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Abstract

Microbial communities play a vital role in biogeochemical cycles, allowing the biodegradation of a wide range of pollutants.
The composition of the community and the interactions between its members affect degradation rate and determine the
identity of the final products. Here, we demonstrate the application of sequencing technologies and metabolic modeling
approaches towards enhancing biodegradation of atrazine—a herbicide causing environmental pollution. Treatment of
agriculture soil with atrazine is shown to induce significant changes in community structure and functional performances.
Genome-scale metabolic models were constructed for Arthrobacter, the atrazine degrader, and four other non-atrazine
degrading species whose relative abundance in soil was changed following exposure to the herbicide. By modeling
community function we show that consortia including the direct degrader and non-degrader differentially abundant species
perform better than Arthrobacter alone. Simulations predict that growth/degradation enhancement is derived by metabolic
exchanges between community members. Based on simulations we designed endogenous consortia optimized for enhanced
degradation whose performances were validated in vitro and biostimulation strategies that were tested in pot experiments.
Overall, our analysis demonstrates that understanding community function in its wider context, beyond the single direct
degrader perspective, promotes the design of biostimulation strategies.

Introduction

Microorganisms in nature co-exit as communities. Members
in microbial communities may interact bidirectionally or
unidirectionally, leading to synergism, commensalism,
mutualism, parasitism or competition among them [1, 2].
Such interactions are in many cases derived by metabolism
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bioremediation; and biostimulation—the optimization of
environmental conditions. Bioaugmentation practices
involve the addition of living cells capable of degradation
and biostimulation practices involve the addition of limiting
nutrients to stimulate microbial growth [13]. To date, both
bioaugmentation and biostimulation strategies are mostly
driven by intuition and rely on experience derived from trial
and error experiments [14]. Typically, enrichment cultures
from samples exposed to a specific pollutant lead to the
isolation of consortia with pollutant degrading ability.
Bioaugmentation practices based on returning such con-
sortia to soil often fail, as myriad of biotic and abiotic
factors influence the effectiveness of the treatment and in
many cases the consortia are not successful when re-
introduced to soil [15, 16]. Understanding the required
conditions for natural enhancement of desired endogenous
consortia can enhance the rate of success of biostimulation
based bioremediation treatments. New sequencing technol-
ogies allow now revealing the dynamics of community
shifts and together with modeling approaches lay founda-
tions for the educated design of community function [17].
Progress in sequencing technologies promotes the descrip-
tion of the bio-diversity and metabolic activity of micro-
organisms in ecological niches [18-21]. Parallel
advancement of computational tools such as Genome-scale
metabolic models (GSMM) and respective simulation
algorithms such as Flux Balance Analysis (FBA) further
enable in silico analysis of microbial interactions [19, 20,
22, 23]. By modeling of microbial interactions in a com-
munity, the metabolic features could be simulated and
optimal solutions can be predicted. Notably, natural com-
munities are not necessarily optimized to provide environ-
mental solutions; hence the educated directing towards pre-
defined functions is of potential to induce significant change
in efficiency.

Here, we applied sequence-based modeling approach to
explore the role of microbial function in the degradation of
the atrazine. The s-triazine herbicide atrazine is one of the
world’s most heavily applied herbicides, in particular used
on crops such as maize, sugarcane and sorghum. Atrazine
and its degradation products can be found in the soil for
decades after application [24, 25], often leading to wide-
spread contamination of both water and soils [26, 27]. Even
at very low concentrations atrazine may act as endocrine-
disrupting chemical in frogs [28], among other effects
leading to sexual transformation [29, 30]. In human, the
main target of atrazine is the endocrine system together with
considerable evidence supporting its damaging effects on
the central nervous system, reproductive system, immune
system and cardiovascular function [31]. Given the wide-
spread dispersal and long persistence of atrazine, its
removal from polluted sites is crucial for a safe and che-
mical free environment.

Is soil, microbial communities take central part in atra-
zine degradation [32-34]. In many cases, the degradation
involved a consortium rather than a single species. For
example, a consortium containing Klebsiella sp. Al and
Comamonas sp. A2 showed very high atrazine-mineralizing
efficiency as strain A2 metabolize N-ethylammelide, a
product of atrazine degradation produced by strain Al
whose degrading activity was suppressed by N-ethy-
lammelide [34]. In another consortium, Clavibacter michi-
ganese ATZ1 and Pseudomonas sp. CNI1 collectively
mineralized atrazine with a much higher degradation rate
than did C. michiganese alone [32]. These examples show
that, to a large extent, the structure of communities deter-
mines their functions, and the composition of communities
affects both the rate of the degradation process and the
identity of the final products.

Here, we used sequence-based information on the
dynamics in soil community from atrazine-treated fields in
order to construct a corresponding imputed in silico com-
munity, and used simulations for exploring functional sig-
nificance of community dynamics and predicting possible
biostimulation strategies. First we used high-throughput
sequencing approaches for describing the structure of soil
communities exposed to atrazine treatment, showing that
atrazine treatments alter the microbial communities and that
different microbial communities are associated with differ-
ent functional performances. Then, GSMM of five species,
chosen based on the analysis of the high-throughput data
from the respective soil samples, were constructed and
manually curated. Using these GSMM we were able to
model community function. Simulations of the perfor-
mances of alternative community combinations predict
variations in atrazine degradation efficiencies and were
correlated with the observed activity profile. The simula-
tions provided functional interpretation for observed co-
occurrence patterns. The functional interpretation provided
a basis for the educated design of optimized consortia and
biostimulation strategies that were experimentally tested.

Methods
Field experiment and soil sampling

The field experiment was conducted in Newe Ya’ar
Research Center, Israel (32°42°N, 35°11’E). The soil and
climate types and properties are described in Supplemen-
tary Materials. The plot was irrigated by 300m® ha™',
cultivated (by rototiller) to a depth of 12 cm, maize (var.
Royalty) was sown, atrazine (at rate of 500 active ingre-
dients per hectare, a.i. ha ') was applied at 21.6.2015,
using a motorized sprayer equipped with Tee Jet 8001E

nozzles (Spraying Systems Co., Wheaton, IL, USA)
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operated at a pressure of 300 kPa and delivering a spray
volume of 2001ha~'. After herbicide application, the
field was irrigated by 300 m> ha~!. Ten sub-plots at size of
20 m? were used for soil sampling; five atrazine treated and
five non-treated used as a control. Beginning at sowing date
and germinating irrigation, and at seven days interval up to
77 days from sowing, 500 g soil was sampled from each
plot (total of ten samples at a time) and kept in dark under
dry conditions at 4 °C until use. Soil samples were classi-
fied into two sub-samples; 400 g were taken for bioassay
(all sampling dates); tubes were filled soil for enrichment
culture (volume of 30 ml) and sequencing analysis (volume
of 40 ml), respectively.

Determining atrazine degradation in soil using a
bioassay

The design of bioassay experiments followed the experi-
ments designed in Onofri et al. [35]. Briefly, the bioassays
monitor the growth performances of atrazine-sensitive
plant. Here, wheat (cv. “Jordan”) was used as the reporter
plant based on a demonstrated dose dependent sensitivity of
shoot development performance (biomass and height) to
atrazine concentration in soil (Supplementary Figure 1),
growth performances are hence indicative of atrazine level
in soil [36]. Two bioassay experiments were carried: (i)
estimating atrazine degradation in samples delivered to pots
from treated vs. non treated field in seven days intervals (as
described above, Supplementary Figure 2); and (ii) esti-
mating atrazine degradation following soil amendment
treatments in pots with soil from a non-herbicide treated
field. The soil amendments include combinations of atrazine
and glucose at different doses. Experiments were carried in
replicates of five pots (0.51), 10 seeds sown in each. In
experiment ii (soil amendments), the soil was mixed with
glucose at dose of 5, 10, 15 g/Kg using a cement machine
(Shatal, 1501), delivered into pots and sprayed with atrazine
(500 g a.i. ha™") on soil surface. Herbicides were applied
using a motorized laboratory sprayer equipped with a flat
fan nozzle (8001E, Degania Sprayers Co. Ltd., Degania
Bet, Israel) calibrated to deliver 3001ha~! at 245 kPa, as
described by Eizenberg et al. [37]. Glucose free pots non-
atrazine treated served as control. In both experiments, pots
were irrigated as needed by sprinklers. Twenty days after
planting, wheat height was measured, shoots were cut and
dry biomass (60 °C for 72 h) was measured.

All experiments were arranged in a completely rando-
mized design. Effect of herbicide phytotoxicity was com-
puted by one-way ANOVA. Means were compared by
Tukey—Kramer honestly significant difference test (a, 0.05)
using JMP software (vers. 7, SAS). Non-linear regressions
were computed using SigmaPlot version 11.01 (SPSS Inc.,
Chicago, IL, USA).
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Determining atrazine degradation in enrichment
cultures using HPLC and identification of atrazine-
degrading isolates

Ten gram of soil from the respective soil was suspended in
R medium (based on ATCC 2662 R) containing glucose as
carbon source and atrazine (30 mg/l) as nitrogen source
(allowing maximal solubility of atrazine in water at room
temperature). The soil was shaken (150 rpm) and incubated
at 25 °C for 7 weeks. Control (autoclaved soils) was incu-
bated as well. Periodically samples were taken from O to
7 weeks after incubation for atrazine residues analysis.
Atrazine in filtered (0.20 um) supernatant of the enrichment
cultures was determined by Agilent 1100 HPLC (Wald-
bronn Germany) equipped with a DAD detector. Samples
(20 ul) were separated on a Kinetex C;g column (Phenom-
enex Torrance, CA) and the mobile phase consisted of 70%
methanol and 30% water flowing at a 1 ml/min. Detection
and quantitation of atrazine was done at 240 nm by the
external standard that was linear between 0.15 to 30 mg/l.

Isolation assays were carried by collecting serial dilutions
of the suspension of the enrichment culture using 0.85%
NaCl and spreading them on solid R-media plates amended
with glucose and atrazine (30 mg/l). Plates were incubated at
30°C for 48h and single colonies were picked based on
distinct colony morphology and sub cultured on ATZ-R
media plates to obtain pure isolates. Resulting isolates were
grown in 10 ml R-medium containing atrazine (30 mg/l) as
sole nitrogen source and incubated at 30 °C with shaking.
Culture suspensions were extracted in methanol to screen for
degradation potential (measuring atrazine concentrations by
HPLC) leading to the identification of two degrader-isolates.
The taxonomic characterization of the isolates is described in
Supplementary Table 1.

Amplicon sequencing and data analysis

In total, 30 and 32 sequencing libraries were constructed for
soil and enrichment samples, respectively. The details of
sequencing library construction are described in Supple-
mentary Materials. Sequences were deposited in SRA
(SUB2541893). After filtration (Supplementary Materials),
the operational taxonomic units (OTUs) were analyzed
using the UPARSE pipeline [38]. Sequences were assigned
to OTUs at 97% identity. The RDP classifier was used for
picking representative sequences for each OTU and to
assign taxonomic data to each representative sequence at the
70% threshold [39]. Rarefaction curves were analyzed using
the QIIME pipeline [40]. The Chaol richness index,
Shannon diversity index, Simpson diversity index, and
nonmetric multidimensional scaling (NMDS) ordination
based on Rho similarities were performed using PAST
software [41]. OTUs were sorted according to the ratio of
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Table 1 General features of metabolic network models constructed for species with differential abundance following atrazine treatment

Features Arthrobacter Cesiribacter andamanensis Halobacillus sp. Halomonas stevensii  Bacillus
aurescens TC1 AMV16 BAB-2008 S18214 pseudofirmus OF4

Accession NC_008711 NZ_A0ODQO01000227 ANPF01000133 AJTS01000000 NC_013791
Identity® 98% 99% 99% 99% 96%
Genome feature

Genome size (Mb) 5.23 4.76 3.78 3.69 4.25

Total proteins 4627 3816 3697 3252 4064
Metabolic model

Genes in model 960 743 896 832 830

Total reactions 2308 1528 1483 1752 2108
Biochemical 2023 966 1211 1479 1825
reactions

Transport 158 480 147 148 157
reactions

Exchange 127 82 125 125 126
reactions

Metabolites 2387 1542 1358 1686 2048

Similarity between 16s of the OTU and of respective sequence in the genome sequence

reads between treated and untreated soil samples at different
time points. Significance of differential abundance dis-
tribution pattern was tested using the group significance
function in QIIME (Supplementary Table 2).

Reconstruction of single species metabolic network
models

Five species were selected for model construction based on
differential abundance pattern and isolation tests (Supple-
mentary Tables 1 & 2). Genome sequences representing the
respective species were selected based on blast search
screening and respective sequences were retrieved from
public resources. In cases where highly-scored hits were
retrieved from several species, the closest species for which
genome sequence was available were selected based on
phylogenetic relatedness as inferred from a 16S rRNA
based phylogenetic tree (Supplementary Figure 3). Differ-
entially abundant OTUs and the respective genome
sequences used for constructing the respective metabolic
networks are listed in Table 1. Model SEED was used for
constructing the initial draft metabolic models from the
genome sequence data [42]. The RAST annotation algo-
rithm was used for structural and functional annotation [43].
The genome was then imported into Kbase (www.kbase.us)
and a draft metabolic model was constructed.

After having a working draft model (that is a biomass
flux > 0 when all exchange reactions are open), each of the
models were manually curated according to literature and
other available resources such as KEGG [44], UniProt [45],
and JGI [46] to ensure that it captures the biochemical
and physiological knowledge available. Overall, manual

curation processes involved (i) the addition of new reactions
based on the literature and the additional annotations
schemes; (ii) standardization - all reactions’ Ids from the
different databases were converted to KBASE rxn con-
ventions and validation of reaction reversibility and bal-
ance; and (iii) removal of futile loops. Curation procedures
were carried iteratively vs. growth simulation ensuring that
the reconstruction version was able to produce all biomass
components in minimal mineral media (MMM: K*, Mn?*,
CO,, Zn**, SO2~, Cu?*, Ca**, HPO,>~, Mg*", Fe**, CIM)
with alternative C and N sources. The different C and N
sources that the species can grow on were determined based
on literature reporting performances of the selected species
[47-50]. The final GSMM were consistent with the
experimental knowledge on the nutrients required for cul-
turing each species.

The GSMM of each species (k) was represented in a
mathematic format in a stoichiometric matrix (S¥). In the
assumed pseudo-steady-state, the model can be represented
as: S x v =0, where vector v signifies the reaction flux. Flux
balance analysis (FBA) was used for predicting activity.
The objective of the optimization was maximizing the flux
thorough the biomass objective function. Constrains for the
optimization include upper and lower bounds (LB* and
UBk) for selected uptake reaction fluxes [51, 52]. FBA was
performed using COBRAToolbox-2.0 [53] in MATLAB,
with GLPK as the linear programming solver.

Community network model construction

The five single species models were combined into a
single dynamic model and analyzed following
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conventions described for COMETS [54] with some
revisions detailed below. Briefly, like COMETS, our
algorithm of community dynamic modeling uses dynamic
flux balance analysis (dFBA) for simulating the growth of
multiple species in a given media across time. The model
is updated after each time tick. The amount of biomass of
each species is changed after each time tick based on the
biomass reaction flux of the given species in that time
tick; uptaken metabolites are then removed from the
media and secreted metabolites are added to it. Whereas
COMETS simulations occur on a spatially structured
lattice of interacting metabolic subsystems (“boxes”)
[14], our simulations assume a simplistic single-box
world with no spatial differentiation and equal accessi-
bility of all organisms to all nutritional sources. This
simplification reflects our lack of knowledge of the con-
ditions in soil and corresponds to conditions in in vitro
experiments. As in [14], we define the initial conditions
of the community dynamic model by setting initial con-
centrations (at time 0) of each substrate k (X¥(0)) in the
media and the setting of the initial biomass of each spe-
cies (BXpomass). Each reaction is limited by lower and
upper bounds (LB and UB respectively), set to —1 mmol/
(gDW*hr), respectively.

The total time period of each simulation cycle was sub-
divided into predefined discrete time intervals (At). For each
time interval, the following three steps were executed:

(1) the substrates were divided equally between the
species based on the relative abundance of each species
(biomass). The amount of metabolites that can be uptaken
by each species in a given time tick follows:

LB? (t + 1 ): X:( (t) X BLiomass (t) /Blotalbiomass (t)
LB{(t) < Vi(t) < UB{(Y)

Where:

LB, (t+1) is the amount of metabolite (k) that can be
uptaken (uptaken values are negatives) at time (t+1) by
species (i)

XX (1) is the amount of metabolite X* for species (i) at
time tick (t)

Blhiomass (1) is the amount of biomass of species(i) in
time-tick (t)

Xiotal biomass defines the sum of X¥,;omass Of all the species,

UBY, (t) is the amount of metabolite (k) that can be
secreted (secreted values are positives) at time (t). This
value was set to be 1000.

(2) At each time point we optimized the biomass flux for
each species using the standard FBA optimization:

Maximize : Vi, (t+4 At)
Subjectto : SIxVi(t 4 At) = 0

SPRINGER NATURE

(3) Following each time tick, media uptake bounds and
species biomass are updated to reflect secretions and
uptakes & biomass fluxes.

XK(t+ At = XK(1) + = (V[ex}ik) (t+ AY)

Where:

XX (t4At) is the amount of metabolite (k) available in the
media at time (t+At)

\'% [ex]ik is the flux of the exchange reaction for meta-
bolite (k) in the metabolic model of species (i),

This value can be negative (uptaken) or positive (secre-
ted)
B:Jiomass (t + At) = BLiomass (t) + V;)iomass (t)
Where:
Bliomass (t+AU) is the amount of biomass of species (i) at
time (t+At)

Viiomass (1) is the flux of the biomass reaction at time (t)

The new concentrations were then used as a starting
point for the next iteration. Simulations assumed an
equal initial biomass for each species (X iomass = 1),
aimed at gaining a qualitative prediction for the nature
of interaction (e.g., enhancing vs. repressing degrada-
tion), rather the quantitative description of activity in
soil.

Co-culture experiments and metabolomics profiling

The isolates Arthrobacter sp. ATS (MG763151), Halomo-
nas sp. N8 (MG763150), and Halobacillus sp. NY15
(MG763149) from the Agricultural Culture Collection of
China (ACCC) were used for testing experimentally the
computational predictions. In vitro experiments were
designed to correspond to simulation conditions considering
growth media and species ratio. Atrazine degradation car-
ried by two- (combination of N8 or NY15 with ATS, 1:1)
and three-member consortia (combination of N8, NY15,
and ATS, 1:1:1) were measured. In addition to combina-
tions based on species selected according to differential
abundance following atrazine application, two arbitrary
bacterial species were used for constructing reference con-
sortia: Mycobacterium sp. S8 (MG763148), a soil species
whose abundance in soil is not effected by atrazine, and the
model microorganism Escherichia coli. The isolate S8 was
abundant in soils (>6.5% on average), representing endo-
genous species that is not effected by atrazine treatments.
The two negative controls were combinations of ATS and
S8 (1:1), and ATS5 and E. coli (1:1). The similarities
between 16s of the OTUs and the used isolates were 97%,
98%, 99%, and 98% for ATS, N8, NY15, and S8 respec-
tively. All strains were grown in Luria-Bertani (LB)
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Fig. 1 Atrazine degradation in enrichment cultured samples taken from
agricultural soil. T, soil treated with atrazine; U, untreated soil (con-
trol); T control, autoclaved treated soil of TO; U control, autoclaved
untreated soil of UO; 0/49/77, soil samples collected 0/49/77 days after
atrazine applied in the field experiment. X axis show time of inocu-
lation in minimal R medium. The results are average of duplicates.

medium at 30 °C. To measure the atrazine degradation, the
single strain and consortia were separately grown in R
media supplemented with atrazine or both atrazine and
glucose for 36 h in 50 ml flasks. In addition R media were
supplemented with predicted exchanged metabolites (EM):
for NY15 R medium was supplemented with atrazine,
aminoethanol, ethylamine and hypoxanthine (EM1); for N8
R medium was supplemented with atrazine, aminoethanol,
ethylamine, hypoxanthine and urea (EM2); for ATS5 R
medium was supplemented with atrazine, leucine and NH4
(EM3). As in simulations, all compounds were added in
equal concentration (30 mg/l). The concentration of atrazine
in each culture was measured every 6h by HPLC as
described above. All treatments were carried out in
triplicates.

To test secretion of EM by the three species, consortia
(combination of ATS, NY15, and N8) were initially grown
in R media supplemented with atrazine as a sole carbon and
nitrogen sources for 30h, and then we screened for the
hypothesized EM by liquid chromatography—-mass spec-
trometry (LC-MS). Pure compounds, including amin-
nethanol, ethylamine, glycerol, urea, hypoxanthine, leucine,
and mannitol were used as reference standards. To facilitate
the separation of the small molecules (including amin-
nethanol, ethylamine, glycerol, and urea) by liquid chro-
matography, a derivatization step was performed before
analysis. A C;g reverse phase column (2.1 x 100 mm, 1.7
um particles, ACQUITY UPLC BEH, WATERS) was used
for liquid chromatography. Mass spectrometry was per-
formed using electrospray ionization in positive or negative
ion mode with MS® acquisition mode, with a selected mass
range of 50-1200 m/z. The details of derivatization and LC-
MS analysis are described in Supplementary Materials.

ANOVA of the regression, coefficients and significance of log logistic
regression for TO, T49, and T77 are provided in Supplementary
Table 5. All three regressions are significantly different according to F
test (P value <0.01). For all other treatments, regression coefficients
and ANOVA were not significant and were omitted from the table

Results

Functional assays for biodegradation activity
following introduction of atrazine to agriculture soil

To study the role of bacterial communities in atrazine bio-
degradation in agricultural land, corn fields were treated
with atrazine. Based on a bioassay, we detected a 90%,
50%, and O decrease in phytotoxicity following 35, 49, and
77 days from treatment, respectively (Supplementary Fig-
ure 2). To further determine biodegradation activity and
community structure, soil samples from 0, 49, and 77 days
from atrazine application were taken for direct degradation
assay and bacterial community analysis.

For degradation assays, soil samples were incubated in
an atrazine containing R medium. Rapid atrazine degrada-
tion was detected only in samples taken from the atrazine-
treated soil (T49 & T77 in Fig. 1). In comparison, no
degradation or minor degradation was observed in samples
from time 0 (TO), samples from untreated soil (U0, U49,
U77), or autoclaved samples (U and T control), precluding
the possible contribution of abiotic reaction to the degra-
dation of atrazine.

The degradation assay together with the bioassay point at
enhanced biodegradation activity in atrazine-treated soil.
The application of atrazine to soil followed the common
agricultural practices. Despite the relatively low amounts
and the complexity of agricultural soil, both analyses sug-
gest that the application of atrazine triggered functional
modification in the soil community associated with
increased degradation rate. We next examined whether a
corresponding change in community structure can be
detected.

SPRINGER NATURE
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Bacterial community dynamics and structure

Community structure in the atrazine-treated and untreated
soil was determined using Illumina MiSeq (Supplementary
Materials). Multidimensional scaling of community simi-
larity points at a clear separation between treated and
untreated soil samples in both soil and enrichment samples
(Fig. 2). Unlike samples from untreated soils, samples from
treated soil diverge with time and show a growing distance
from untreated soil, or treated soil at day 0. The analysis
points at a shift in community structure that corresponds
with the shift in community function, induced by the
application of atrazine.

To identify species that are effected by the application
of atrazine, we screened for OTUs whose abundance
differentiated following treatments. The three OTUs with
the highest fold-change following atrazine application
were classified as Halobacillus_unclutrued, Bacillus
decolorationis, and Cesiribacter sp. JJ021 (Supplemen-
tary Table 2). These three species were barely detected in
TO and in any of the untreated soil samples (Supple-
mentary Table 3). Surprisingly, none of the ten OTUs
with highest fold-change was assigned to a genus that
includes species with atrazine degradation activity. In
parallel to the genomic survey (16S rRNA analysis), we
carried independent isolation screens for atrazine degra-
ders from the respective atrazine-treated field samples
resulting in the identification of two isolates classified as
Sinorhizobium and Arthrobacter that were confirmed as
atrazine degraders (Supplementary Table 1). OTU that can
potentially represent the Sinorhizobium isolate (identity in
16S rRNA sequences >97%) was detected in relatively
low and stable abundances across all time points and do

a
t49
0.04-
0.00 TH77 : . Ut49
(o Uu9

o Utds
N Tto/"Tto
5 0089 Troated 49 'T ut49
5 0]
$.0.12 and 77.days ; ;JTtO Untreated 0, 49,
o [ and 77days

0.16 " /

-0.20 4 f /

!
-0.24 4 Tto
Treated 0 days
-0.281
024 -016 -008 000 008 016 024 032
Coordinate 1

Coordinate 2

not show a quantitative response to the application of
atrazine (Supplementary Table 1). The OTU with the
highest sequence similarity to the 16S rRNA of the
Arthrobacter degrader-isolate (99% identity, Supplemen-
tary Table 1) is OTU2327. OTU2327 was detected in a
relatively high abundance (~6-15 times more abundant in
atrazine-treated samples in comparison to OTU repre-
senting the other isolate with degradation activity, Sup-
plementary Table 1), supporting a potential role in the
degradation of atrazine in the soil samples.
OTU2327 showed an approximately two fold increase in
abundance following exposure to atrazine (P value 0.065,
below significance threshold, Supplementary Table 2).

In order to explore functional modification in microbial
activity in the respective soil samples following atrazine
application we chose to focus on five species including the
potential atrazine degrader Arthrobacter_unclassified
(OTU2327), three species whose respective OTUs show
significant increase in abundance following atrazine appli-
cation— Halobacillus_unclutrued, Bacillus decolorationis,
and Cesiribacter sp. 11021 and Halomonas stevensii—a
species whose respective OTU (OTU1826) demonstrates a
reverse pattern—a significant decrease following atrazine
treatment.

Predicting performances of different bacterial
combinations in atrazine only vs. glucose
supplemented media

GSMM were constructed for the five species whose partial
abundance was affected following atrazine application
(Table 1). In order to compare atrazine degradation effi-
ciencies of different consortia, we constructed 16 multi-
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Fig. 2 Non metric multidimensional scaling (NMDS) ordination of diversity profiles of bacterial communities in soil (a) and enrichment samples
(b). The two-dimensional stress values for the NMDS were 0.114 and 0.160, respectively, based on Rho similarity measure
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species models representing all possible combinations that
contain Arthrobacter, the only atrazine degrader (Supple-
mentary Table 4). Performances were simulated using
constraint-based modeling (CBM). A single species of
Arthrobacter was used as a reference point, allowing pre-
dicting positive or negative contribution of species
interactions.

For each combination we initially measured two para-
meters of community performances: total biomass and
atrazine degradation efficiency (Fig. 3). Simulations were
carried in a medium containing atrazine as a sole nitrogen
and carbon source and in a medium containing an equal
amount of atrazine (acting as a sole nitrogen source) sup-
plemented by glucose as the major carbon source. As
expected, supplementing the medium with glucose, in
comparison to atrazine only medium, improved perfor-
mances—in the rich-nutritional medium (glucose contain-
ing) total biomass increased in 2-5 fold and atrazine
degradation was about twofold faster. Based on simulation
results we repeated pot bioassays while supplementing the
soil in glucose in different concentrations. In support of the
simulations, we find that in high glucose concentrations,
atrazine degradation in soil was expedited in comparison to
non-treated control (Fig. 3d).

Based on simulations results, we compared the perfor-
mances of different species combinations (Fig. 3). In both
media types, variations between combinations were recor-
ded for both performance parameters. The reference com-
munity— containing only the atrazine degrader
Arthrobacter (red, Fig. 3a, b), had the worst performances
considering both growth (community biomass) and atrazine
degradation. Multi-species combinations improve perfor-
mances almost in all cases. All top performing combina-
tions contain Halobacillus (blue and orange, Fig. 3a, b),
followed by four combinations containing Halomonas
(green). To test predicted performances in the lab we cre-
ated artificial consortia of Arthrobacter, Halomonas and
Halobacillus isolates. Experimental results provided vali-
dation to simulation outputs. First, no atrazine degradation
was detected by Halomonas or Halobacillus (Fig. 3c).
Second, performances of all consortia were better than the
Arthrobacter alone on both glucose amended and non-
amended media (Fig. 3c). Halobacillus best supported the
atrazine degradation followed by the combination Haloba-
cillus and Halomonas, and then Halomonas. In comparison,
control consortia composed of Arthrobacter and a random
bacterium, not associated with the original community (E.
coli), or an endogenous soil bacterium, non-differentially
abundant after atrazine application in the original commu-
nity (S8), did not show enhanced performances in com-
parison to the performances of Arthrobacter alone (Fig. 3c).
Third, atrazine degradation efficiencies of all combinations
were higher on rich-nutritional medium compared to poor-

nutritional medium, showing the degradation enhancement
by glucose (Fig. 3e).

Characterization of interactions and exchange
fluxes

Within each combination, we looked at the individual
growth of each member according to biomass mass pro-
duction in the corresponding compartment. Plots in Fig. 4
indicate the individual growth of Arthrobacter, Haloba-
cillus and Halomonas in different combinations (Fig. 4 top,
middle and bottom, respectively). Growth pattern of
Arthrobacter differ between the two media types: in the
relatively rich, glucose-supplemented medium, Arthro-
bacter grows best as a single species; in the poor medium
(atrazine only), Arthrobacter growth as a single species is
the worst in comparison to all combinations. Reliance of
species on community members for improved growth is
typical of minimal media and is likely to reflect dependency
in exchange fluxe,s which are masked in rich media [22,
55]. Unlike the pattern observed for Arthrobacter, improved
growth in all combinations in the poor media, an antag-
onistic growth pattern is predicted between Halobacillus
and Halomonas, both species performs better in mutual
exclusive combinations in comparison to combinations
containing both species. This antagonistic pattern corre-
sponds with the dynamics in community structure in soil
where an increase in the level of Halobacillus was asso-
ciated in reduction in the abundance of Halomonas (Sup-
plementary Table 3).

In order to suggest patterns of metabolic interactions that
might explain co-occurrence patterns in both simulations
and soil we predicted the mutual exchange fluxes in the
three-species in silico consortia. Simulations predicted that
Arthrobacter secretes aminoethanol, ethylamine and
hypoxanthine during atrazine degradation, that are con-
sumed by both Halobacillus and Halomonas (Fig. 5a). The
antagonistic association in their relative abundance can
hence be related to co-dependency on these secretion pro-
ducts. In return, Halobacillus and Halomonas secret
ammonium (NH, ) and leucine (Halobacillus only) that are
consumed by Arthrobacter. In glucose amended medium,
though secretion pattern of Arthrobacrer remains the same
(Fig. 5a), mutual exchanges are conserved only with
Halobacillus and not with Halomonas. To provide experi-
mental support for the predicted exchange fluxes we
examined growth and degradation of atrazine in mono-
cultures of the three species (Halobacillus. Halomonas and
Arthrobacter) grown on minimal media, each supplemented
by the relevant exchange metabolites (EM1, EM2 and EM3,
respectively, Fig. 5a). In agreement with predictions,
Halobacillus and Halomonas growth was recovered in the
supplemented media in comparison to no growth in an
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Fig. 3 Simulations and experimental validations of atrazine degrada-
tion and bacterial growth performances. a—c Performances of bacterial
combinations. Line colors are indicative of the combinations as
indexed on the right grid (grey/white cells indicate species included/
not included in the combination, respectively. I — 16 combinations
formed by species represented by GSMM. All combinations include
Arthrobacter aurescens TC1 (atrazine degrader) together with all
possible combinations of the species modeled (chosen based on dif-
ferential abundance). Red, A. aurescens TC1 only; Blue, combinations
with Halobacillus sp. BAB-2008 but without Halomonas stevensii
S18214; Orange, combinations with both H. sp. BAB-2008 and H.
stevensii S18214; Green, combinations with H. stevensii S18214 but
without H. sp. BAB-2008, Dark grey, combinations without H. sp.
BAB-2008 or H. stevensii S18214. 1I, combinations used as control in
the experimental validation. Purple, A. aurescens TCl (atrazine
degrader) with an exogenous strain (Escherichia coli) or an endo-
genous strains whose abundance was not affected by the application of
atrazine (Mycobacterium sp. S8). Light grey—Halobacillus sp. NY15
and Halomonas sp. N8 without A. aurescens ATS (atrazine degrader);
Black—autoclaved strains. In both simulations (a, b) and in vitro
experiments (c¢) performances were tested in two media: medium that
contains atrazine as the sole carbon and nitrogen source (left) and
medium with atrazine and glucose as carbon and nitrogen sources
(right). a Predicted relative increase in biomass (1/h). The relative
increase values indicate biomass(t)/biomass(0) -biomass(0). b Pre-
dicted atrazine degradation (mmol/gDW) due to degradation activity.
¢ In vitro decrease in atrazine (mg/l). d Experimental validation of
simulations by pot experiments following supplementing the soil with
glucose. Fraction of atrazine left was estimated according to a bioassay
(Supplementary Figure 1). T1, no atrazine; T2, atrazine only; T3,
atrazine and 0.5% glucose; T4, atrazine and 1.0% glucose; TS5, atrazine
and 1.5% glucose. Different letters indicated statistically significant
differences (P <0.05) according to the Tukey test. e In vitro atrazine
degradation in media with atrazine and supplemented/not supple-
mented with glucose (4-glucose/-glucose, respectively). C1, AT5 only;
C2, combinations of AT5 and S8; C3, combinations of AT5 and E.
coli; C4, combinations of AT5 and NY15; C5, combinations of ATS
and N8; C6, combinations of AT5, NY15 and S8

ammonium—were detected in a co-culture of the three
species (Supplementary Figure 4). Two exchange metabo-
lites, leucine and mannitol were not detected, possibly due
to a rapid turnover. Finally, quantitative screens of ammo-
nium in mono and co-cultures are consistent with model
predictions: When grown in atrazine-only medium,
Arthrobacter is predicted to consume ammonium secreted
by Halobacillus and Halomonas (Fig. 5a, left). In accor-
dance with predictions, ammonium concentrations in co-
cultures (Arthrobacter- Halobacillus and Arthrobacter-
Halomonas) are much higher than concentrations detected
in the mono-cultures of Halobacillus and Halomonas that
are un-capable of growing alone on atrazine as a sole carbon
and nitrogen source or in the mono-culture of Arthrobacter
that does not secret ammonium in atrazine only medium
according to model predictions (Fig. 5c). Supplementing the
medium with glucose, is predicted to induce ammonium
secretion of Arthrobacter (Fig. 5a, right). In accordance
with predictions, ammonium concentrations in a mono-
culture of Arthrobacter are much higher in glucose sup-
plemented vs. non-supplemented medium (Fig. 5c).

Discussion

Manipulating bacterial communities is a key emerging
challenge in microbial ecology with potential applications
for medical, agricultural and environmental practices [S6—
58]. Especially, the “in situ microbiome engineering” could
be a new paradigm of community-scale microbial engi-
neering [57]. Microbiome’s activities and capacities are to a
large extent determined by complex networks of metabolic
interactions and exchanges [59—-62]. Traditionally, the study
of bacterial interactions required the use of laboratory
experiments such as growth and co-culture assays [59, 63].
Major obstacles are difficulties in isolation and culturing of
all community members and the complexity of the micro-
biome’s interactions. Furthermore, the composition of taxa
and their interactions in the microbiome can vary sub-
stantially over short time scales and nutrient environment
modification. In order to detect metabolic interactions,
methods able of capturing species identity, dependencies
and the nature of exchanged metabolites are needed, and
thus multiple combinations of diverse techniques, such as
metagenomics, mass spectrometry, and isotope labeling are
required [64]. Although multi-technique strategies have
been successfully applied for some model systems such as
enrichment cultures and synthetic communities [3, 65], their
application for the study of natural communities is far from
trivial [63]. Mathematical models of bacterial community
expand the toolbox for detecting metabolic dependencies in
natural bacterial consortia [14, 17, 62].

Here we aimed at applying mathematical modeling
approaches for an “in situ microbiome engineering” tar-
geted for accelerating pollutant degradation in soil con-
taminated with the herbicide atrazine. Our results first
demonstrate that atrazine applications in soil triggers a
compositional shift of bacterial communities (Fig. 2), and
that the shift is associated with functional modification,
atrazine-degrading ability of the corresponding commu-
nities (Fig. 1). Despite the functional shift, the predicted
atrazine degrader, Arthrobacter, was detected in both her-
bicide treated and untreated soil and significant abundance
modifications were detected for non-degrading species.
These non-intuitive observations, where abundance shift
cannot provide a straightforward justification for the func-
tional modification, can be related to community interac-
tions. In order to reach a system-level view of the activity in
soil, we first made use of the information of the composi-
tional shifts associated with the degrading ability. Then, we
applied dynamic modeling methods and explored the per-
formances and exchanges in a range of environmental
microbial consortia. The modeling aimed at charactering
performances (atrazine degradation efficiencies) and
exchanges in different consortia in a range of simulated
media. Simulation results demonstrated the importance of
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the non-degraders species to the degradation process, pro-
viding functional interpretation to the observed composi-
tional shifts. Simulations predicted an exchange of
metabolites between the atrazine degrader (Arthrobacter)
and non-degrader (Halomonas and Halobacillus). Exchange
metabolites include aminoethanol and ethylamine—pro-
ducts of atrazine degradation by Arthrobacter [65], pro-
viding carbon and nitrogen sources for the non-degrader.
The improved atrazine-degrading efficiency and increase in
the biomass of community suggested mutual benefits
associated with cross-feeding. Based on simulation we
designed bacterial communities and validated in vitro
improved performances of selected vs. control combina-
tions. Relevant exchange fluxes, predicted by simulation
were also supported by experimental results. Simulations
supported the amendment of the medium in additional
carbon source, here glucose, as previously reported [66],
and also validated in our experimental system. Moreover,
Halobacillus was not detected in the enrichment samples,
possibly because the culture condition do not support and
maintain the composition of the source sample community,
and pointing at the importance of genomic approaches and
genomic-driven analysis for studying soil microbial func-
tion, circumventing the need to isolate. Our analyses
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provide a comprehensive mechanistic description that
explains community dynamics leading to enhanced degra-
dation, not only through affecting Arthrobacter perfor-
mances but through affecting community function. Hence
the analysis paves the way for the educated design of
biostimulation strategies. Glucose, the carbon source used
here is not common in soil, and its application to agri-
cultural practice is questionable. Further research will focus
on the simulation-based examination of alternative carbon,
sources that are present in soil [66], and can act as specified
biostimulation agents of selected bacterial combinations.
Limitations of the analysis should be acknowledged, to a
large extent reflecting current state of technology. First,
genome sequences for model construction and simulations
were retrieved from available public resources based on
similarity in 16S rRNA gene, rather than assembled directly
from the soil sample. Similarly, isolates for in vitro vali-
dation were chosen from public resources based on 16S
rRNA. It is important to acknowledge that the genome of
bacteria with close phylogenetic proximity (inferred by
similarity in the 16S rRNA) can vary substantially in their
genomes, and hence simulations and validation represent an
approximation of the in situ combinations. Such an
approximation, despite its obvious limitations, is applied
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Fig. 5 Prediction and validation of potential exchange fluxes in com-
binations. a Predicted exchange fluxes in media with atrazine as the
only carbon and nitrogen sources (left) and atrazine and glucose
nutrition (right). EM1, EM2 and EM3 represent directional exchanges
in a specific combination. b In vitro measurements of growth (right)
and fraction of atrazine left (left) in medium containing atrazine as a

here as in many other recent explorations of microbial
function and interactions in complex environments, relying
on a demonstrated overall correlation between phylogeny
and function in tightly associated species [67-71]. Such
approximations allow a relatively straightforward approach
to circumvent the difficulty in isolating and supporting
growth in culture for most endogenous soil species.

sole nitrogen and carbon source vs. the same medium supplemented by
exchange metabolites. Experiments were carried in monocultures of
Halobacillus sp. (top), Halomonas sp. (middle) and Arthrobacter sp.
(bottom). ¢ Levels of NH," concentrations in media. Species in (b, ¢)
were represented by the same isolates as in Fig. 3 (NY 15, N8 and ATS,
respectively). Bars represent the standard errors of the three replicates

Sequencing technologies advance rapidly, and pioneering
projects demonstrate that the full assembly of abundant
species based on direct sequencing from the sample is
possible even in complex communities [72]. Whereas future
projects are expected to make use of the genomes that were
directly sequenced in the relevant environment, phylogeny-
based approximations are currently significantly less costly
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and more feasible and can hence provide a realistic bridge
between microbial ecology and system biology and allow to
study ecosystem-level function and dynamics [14, 17, 62].
Here, all approximations require at least 97% identity in the
16S rRNA between OTUs and representative species, fol-
lowing the common practice in the large majority of eco-
logical surveys of co-clustering sequences above this degree
of similarity into a common taxonomic unit. An alternative
approach to looking for the most closely related sequence
species (above a threshold) is to define a set of core genes
that are conserved between all species of a wider corre-
sponding phylogenetic group. However, such pan-genome
approaches have their own cones where the set of shared
genes is heavily dependent on the number of species con-
sidered and the variability in lifestyle and genomes sizes
[73-75]. In particular, soil samples were demonstrated to be
poorly represented in genome depositories in comparison to
the relatively high coverage of sequenced species in the
human microbiome and mammalian gut datasets, creating a
bias against the inclusion of soil-associated functions [71].

Finally, due to the complexity of model construction
process, we limited the analysis to five soil species.
Advances in sequencing technologies together with
improvement in platforms for genome annotation and
model construction [42, 76-79] are expected to lead to in
silico representation of complex microbial communities
[70]. In parallel to the advent of sequencing technologies,
metabolomics technologies are now rapidly emerging and
in the very near future a growing number of ecosystems will
be subject to an extensive profiling [78, 80, 81]. Simulations
accuracy is expected to improve when based on a detailed
description of the metabolic environmental conditions.
Though the current analysis is based on species and envir-
onment approximation, representing only a sub-set of the
original community, it demonstrates the strength of
metabolic-modelling in producing testable hypotheses that
were supported by in vitro and pot experiments. In the near
future, where new technologies will reduce the need in
approximations and will facilitate model construction and
analyses, reliability and success rate of genomic driven
predictions are likely to increase and make them an integral
part of microbial community engineering.

Conclusion

Modeling of microbial communities from atrazine-treated
soils allows predicting community performances consider-
ing growth, atrazine degradation, and specific exchange
fluxes. Both simulations and experimental results indicated
that adding Halobacillus, and/or Halomonas to the com-
munity remarkably improve atrazine-degrading efficiency.
The efficiency of each community could also be clearly
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enhanced by adding to the media additional carbon sources
such as glucose. The outcome of this study can assist to
reduce atrazine contamination in soil and water. This
methodology will be addressed to reduce the soil con-
tamination of other herbicide families.
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