches
developed in this work represent an opposite take on
modeling compared to many models in biology that are
bound to a specific system, and that calibrate the para-
meters of an empirical expression in order to quantita-
tively reproduce the behaviors of the experimental system
under study. In contrast, the objective of this contribution
is to evaluate the qualitative properties of MTS dynamical
models as derived solely from the set of fundamental
hypotheses grounding the theory. To this end, we focus on
generic and idealized situations starting from the simplest
one, i.e., a pure culture grown on a minimal medium, and
progressively add more complexity to the simulations, in
order to analyze and to question the consistency of the
population and community dynamics that arise directly
(without parameter adjustment) from microbial transition
state theory.

Methods
Modeling ecosystem reaction stoichiometry

The ecosystem includes a biotic and an abiotic component.
The abiotic component comprises all chemical reagents,
products, and spectator species. The biotic component con-
sists of the whole microbial community. In our approach, the
microbial community is subdivided into guilds. A guild is
defined by the metabolism it catalyzes (aerobic acetotrophs,
denitrifying acetotrophs etc., see list below). The population
density of each guild is represented by the molar concentra-
tion of a generic, C-normalized biomass molecule. The bio-
mass molecule used in the simulations is C;H; 1300 557N0.158
[39]. Its enthalpy of formation is —126.83kJ. mol™' and its
Gibbs energy of formation is —82.16kJ. mol~'. The mole-
cular weight of this molecule is 24.76 g.C-mol-Biomass .
Assuming a cell volume of le—18m’ per cell and a
cell density of 1.09e6 g. m3 [40], a factor of 22.7e12 cell.
C-mol-Biomass ™! will be used for the purpose of illustration
in the results. The choice of this molecule does not constitute
the MTS model and theoretically, any other biomass formula
could be used.
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The system stoichiometry is formulated using a vectorial
approach as proposed by Roels [26], thereby enabling a
compact formulation. The generic formulation is described
in this section. The reader should refer to the results section
for specific examples of implementation. In all the follow-
ing formulas, the * symbol denotes matrix product. Let r be
the number of reagents involved in the system and C be a
rx 1 vector storing the concentration of all reagents of the
system, including biomasses, in mM at a given time. Let p
be the number of processes affecting the concentrations of
the reagents; the derivative of C over time is expressed from
the balance equation of C as

C=AxR (1)

where A is a rxp matrix storing the (unitless) stoichio-
metric coefficients of every process for every reagent, and R
is the p x 1 vector of the rate (in time ') of every process.
By convention, the stoichiometric coefficients are either
positive or negative depending on the production or
consumption of the corresponding chemical species,
respectively. The processes described by the MTS model
are metabolic reactions. Let g be the number of guilds, A,
the matrix of dimension rx g storing the stoichiometric
coefficients of the metabolism of every guild, and R the
gx 1 vector of the rate of each guild reaction. Eventual
stoichiometric matrices describing other processes are
horizontally concatenated to Ay, and their rates are
vertically concatenated to Rye. The A matrix is a linear
combination of two matrices A,, and A, both of
dimensions rx g, respectively, storing the coefficients of
the anabolic and catabolic reactions, and adjusted to close
the elemental balance in each reaction separately. The
stoichiometric coefficients of a catabolic reaction are set so
that exactly one electron donor molecule is consumed
(unitless stoichiometric coefficients are actually mol/mol-
Donor ratios). The stoichiometric coefficients of an anabolic
reaction are set so that exactly one biomass molecule is
produced (unitless stoichiometric coefficients are actually
mol/C-mol-Biomass ratios) as the production of one unit of
biomass is considered as the elementary event in the MTS
model.

For the anabolic reaction, we use the convention pro-
posed by Heijnen: the C-source for anabolism is either the
electron donor when it is organic or HCO5; . We posit here
that the reduced and oxidized forms of the catabolism’s
electron donor should be included in the anabolism. Our
working hypothesis is that the nitrogen source used for
anabolism is ammonium (no organic sources of nitrogen are
present in the simulated culture media), because it is
available in every culture medium simulated in this article.
Another choice would have been nitrate, but its possible
role as an electron acceptor would have made the

interactions between guilds more complex and complicated
the message of the simulations.

The Gibbs free energy of formation of every chemical
species used in the simulations is taken from Kleerebezem
and collaborators [28].

Linking growth stoichiometry to energy balance

The overall metabolism of the whole microbial community
can thus be expressed as:

Amet = Aan + A X Acat (2)

where A is the number of times the catabolic reaction of a
guild has to be performed for the total produced energy to
equal the energy barrier of growth (therefore expressed as
MOl ponorMOlBiomass ). 4 is then a diagonal matrix of guild-
specific scalar factors (denoted A) that ensures the coupling
of energy and stoichiometric balances, as explained by
Kleerebezem [28], a factor also sometimes denoted f,:

AGan + AGdis

& AGeu ®)
where AG,, is the Gibbs free energy change for the anabolic
reaction, AG, is the Gibbs free energy change for the
catabolic reaction and AGy; is the dissipated free energy of
growth. The dissipated free energy is the Gibbs free energy
change in the overall growth reaction (anabolism and
catabolism). This energy dissipation makes the overall
Gibbs free energy change of growth negative, so the
reaction is spontaneous. AG,, and AG_, are computed from
the Gibbs free energy change for anabolic and catabolic
reactions, corrected for non-standard temperature and
concentrations. We posit that only exergonic catabolic
reactions can lead to growth. Therefore, if AG_, happens to
be positive during the computations, it is set to zero,
resulting in insignificant growth. The A, factors are
computed at each time step of system integration.

Water and biomass activities are not included in the mass
action ratio AGy,, AG.y and AGy;s values are expressed in
kJ.C-molBiomass~'. The value of each Ag is such that the
Gibbs energy variation of the metabolic reaction is equal to
the dissipated energy, which in this article, is assumed to be
identifiable with the variable —Y3¢", empirically defined by
Heijnen as

AGdis ~ —Yan;éX

=200+ 18 - (6 — NoC¢)"®

(4)
+exp<<(3.8 - }’CS)Z)O.Iﬁ-(3.6 +04- NOCCJ))

where the chain length of the carbon source is denoted
(NoCcy) and (y(,) is the degree of reduction of the carbon
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source required for heterotrophic growth. The degree of
reduction of a carbon source is computed as in the original
publication by Heijnen and collaborators [23]. That is, by
summing 4 electron.carbon™!, 1 electron.hydrogen™!, —2
electron.oxygen !, —3 electron.nitrogen ! and 1 electron.
charge™!. For example, the reduction degree Yc, of the
carbon source acetate (C,H;0,7) is 4x243—2x2+41=8

electron.acetate ™.

Coupling stoichiometry, energy balance, and
microbial dynamics

The growth rate function used in the simulations is the
multi-substrate growth rate function described in the sup-
plementary materials of Desmond-Le Quéméner and Bou-
chez [38]. This formula arises from simple hypotheses
concerning microbial growth at microscopic scale. These
principles can be summarized as:

—a microbial cell needs to overcome a fixed energy
barrier in order to divide

—this energy barrier can be broken down into anabolic
energy AGan and dissipated energy AGdis

—the energy available to overcome the energy barrier is
the catabolic energy AGcat obtained from the catabolism
of substrate molecules

—substrate molecules are considered as particles ran-
domly distributed around the cells

—if a fictional, fixed volume Vj, (harvest volume) around
the cell contains enough substrate to overcome the energy
barrier, the cell is said to be in an “activated” state
—only an activated cell is able to divide

Considering these hypotheses, the proportion of activated
cells in the culture medium at a given time can be expressed
using a probabilistic reasoning (detailed in ref. [38]). Hence,
for a given guild, the formula of the microbial growth rate is

Ameti

M = Hmax H et (5)

1

where u is the growth rate (time ™), Ape; the negative stoi-
chiometric coefficient of substrate i (mol.C-mol-Biomass’l)
computed in Eq. 2, and [S;] the concentration of substrate i
(mol.volume ™). Although visually different, this formula is
consistent with the one presented in the introductory article
of the MTS model [38] (see supplementary materials 1).
This formula encompasses two parameters: iUm.x, Which
represents the maximum growth rate (time ™) and Vj,, which
represents the harvest volume (m3 .C—mol-Biomassfl).
These parameters both aggregate generic physical phenom-
ena and particular biological characteristics that would be
very difficult to assess accurately for each specific guild
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considered. As the purpose of this article is to document
generic growth patterns as derived from MTS theory, we
intentionally made simple generic choices for the value of
these parameters. The value of u.,,x for every guild was set
to k‘?—f where kg is the Boltzmann constant (mz.kg.S’Z.Kfl),
T the temperature of the system (K) and / Planck’s constant
(m?kg.s~1); the result is close to 2.23¢16 h™! at 298.15 K.
This term comes from Eyring’s transition state theory [41],
on which the MTS theory is based. The value of the V)
parameter was set to 1m’.C-mol-Biomass™' for all the
guilds, except in the final simulation where its value was
set to 10m>.C-mol-Biomass™' as a working hypothesis
because, given the low yields of the autotrophs, a value of
1 m*.C-mol-Biomass ! proved to be insufficient (see sup-
plementary materials 2). Considering the previously
estimated ratio of 22.7el2 cell.C—mol-Biomass’l, the
individual cell harvest volume for a V; of 1 m?.C-mol™!
would be 4.4le—14 m’.cell”!. A sphere of this volume
would have a radius of approximately 14 um (see supple-
mentary materials 3). The Vj, parameter modulates the
probability for a cell to be surrounded by sufficient substrate
to be activated. From a biological standpoint, V} results
from all adaptations implemented by the cells to increase
their ability to collect chemical resources in the culture
medium (such as specific membrane transporters or
chemotaxis), but also may vary according to the physical
characteristics of the biotope such as the diffusivity of the
substrates or agitation.

While pH can have many different impacts on the reg-
ulation of microbial growth, here only its influence on
reaction equilibrium is taken into account through the mass
action ratio. Other types of pH effects are beyond the scope
of the current MTS model.

The g x 1 Ry vector storing the rate of each metabolic
reaction is

Runer = diag(M) x [X] (6)

where M is the g x 1 vector of the microbial growth rate of
each guild and [X] the gx1 vector of the biomass
concentration of each guild.

This ordinary differential equation system is imple-
mented and solved using Matlab (MATLAB Release 2014a,
The MathWorks, Inc., Natick, Massachusetts, United
States.).

Microbial guilds considered
Glucosotroph
O Catabolism: C¢H 1,06 + 6 O, —» 6HCO;™ + 6 HT
(AG" = —2841.3 kJ.molDonor )

O Anabolism: 0.167 C¢H;,0¢ + 0.158 NH, T — 0.430
H,0 + 0.164H" + 000625 HCO;  +
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CiH, 6130055 Np 158~ (AGY = —28.3 kJ.C-mol-Bio-
mass )

O Dissipated energy: 236.05 kJ.C-mol-Biomass !
Aerobic acetotroph (Ordinary Heterotrophic Organisms):

O Catabolism: C,H3;0,” +2 0, - +2HCO3; + 1H
* (AG" = —844.4 kJ.molDonor ')

O Anabolism: 0.503 C,H;0, + 0.158 NH,* + 0.338
H* — 04305 H,0O + 0.0063 HCO; -+
C1H1‘61300_557N0_158 (AGO, = 23.9 kJ.C-mol-Bio-
massfl)

O Dissipated energy: 432.12 kJ.C-mol-Biomass "

Sulfate reducing acetotroph:

O Catabolism: 1 C,H;0,~ + 1 SO, 2 - 2 HCO;™ + 1
HS (AG" = -47.7 kJ.molDonor ™ )

O Anabolism: 0.503 C,H;0, + 0.158 NH, " + 0.338
H* — 04305 H,0 + 00063 HCO; -+
C1H1_61300‘557N0'158 (AGO, = 23.9 kJ.C-mol-Bio-
massfl)

O Dissipated energy: 432.12 kJ.C-mol-Biomass "

Denitrifying acetotroph:

O Catabolism: C,H30,” + 1.6 NO;~ + 0.6 H" - 0.8
N, + 2 HCO;~ + 0.8 H,O (AGY =—792.1kJ.
molDonor ')

O Anabolism: 0.503 C,H;0,~ + 0.158 NH,™ + 0.338
H* — 04305 H,0 + 00063 HCO; -+
C]H|'6]3OQ_557N0']58 (AGO, = 23.9 kJ.C-mol-Bio-
massfl)

O Dissipated energy: 432.12 kJ.C-mol-Biomass ™'

Iron reducing acetotroph:

O Catabolism: C,H;0,~ + 4 H,0 + 8 Fe™> - 9H* +
2 HCO;™ + 8 Fe™ (AG" = —809.6 kJ.molDonor ")

O Anabolism: 0.503 C,H;0,~ + 0.158 NH," + 0.338
H — 04305 H,0O + 0.0063 HCO;  +
C1H1_6]300.557N0'|58 (AGO, = 23.9 kJ.C-mol-Bio-
mass’l)

O Dissipated energy: 432.12 kJ.C-mol-Biomass '

Ammonium oxidizing bacteria (AOB):

O Catabolism: NH;" + 1.5 0, - 1 NO,” + 1 H,0 +
2H' (AG”=-269.9 kJ.molDonor™)

O Anabolism: HCO;~ + 0.828 NH," — 1.101 H,O +
0.670 NO,~ 4+ 0.499H" + C;H,¢:300.557No.1s8
(AG" = 267.7 kJ.C-mol-Biomass™)

O Dissipated energy: 3500 kJ.C-mol-Biomass™

Nitrite oxidizing bacteria (NOB):

O Catabolism: NO2~ + 0.5 O, —» 1 NO; (AG” =—
79.1 kJ.molDonor‘l)

O Anabolism: HCO;™ + 2.64 NO,” + 1.16H" —
0.27 Hzo + 2.49 NO37 + C]H1'61300.557N0.]58
(AG" = 241.3 kJ.C-mol-Biomass™")

O Dissipated energy: 3500 kJ.C-mol-Biomass !

The AG” values indicated here correspond to standard
Gibbs free energy changes corrected for a realistic H"
concentration of le—7 mol.L™! at pH=7. In the simula-
tions, Gibbs free energy calculations are refined to account
for concentrations of all chemical species. For each meta-
bolism, the linear combination of the catabolic and the
anabolic reaction gives what is assumed to be the overall
growth reaction of the population considered.

Virtual culture conditions

The temperature is set to 298.15 K and the pH is assumed to
be 7 in every system, unless specified otherwise.

Aerated batch cultures in minimal M9 medium

The culture medium used in the simulations is a minimal
medium homologous to the M9 minimal medium. The
concentrations of chemical species used for model initi-
alization are glucose: 17.05 mM, proton: 3.98e—5 mM (pH
= 7.40), ammonium: 18.69 mM, bicarbonate: 0 mM. When
using an alternative carbon source, the same quantity of
mol¢ is used to enable yield comparison. Thus the con-
centration of acetate is 51.15 mM. Initial microbial inocu-
lation was set to 1 mM (22.7e6 cell mL’l).

The only abiotic process implemented in aerated batch
systems is aeration. Its rate is kza * ([02],,,—[02]) where
[O,] is the current oxygen concentration, [O,l, the
saturation concentration of oxygen in water (0.273 mM at
the temperature of the system according to the Henry law)
and ki a the oxygen transfer coefficient (time "), set to 100
day ! for the simulations. The stoichiometric coefficients of
the aeration process consist in a 7 X 1 Aueraion matrix. The
coefficient of Aueraion for O, is 1, and O for every other
reagent.

Chemostat culture system

The system is submitted to chemostat dynamics; the rate of
matter transfer in a chemostat system is d * (Cgy — C) [6]
where C, is the rx 1 matrix of the concentration of the
concentration in the input of the chemostat and d is the
dilution rate of the chemostat (input and output flow rate
divided by the tank volume) in time™!. The stoichiometric
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coefficient of matter transfer on the reagent concerned is 1.
The chemostat culture system is modeled as a 1 m® perfectly
mixed single compartment. It is subjected to chemostat
dynamics with a flow rate of 1 m> day'. No aeration process
is implemented in this system. Oxygen is fed to the culture
medium through the chemostat inflow; its influent con-
centration is 2.73e—1 mM (8.73 gm > which is its saturation
concentration). Input concentrations used for this system are
meant to emulate a likely groundwater: ammonium 1 mM
(18.04 g. m~>), bicarbonate 1mM (61.02 g. m?), nitrate
1.93e—1 mM (12 g.m3), sulfate 6.24e—1 mM (60 gm>),
Fe™5.37e—1 mM 30g. m*3). Multiple simulations were run
using acetate concentrations ranging from 0 to 1.5 mM
(88.56 g. m73). The initial microbial inoculation was set to
ImM (22.7¢6 cell. mL’l) for each microbial guild. The
simulation was run until biomass stabilized.

Activated sludge system

The activated sludge system is modeled as an aerated batch.
Aeration conditions are identical to those used for aerated
batch cultures in M9 medium, except that the oxygen
saturation concentration is set to 0.2556 mol. m >, accord-
ing to an empirical relationship used for wastewater mod-
eling [42]. The composition of the medium is set to simulate
a simplified filtered urban wastewater containing 1.76 mM
acetate  (1039¢g m_3) and 3.78mM  ammonium
(68.19 ¢ m?). The initial microbial inoculation was set to
1 mM (22.7¢6 cellmL™") for each microbial guild. Values
of Vj, were common to all guilds and set to 10 m*C-mol-
Biomass~!. For the sake of simplicity, the influent was
considered to be free of particles and only aerobic growth of
microbial populations was modeled.

Results

Modeling a pure culture growing in a minimal
medium containing multiple elemental resources

To show how energy balance, stoichiometry and microbial
dynamics are inherently coupled in our modeling frame-
work, here we present model implementation in the simplest
case of a single population growing in a minimal medium.
The results enable analysis of the model’s dynamic
properties.

We consider the growth of an axenic culture in a minimal
M9 medium, in an aerated batch inoculated with 1 mM
biomass (22.7¢6 cell. mL™"). A single glucosotroph guild
(see Methods) is simulated.

The metabolism of the population consists in the com-
bination of an anabolic and a catabolic reaction and can be
expressed as a function of 4;
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—0.167 C¢H ;06 —0.158 NH, " + 0.430 H,O + 0.164 H'
+ 0.00625 HCO3;~ + 1 CH;4130055:No1ss + 4 (—1
C¢H;,06 — 6 O, + 6HCO;~ +6 HN) =0

where A can be calculated at each time step according to
anabolic, catabolic, and dissipated Gibbs free energy var-
iations is

B A(;am + AGdis
AGcq

(see Eq. 3 in Methods for details)
The growth rate u of the population is then expressed as a
function of its substrates (namely chemical species having a

Amet,i

negative stoichiometric coefficient): u = p,,,, [ [;,€"®

A=

where un.x is a constant that is independent of the
microbial population considered (see Methods), Ay; is the
negative stoichiometric coefficient of the substrate S;, V}, is
the harvest volume (independent of substrate and popula-
tion, see Methods) and [S;] is the concentration of the
substrate. In the following description of the MTS model

Amet,i

predictions, each term "5 of Eq. 5 for each substrate will
be called “tuning factor of substrate i”. For each substrate,
this tuning factor corresponds to the inhibition it exerts on
the growth rate depending on the ratio of its demand to its
supply in the culture medium. During the course of the
simulation, the Gibbs free energy changes in the anabolic
and catabolic reactions vary according to the changes in
temperature and in the concentration of the reagents over
time. The A factor preserves the energy balance of the
metabolism as a whole and is consequently dynamically
adjusted. This process ensures the dynamic coupling of
microbial growth rates, stoichiometry, and energy balance
at each time step of the simulation, according to changes in
the concentration of the reagents over time.

Figure la tracks the concentrations in the system during
the dynamic simulation. The simulated population grows
linearly until it reaches a plateau at 74.47 mM (1.69¢9 cell
mL~") in 30 h (1.25 days). Figure la also shows the tuning
factors of the population, which help understand population
dynamics in the MTS model; in the current simulation, they
indeed reveal a dynamic, two-step growth limitation phe-
nomenon. In the beginning, as glucose is abundant in the
culture medium, the growth rate is mostly limited by oxy-
gen, the electron acceptor. As the aeration rate is constant,
the population grows according to this linear aeration rate
and depletes glucose and ammonium. At the 30th hour of
the simulation, the concentration of glucose reaches a level
at which it becomes significantly limiting; its tuning factor
plummets from 0.98 to 8e—23 in <5 h (0.2 day). As glucose
becomes scarce, the growth rate of the population decreases
exponentially as a result of the limitation of the electron
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Fig. 1 Aerobic microbial
cultures growing in different
conditions. Graphs on left
column are concentrations over
time; acetate concentration in
dark green, glucose
concentration in light green,
ammonium concentration in
dark blue, oxygen concentration
in light blue, acetotroph biomass
concentration in plain black,
glucosotroph biomass
concentration in dashed black.
Graphs on right column are
natural logarithm of the tuning
factors over time; tuning factors
follow the same color scheme as
in the left column; tuning factors
for acetotroph guild are
represented by plain lines,
tuning factors for glucosotroph
guild are represented by dashed
lines. The lower a tuning factor
is, the more significant is the
limitation exerted by the
substrate on the microbial
population’s growth rate. Time
is in hour, concentration is in
mM, secondary concentration
axis (right side) on the left
column is for oxygen. Biomass
is quantified as mM of carbon-
normalized biomass.

a Glucosotroph guild
monoculture. b Acetotroph guild
monoculture. ¢ ammonium-
limited glucosotroph guild
monoculture. d Acetotroph and
glucosotroph co-culture

donor, to reach 3.3e—6 day ' at the end of the simulation.
With such a low metabolic rate, aeration replenishes the
oxygen concentration in the batch culture almost to
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saturation. Consequently, the tuning factor of oxygen
(electron acceptor) increases during the glucose-limited
phase of growth, and glucose (electron donor) becomes the
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main limiting substrate. Conversely, simulations were per-
formed using exactly the same model structure and only
changing the initial nitrogen concentration to represent
growth in a nitrogen-poor M9 medium. In that case, the
growth rate appears to be limited by oxygen in the first
phase, after which growth virtually ceases due to ammonia
exhaustion (Fig. 1c). These simulations reveal that the MTS
model can jointly capture the influence of all resources on
growth dynamics, whether these resources contribute to the
energy supply of the cell (electron donors or acceptors)
directly or not (nutrients such as ammonia). It should be
outlined that dynamic patterns exhibiting more progressive
start-up phases can be obtained using different parameter
values (see supplementary materials 4).

Modeling two competing populations: emergence
of an energy-driven ecological succession

One of the factors that influence community structure is the
outcome of competition between populations. The MTS
model’s ability to predict the outcome of competition
between multiple populations in the sense of functional
guilds has been questioned.

To answer this question, we implemented the minimalist
case of two heterotrophic populations growing together in
an aerated batch, modeled as a glucose oxidizing guild
and an aerobic acetate oxidizing guild. Both guilds have
the same absolute u,., value, and the same Vj, value.
The difference between the dynamics of the two guilds
only resulting from thermodynamic constraints was then
studied.

The two guilds differ in the energy they dissipate during
their respective metabolic reaction according to Heijnen’s
formula; —432.12kJ C-mol-Biomass ™' for acetate oxidizers
vs. —236.05kJ.C-mol-Biomass~' for glucose oxidizers.
However, the number of electrons donated per carbon atom
of electron donor is the same (4 electrons per carbon atom
of electron donor). The initial quantity of each electron
donor is 17.05mM of glucose and 51.15 mM of acetate.
These quantities were adjusted in this simulation so that
they represented the same quantity of carbon (and conse-
quently the same quantity of electrons) in the raw element
count.

Figure 1d tracks the system’s variables over the course of
the simulation. The model predicts that the glucose oxidizer
guild grows first. Their population is predicted to stabilize at
74.47mM (1.69¢9 cellmL™") after 31h (1.29 days). The
population of acetate oxidizers is predicted to grow from the
31st to the 84th hour (1.3-3.5 days) and to stabilize at
50.19 mM (1.14e9 cellmL ™). The growth of the glucose
oxidizer guild follows the same kinetics and the same
sequential inhibition as in the previous, mono-guild simu-
lation (Fig. 1b). The growth of the acetate oxidizer guild is
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also sequentially inhibited by its electron acceptor (oxygen)
then by its electron donor (acetate).

As the two guilds have a different electron donor (glu-
cose and acetate) but the same electron acceptor (oxygen),
they compete for the electron acceptor. The results shows
that the guild of glucose oxidizers grows first and also
develops a higher stabilized population density than the
acetate oxidizers guild (Fig. 1d). In presence of the glucose
oxidizer guild, the growth of the acetate oxidizer guild is
delayed compared to its growth in the absence of the glu-
cose oxidizer guild (Fig. 1b). This outcome arises from the
thermodynamic properties of the metabolisms involved.
The same amount of oxygen per carbon is needed to oxidize
glucose or acetate, in order to preserve the elemental bal-
ance, and the batch simulation is initialized with the same
quantity of carbon for both substrates. However, in the
simulation conditions, glucose oxidation is more exergonic
than acetate oxidation when normalized by carbon atom.
The guild growing on glucose does not need to dissipate as
much energy. These two properties are aggregated and
related to the growth yields by the A factor, more acetate
than glucose must be oxidized in order to produce
the energy required for growth (approximately 0.503 4 1 x
0.6 =1.1 mol-Acetate.mol-Biomass~! vs. approximately
0.167 +1x0.09 =0.25 mol-Glucose.mol-Biomass ).
Consequently, the tuning factor associated with oxygen is
lower for acetate oxidizers than for glucose oxidizers
(Fig. 1d). Both guilds reduce the oxygen concentration
while growing, but the thermodynamic considerations
implemented by the MTS model give a better yield to the
glucose oxidizers. Hence they can draw down O, to lower
levels (compared with acetate oxidizers). Consequently the
growth of glucose oxidizers brings the oxygen concentra-
tion to a level at which the growth rate of acetate oxidizers
is insignificant and in practice prevents their growth during
the first 30 h (1.25 days) of the simulation. This effect might
be less pronounced when using different parameter values,
as illustrated in supplementary materials 5. Interestingly,
the possibility to obtain such a pattern could be experi-
mentally tested in a system where the oxygen supply rate
would be less than the oxygen uptake rate of the glucoso-
trophic guild.

It should be noted that the two populations have exactly
the same growth parameter values implemented in the MTS
model. Despite similar kinetic parameters for the two
populations, a microbial succession emerges from the
model. Therefore, simple mass and energy balance calcu-
lations coupled to the flux-force relationship between
energy and rate determine the outcome of competition and
an ecological succession emerges. Our model thus appears
to inherently exhibit an original property: the ability to
account for microbial successions as a result of competition
for available resources and energy. In view of this result, the
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Fig. 2 Competition outcome in a chemostat fed with acetate in the
presence of various electron acceptors as predicted by the MTS model.
The proportion of each guild at stationary state is depicted as a
function of the acetate input concentration (mM). Simulation results
predict patterns ranging from competitive exclusion at low acetate
concentration to full coexistence at non-limiting acetate concentrations

possibility to directly account for community assembly
patterns observed in nature was further questioned.

Modeling competition between multiple
populations: emergence of a community structured
according to a “redox tower” of microbial
metabolism

Natural systems in which electron donors are available in
excess and electron acceptors are limited exhibit typical
compartmentalization of microbial activities. This occurs
particularly during hypolymnia of eutrophic freshwater
lakes, when oxygen depletion results in anoxic zones [43].
This phenomenon has been studied for decades [44, 45]. It
leads to sequential vertically stratified consumption of
available electron acceptors according to the hierarchy of
Gibbs free energy changes of half reduction reactions,
leading to “redox towers of microbial metabolisms”. To
assess the ability of our approach to account for such
compartmentalization patterns, we simulated competition
between multiple populations for a single electron donor
(acetate) and in the presence of various electron acceptors.
The competition was analyzed in a chemostat. In these
systems, microbial populations are subjected to a con-
tinuous flow of substrate and an output rate for biomass.
Each population then has two possible stationary states:
either its growth rate negates the dilution rate or the

population is washed out. We implemented a microbial
community channeling electrons from acetate to oxygen,
nitrate, sulfate and iron, and we simulated its dynamics
according to the MTS model. The implemented guilds are
aerobic acetotroph, denitrifying acetotroph, sulfate reducing
and iron reducing guilds (see Methods).

The culture medium is modeled as a perfectly mixed
1 m® single compartment subjected to chemostat dynamics
with a flow rate of 1 m®.day !, corresponding to a dilution
rate of 1 day .

Figure 2 shows the concentration of each guild during
the stationary phase, as a function of the influent acetate
concentration. The concentration of all populations as a
function of time for an input acetate concentration of 1.76
mM is shown as supplementary materials 6. As previously
shown, the growth of the most thermodynamically advan-
taged guild delays the growth of competing guilds. The
population able to adjust its growth rate to the dilution rate
with the minimal amount of acetate is the aerobes guild.
This is explained by the superior exergonicity of their
metabolism as discussed in connection with the competition
between two species above. With increasing acetate con-
centrations, aerobes coexist with nitrate reducers, then iron
reducers, then sulfate reducers. Indeed, when the quantity of
electrons provided in the form of acetate exceeds the
quantity of electrons acceptable by a given acceptor (i.e.
oxygen, nitrate, iron, or sulfate), some unoxidized acetate
molecules remain in the culture medium. These acetate
molecules are available for a guild catalyzing a less exer-
gonic reaction. Therefore the complexity of the community
increases with an increase in the incoming electron donor
molecules in the system, as the possible electron acceptors
are saturated one by one. A community structure pattern
compliant with the typical redox tower pattern is thus par-
simoniously predicted by the MTS model.

Towards more predictive models for environmental
biotechnology applications: microbial dynamics in a
simplified activated sludge community

To illustrate the use of the MTS model in the practical case
of environmental bioprocess modeling, we implemented a
simplified model of the community found in the aerated
tanks of wastewater treatment plants (WWTPs). A set of
engineering models called “Activated Sludge Model”
(ASM) is commonly used for the operation, design and
optimization of WWTPs [46]. These models focus on the
accuracy of the system state variables. This accuracy
depends on how closely the simulated system resembles the
reference system from which a priori knowledge is inputted
through calibration. The calibrated parameters are thus
bound to a range of experimental conditions. On the con-
trary, the MTS-based approach we present here does not
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rely on calibration based on experimental data: we derived
kinetics and yields directly, i.e., without calibration, from
fundamental generic assumptions, mass, and energy balance
calculations.

An aerated batch incubation containing wastewater and a
simplified activated sludge inoculum was then simulated
using the MTS and ASMN models. The ASMN model is a
modified version of the ASM no. 1 model [47], with nitri-
fication split into two steps between two guilds [42]. This
model thus splits the microbial community into three
functional guilds:

O Ordinary heterotrophic organisms (OHO): hetero-
trophs consuming an unspecified carbonaceous
substrate

O Ammonium oxidizing bacteria (AOB): autotrophs
oxidizing ammonium to nitrite

O Nitrite oxidizing bacteria (NOB): autotrophs oxidizing
nitrite to nitrate

The model was implemented with default parameters (for
more details, see supplementary materials 7). The MTS
model was implemented with the same three guilds and the
two generic parameters i, and V} described in Methods.
As a working hypothesis, we assumed that the electron
donor of the OHO guild is acetate, as it appears to be the
most abundant volatile fatty acid in wastewater [48].
Simulation results are shown in Fig. 3, where the predic-
tions of the MTS model are put into perspective by com-
paring them with simulation results obtained with a default
calibration of parameters for the ASMN model (see sup-
plementary materials 7). Despite overall similarity, the two
simulations exhibit some differences. The main difference is
that the three guilds grow simultaneously in the ASMN
simulation and sequentially in the MTS model. This dif-
ference is linked to the structure of each model. In the
ASMN model, growth depends on the combination of
Monod-type affinity functions so that a population can grow
as soon as its substrates are present in the medium. In the
MTS model, the growth of heterotrophs leads to oxygen
limitations that virtually prevent the growth of the two
autotrophic guilds AOB and NOB in a similar way to that
described in previous simulations. Moreover, the low
exergonicity of the nitrite oxidation reaction requires that a
sufficient amount of nitrite accumulates in the batch before
NOB can compete with AOB for oxygen, leading to a
sequential growth pattern and transient nitrite accumulation.
This pattern has already been documented in piggery was-
tewater treatment [49]. This sequential growth phenomenon
is also apparent in the oxygen concentration profiles, where
the three stage consumption pattern is most apparent in the
MTS simulation. Despite these differences, the simulations
exhibit remarkable similarities. At the end of the simulation,
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shows the predictions from the MTS model. The units used to
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the yield of each guild is similar in the two models: the final
quantities of biomass in the batch according to ASMN
are 108.4 gCOD.m * OHO, 50.63 gCOD.m > AOB and
45.07 gCOD.m * NOB, while the MTS model predicts
1148 gCOD.m™> OHO, 524 gCOD.m™> AOB and
45.1 gCOD.m > NOB (Fig. 3). These results show that the
abundances of each guild as predicted by thermodynamic
rules are consistent with the growth yields measured in
activated sludge and used for calibration in the ASMN
model. The yields predicted by the MTS model depend on
the energy dissipated by the metabolisms, which was
computed using the empirical formula that Heijnen and
collaborators [24] calibrated on experimental culture data.
This is why the yields predicted by the MTS model match
those of the ASMN model. In particular, the calibration
process used to produce the empirical yield parameter of the
ASMN model’s heterotrophic population captures the
average yield of many thermodynamically constrained
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populations growing on diverse substrates. The average
yield resulting from all these metabolisms is close to the
yield of growth on acetate, which is one of the most
abundant sources of carbon in such systems.

Discussion

In this article, we present the dynamics of single and mul-
tiple microbial populations arising directly from the MTS
theory [38] coupled to a thermodynamic and stoichiometric
balance calculation framework developed in previous
papers (reviewed in ref. [28]). While several approaches
have been proposed in the past to link thermodynamic
balance calculations and Kkinetics [28,24, 33-35, 50], the
MTS theory differs fundamentally from all these previous
approaches. What is completely novel is that it makes
population dynamics emerge as the statistical outcome of all
the individual division events described at the microscopic
level, from fundamental and generic principles. Strikingly,
despite the simplicity of the theory’s core principles, con-
sistent microbial dynamics, successions and functional
community assembly patterns were simulated without
population-specific parameter calibration, for systems ran-
ging from pure to mixed cultures. In this article, we there-
fore document that the kinetic equations arising from MTS
theory intrinsically include many important generic prop-
erties to adequately model microbial population and com-
munity dynamics.

First, using a stoichiometric approach, we show how the
model jointly captures the influence of all substrates simul-
taneously (see Eq. 5). However, the simulation results also
illustrate how growth dynamics actually appear to be limited
by one substrate at a given time. This emerging property of
the model recalls Liebig’s law of the minimum, which states
that the growth rate of an organism requiring multiple dif-
ferent resources is controlled by the scarcest resource only.
This situation indeed corresponds to the widely accepted
intuitive understanding of the way microbial cultures behave
in the laboratory, and has often been investigated, tested and
confirmed [51]. Liebig’s hypothesis is thus widely used to
model microbial dynamics, sometimes implicitly, as in the
most simple, mono-substrate expression of Monod’s equa-
tion, sometimes explicitly, as in multi-substrate implementa-
tions of the Monod model where the limiting substrate has to
be selected at each time step by computing the minimum of
all resource-dependent growth factors to tune down the
maximum growth rate [52]. Without introducing the Liebig
hypothesis, considering the growth dependence of multiple
substrates in Monod based models often leads to inconsistent
growth patterns that require extensive adaptation of model
structure [53-55]. In our case, the MTS model can produce
sequential growth limitation either by electron donor, acceptor

or by nutrient. The exponential nature of the relationship
makes tuning factors “rise” from insignificant to significant in
a narrow concentration range (as seen in Fig. 1), thus allowing
pronounced limitation switches. Under the simple conditions
simulated, virtual cultures thus exhibit “Liebig like behavior”
that is obtained parsimoniously, as an emerging property of
the model. The modeling framework we propose is therefore
a simple and elegant way to jointly capture the effect of
electron donor, acceptor and nutrient concentrations on
microbial dynamics, without infringing Liebig’s hypothesis.

Second, the simulations involving several populations in
competition either for electron donor or acceptor result in
community assembly patterns structured like microbial
redox towers (see Fig. 2), as observed in many natural
habitats such as the anoxic hypolymnia of eutrophic lakes
[45]. These types of patterns have already been generated
using Monod-based kinetic models [30, 56]. However, our
contribution differs significantly from previous works
regarding the scientific conclusions that can be drawn from
the simulations.

Gonzalez-Cabaleiro’s model [57] uses a modified
Herbert-Pirt equation in which the growth yield is a func-
tion of thermodynamic variables. The kinetic equation used
to describe substrate consumption rate is a Monod-like
function. This model is therefore a juxtaposition of a fra-
mework for the calculation of the thermodynamic balance
and a phenomenological description of the dynamic growth
process that results in ecological successions. Since kinetic
parameters were not calibrated in Gonzalez—Cabaleiro’s
article, their simulations indeed show the phenomenological
dependence of ecological successions on thermodynamic
variables. However their simulations provide no support for
using Monod’s law itself as a way to reproduce this pattern.
Indeed, since Monod’s law is an empirical equation, it
carries no hypotheses per se; any similarly shaped curve
would have provided the same simulation results. In con-
trast, in the case of the MTS model, the thermodynamic
variables are used to compute the division probability at the
level of each individual. The MTS theory then provides a
mechanistic explanation of the influence of energy on
microbial division. The sum of all individual division events
then propagates at the scale of the population, resulting in
the MTS growth equation. Therefore, both the role of
thermodynamic variables and the hypotheses on how they
are mechanistically linked to the growth rate receive support
from the simulation. Our simulations therefore show that
the mechanistic explanation of the influence of energy on
microbial division at the heart of the MTS theory is suffi-
cient to explain ecological successions.

An interesting parallel can then be drawn with Jin and
Bethke’s work [33], since both their model and the MTS
model propose a linkage between microbial kinetics and
thermodynamic variables, based on two totally different
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theories (a probabilistic reasoning for the MTS model,
non-equilibrium thermodynamics for Jin and Bethke’s
model). Both models are fundamentally different since Jin
and Bethke’s model expresses the rate of catabolism,
while the MTS model expresses the rate of biomass
synthesis. Jin and Bethke’s model therefore cannot
account for the limitation of growth by nutrients as the
MTS model does (Fig. 1c). However, the fact that two
theory-based kinetic models provide alternative formula-
tions of microbial growth is interesting, and the careful
comparison of the models may provide fruitful insights
into microbial growth kinetics.

Regarding the simulation of a simplified activated sludge
ecosystem, the MTS model was shown to make predictions
qualitatively similar to those of an engineering model
(namely, implementation of the ASM). To implement the
system whose simulation is depicted in Fig. 3, the ASM
model requires identification of nine kinetic parameters
along with three growth yield parameters, whose values
have been carefully adjusted during decades of experi-
mentation [58]. In contrast, the kinetics obtained in the
MTS approach emerges from a theoretical construct in
which the only two parameters (u,,x and V},) common to all
guilds were considered. While allowing population-specific
values for V}, could indeed improve the quantitative accu-
racy of MTS simulations (for an illustration see supple-
mentary materials 8), we considered default parameters’
values in the simulations displayed in Fig. 3 to show that
our model is able to generate consistent dynamics with a
remarkably small number of parameters, suggesting that the
energy/rate dynamic equation resulting from the MTS the-
ory already has interesting predictive abilities in the absence
of parameter fitting.

Clearly, the community dynamics obtained by simulation
corresponds to those of an idealized functional partitioning
of the community resulting from a first layer of energetic
and stoichiometric drivers. As implemented in this article,
the MTS model obviously does not account for the whole
range of phenomena that influence microbial community
dynamics and community structure in real complex envir-
onmental or engineered settings like those encountered in
activated sludge plants. Other processes such as inhibition
due to compound toxicity, indirect pH and temperature
adaptation effects [59], non-metabolic inter-species inter-
actions, spatial organization [60], etc. need to be added to
obtain a more realistic picture of genuine complex microbial
community dynamics. However, including such phenomena
in the model was beyond the scope of the present study. The
microbial dynamics simulated in this article were indeed not
the result of an effort to reproduce specific experimental
patterns through the calibration of empirical equations.
Rather, the most salient message is to document and analyze
the consistency of generic growth dynamics and community
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assembly patterns as emerging directly from a new kinetic
theory of microbial growth relying on first principles cou-
pled with thermodynamic and stoichiometric calculations.

To that extent, the simulations reported here illustrate a
set of key properties of MTS dynamic models. To our
knowledge, a microbial population dynamics model per se
has never before exhibited all these properties, that is,
without the need for additional hypotheses or specific
parameter calibration. What is of the utmost importance and
constitutes the novelty of our contribution, is the fact that
these properties are obtained parsimoniously through the
combination of fundamental and generic principles trans-
lated into mathematical equations, and not from the cali-
bration of population-specific parameters. More generally,
we advocate the need in microbial ecology to propose new
theoretical abstractions to grasp a whole category of phe-
nomena in an inclusive picture. We believe that such
approaches pave the way for a new class of microbial
ecology and engineering models, built on more robust
theoretical foundations and exhibiting enhanced predictive
abilities.
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