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Self-assembly of fractal liquid crystal colloids

Nikita V. Solodkov@® !, Jung-uk Shim' & J. Cliff Jones® '

Nematic liquid crystals are anisotropic fluids that self-assemble into vector fields, which are
governed by geometrical and topological laws. Consequently, particulate or droplet inclusions
self-assemble in nematic domains through a balance of topological defects. Here, we use
double emulsions of water droplets inside radial nematic liquid crystal droplets to form
various structures, ranging from linear chains to three-dimensional fractal structures. The
system is modeled as a formation of satellite droplets, distributed around a larger, central
core droplet and we extend the problem to explain the formation of fractal structures. We
show that a distribution of droplet sizes plays a key role in determining the symmetry
properties of the resulting geometric structures. The results are relevant to a variety of
inclusions, ranging from colloids suspensions to multi-emulsion systems. Such systems have
potential applications for novel switchable photonic structures as well as providing wider
insights into the packing of self-assembled structures.
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n a world governed by symmetry and invariance principles,

complex mathematical concepts often realize themselves in

seemingly simple physical systems!. Topology is a study of
geometrical properties that are preserved by continuous defor-
mations, which is mostly associated with pure mathematics2.
However, it provides coherence to many physical phenomena
that are not always abstract, including cosmology?, topological
insulators* and flow fields in fluid mechanics®.

Liquid crystals are anisotropic fluids, in which the rigid and
anisotropic constituent molecules have a strong tendency to form
mesophases with long-range orientational order, described by the
order parameter S. In the simplest and most widely studied liquid
crystal phase, the nematic, the molecules are free to move around
each other and lack any long range positional order. The mole-
cular symmetry axes within an ensemble share a common
pointing direction, described by a unit pseudo-vector n, called the
director. Nematic liquid crystals are described by cylindrical
symmetry and are uniaxial, which makes n physically indis-
tinguishable from —n® Many of the physical properties, such as
electric permittivities and elastic constants’, are anisotropic and
related to n. Much like normal mathematical vector fields,
director fields are governed by geometry, boundary conditions
and topological properties of the domain containing it3-!1. For
example, a spherical nematic droplet with radial boundary con-
ditions must contain a radial-like singularity®12, known as a
topological defect!3 (cf. sink/source in fluid mechanics). This
singularity can be replaced by any set of topologically equivalent
structures, such as a defect loop or a combination of different
defects>10-12, To describe the interactions of these singularities,
each one is assigned a property known as the topological charge.
This is a measure of the number of times the director turns
around a closed loop or surface of an isolated singularity. From a
topological point of view, the sum of topological charges g; is an
invariant in a closed domain with fixed boundary conditions?.
Therefore, a forced defect in a nematic director field will result in
the creation of an accompanying defect of opposite topological
charge!0-12,

While defects are typically avoided in devices, their presence is
essential in some systems, where they act as one of the primary
device mechanisms. An early example of this is the Zenithal
Bistable Display, in which a deep, surface relief grating with
normal director boundary conditions is used to induce defects
that stabilize a low tilt alignment state, or that allow a continuous
high tilt state!*-10. The defects are electrically induced at the
point of inflexion on the vertical edges of a grating surface and
then separated using the polar response that arises from strong
elastic deformations due to the inherent flexoelectricity of the
nematic phase!”:18,

More recently, there has been an explosion of interest in micro-
suspensions within nematic liquid crystals, wherein the intrusions
self-assemble due to the creation of defects in the nematic
director fields!®-2°. This process was first observed by creating
water droplets with radial boundary conditions inside larger
nematic droplets, which created linear chains of inclusions!®. In
such systems, topologically forced hyperbolic defects stabilize the
suspensions of particles by forming topological dipoles with the
radial inclusions, which line up in a similar fashion to a linear
array of electric dipoles'!20. Similar systems have been observed
by adding micro-particles with pre-determined boundary condi-
tions and locally melting the director field with laser tweezers to
control the formation of structures through manual rearrange-
ment of inclusions?®. Other studies, such as?’, aim to create
unique defect combinations by adding holes to particles, which
changes their topological properties.

In this work, we use double emulsion droplets generated in a
microfluidics device and controlled agitation to create multiple

water droplets with radial boundary conditions inside larger
radial nematic droplets. We find that the size differences between
the water droplets play a key role in the spontaneous formation of
complex three-dimensional (3D) structures, ranging from linear
chains to fractal structures. To explain our observations, we use
numerical analysis to relate the basic formation of colloidal
structures in radial nematic droplets to the solutions of the
Thomson problem?8-2° and extend the analogy to the formation
of fractal structures. In contrast to a recent study by Hashemi
et al.30 that studies the behavior of nematic defects along pre-
determined fractal shapes, we observe spontaneous formation of
fractal shapes due to the topological and elastic properties of
nematic liquid crystals.

Results

Critical distortion. Consider the domain of a nematic droplet
with radial (normal to the surface) boundary conditions. From
topological principles, a director field discontinuity with a charge
of +1 is formed inside it and centralized to minimize the free
energy of the system. Adding a smaller inclusion (such as a
particle coated with a homeotropic surfactant, or a second water
droplet) with normal boundary conditions does not create any
additional distortion to the radial director field. Instead, the
inclusion minimizes the free energy by creating a virtual, highly
splayed defect at the center of the particle and moving the
inclusion to the center of the system. In this work, we will refer to
the first inclusion (water droplet) as the core and additional +1
radial inclusions as satellites, which must be accompanied by —1
hyperbolic defects to conserve the total topological charge of the
system.

For illustration purposes we assume that the core always
remains at the centroid of the nematic domain, which is true for
the cases of 3D symmetric structures. Once a satellite enters the
director field, elastic forces drag it towards the point of highest
splay, where it enters the core’s primary orbit. All other satellites
entering this primary orbit are attracted to the core but repel each
other. This suggests that there exists a maximal capacity of
satellites in the primary orbit Ni. By symmetry, the second
satellite must attach itself on the opposite side of the core to the
first, to minimize elastic distortion. A third satellite then has a
choice between readjusting the positions of the first two satellites
and attaching itself to the core or to one of the two existing
satellites co-linearly. The relative sizes of the droplets that
determine the resulting structure. For droplets of similar size, the
third and fourth droplets will become arranged at the tetrahedral
angles to the core, and additional droplets beyond the fourth
attach as satellites to the higher orbitals, four per orbital, to create
a characteristic tetrahedral structure. Figure 1 shows the satellite
attachment process and a tetrahedral structure (first 3D shape)
with linear chains extending radially outward from the core that
results from near equivalent sized internal droplets.

To determine the maximal orbit capacity, we first need to study
the solution sets for distributions of repulsive points around the
boundary of a circle in 2D and on the surface a sphere in 3D. In
2D systems, primary orbit satellites distribute themselves along
the vertices of regular polygons. Similarly, in 3D the structures
follow the solutions to the Thomson problem (originally used to
describe the electronic structure of atoms for the superseded
“plum-pudding” model), which include some regular polyhe-
drons. Two satellites can continue to move closer together until
the director reaches a critical distortion (this is equivalent to
adding more satellites to the orbit). By symmetry of the director
field, primary orbit satellites share a network of mirror planes and
symmetry axes of rotation (see Fig. 2). We can see that the highest
amount of distortion in the director field occurs in the plane
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Fig. 1 Inclusion self-assembly process. a lllustration of the satellite to core
attachment process. b Diagram showing a topologically stabilized structure
with tetrahedral symmetry: water droplets are shown by magenta balls,
hyperbolic defects are shown in cyan and the nematic region is shown in
yellow
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Fig. 2 Satellite distortion network. a Sub-domain of the spherical surface
corresponding to the primary satellite orbit. Large unfilled circles represent
satellites, small filled circles represent symmetry axes of rotation with radial
director profiles and solid lines represent unfolded mirror planes. The plane
of highest disturbance (repeated in the structure) is highlighted in magenta.
b A slice of the magenta plane from a, showing the director streamlines due
to two satellites separated by a polar angle of 6. ¢ Distortion of the director
field in the radial reference frame as a function of the polar angle between
two neighboring satellites along their orbital path, magenta arc from b

containing the core and two nearest neighbor satellites. As the
two satellites in the same orbit approach each other, the critical
separation point will be reached first in this plane, thereby
reducing a 3D problem to 2D.

Each satellite of unitary radius is pulled towards the core of
radius r to minimize the system’s elastic free energy and stabilized
at a center-to-center separation of (r+ 1)h, where h is the
separation factor. We find that h =1.24 for the nematic liquid
crystal E7 at room temperature, which closely follows the values

determined numerically?! and experimentally!®32 for similar
materials when in dipolar chains. Due to the symmetry of the
system, we consider two elastic constants: K;, which opposes the
divergence of the director field, and Kj, which opposes the
bending of director streamlines. In our system, Kj; is responsible
for pushing orbit-equilibrated satellites away from each other. On
the other hand, K; restores the director field to the radial
configuration, which allows satellites to be closer to each other.
This implies that there exists a critical angular separation of
neighboring satellites 8., beyond which no two satellites can come
closer without a great cost to the elastic free energy of the system.

To determine the critical separation of satellites we study the
natural distortion of the director field that a lone satellite creates.
Since we seek the critical value, only the distortion along the orbit
needs to be examined, where the repulsion between adjacent
satellites is greatest. At the boundary of the satellite, the distortion
is maximal and decays away as a function of the polar angle at a
rate that depends on the ratio of splay K; and bend Kj elastic
constants. Introducing a second satellite to the same orbit is
equivalent to creating a mirror line half way between them, where
the director is fully straightened to the radial configuration. 6, is
reached at the point where the natural distortion angle from the
radial configuration of the lone satellite reaches a critical value of
&, = tan" (K, /K;). This means that two satellites can be brought
closer together up to the point where their push (ie. Kj)
dominant regions touch.

As the core to satellite size ratio r increases, we expect the polar
influence of satellites to become less significant and 6. to decrease
with it, allowing a greater number of satellites to enter the
primary orbit. At low r, satellites are closer to the center of the
domain and their natural director profiles closely match each
other, which decreases 6.. On the other hand, the natural director
field of the domain becomes less divergent with increasing orbit
size and streamlines become more parallel. By comparing the
director field to the electrostatic field lines between two charges,
we make an ansatz of the following form

E (E )
0. =260, — 2a—==In( = |, 1
VRN M
where « is constant for a given domain size, 6, =

2csc™H(2h(r +1)) and &= (7 — 6,)/2 are the polar and the
distortion angles at the boundary of the satellite, respectively.
From this, we can expect that liquid crystals with high K;i/Kj
ratios will be able to support more satellites than the ones with
low K;/Kj; ratios.

Primary orbit satellite packing. The maximal number of satel-
lites in the primary orbit Ni can be calculated numerically by
comparing 0. with the angles generated by the closest neighboring
vertices of the Thomson problem solutions. As r tends to infinity,
exact solutions of N¢ can be found using the Fejes inequality?®,
which also holds for Nf equal to 2, 3, 4, 6, and 12. The value of N{
serves as the maximal achievable number of primary satellites for
a given core to satellite ratio of the system. We find that our
ansatz is closely matched by the numerical solution with o=
(1.12+0.01) and therefore, can be used as quicker estimation
method for Ny as a function of r. This can be seen in Fig. 3, which
shows the allowed solutions for the primary orbit satellites
alongside a representative selection of experimental results.
The Fejes inequality?® for N points on a unit sphere states that

()< (ooels)).

which becomes exact for N=3, 4, 6, 12 and N — oo. Due to the
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Fig. 3 Primary orbit capacity and packing. Orbit capacity N as a function of
the core to satellite size ratio r illustrating numerical space of possible
values (blue shading), estimated maximal orbit capacity from the ansatz
(black line), a representative selection of experimental results achieved
with water in E7 in water double emulsions (circles). Shapes corresponding
to N=4, N=6, and N=50 are shown above the curves

dependence of . on r and the associated Thomson problem
solution for N, we find that the relationship between N{ and r is
weakly non-linear for small values of r and increases in a step-
function-like fashion. The numerical results indicate that for
systems in which the satellites are identical in size to their cores,
triangular configurations are expected and we may expect tetra-
hedral structures to form once r reaches 1.1. In practice, there
always exists a small size distribution of water inclusions, which
creates enough variation in r to allow tetrahedral structures.

Experimental observations of double emulsions formed using
microfluidics indicate that satellite droplets self-assemble into
tetrahedral configurations almost exclusively and lower order
configurations are possible but rarely observed. This is a direct
consequence of the fact that the nematic droplets prefer to have
spherical symmetry and for the contained structures to match it.
This introduces an additional balance between spherical and
polyhedral symmetries. Digonal and triangular configurations are
two-dimensional and lack 3D symmetry balance. On the other
hand, the tetrahedral configuration is the lowest order structure
with 3D symmetry balance and is therefore preferred, as observed
in double emulsions. To achieve configurations with two and
three primary satellites in 3D nematic droplets, a reduction in
symmetry must be introduced. The digonal configuration can be
achieved by forcing the nematic droplets to have an ellipsoidal
shape during a slow self-assembly process. Following their
assembly, such structures remained stable throughout the
observation period (over a week), due to the stabilizing effects
of the topologically imposed hyperbolic defects separating the
inclusions at the centers of the nematic droplets. When the
samples were heated above the nematic to isotropic phase
transition temperature, this stabilization disappeared (due to the
lack of a director field) resulting in collapse of the structures into
a single, larger core.

Once a structure is formed inside a nematic droplet, it can be
switched into a different configuration by applying an external
field. Here we illustrate this by switching a tetrahedral structure
inside a 3D radial nematic droplet into a lower order state. To
achieve this effect, the droplet was deformed rapidly by applying
external pressure to the observed region of the glass containers
(used for observation under the microscope). This resulted in an
unfolding of the tetrahedral structure formed naturally by the

inclusions, followed by an immediate reconstruction into the
closest energy minimum. By increasing the agitation, the
structure was deformed sufficiently to reconstruct itself into a
2D shape while still remaining in a spherical 3D nematic droplet.
A comparison between the original and the reformed structures is
shown in Fig. 4. The resulting structure consisted of a triangular
segment with a single linear chain of satellites. This bares a clear
resemblance to the structures seen in 2D nematic droplets from
ref. 19. Heating the sample close to the nematic to isotropic phase
transition temperature reduces the number of birefringence
fringes and allows a clearer comparison with the 2D cases.

Another way to switch the structures is by reducing the
dimensionality of the samples. This can be done by reducing one
of the coordinates to a length scale closely comparable to the
inclusion diameter, for example, using a lateral force. Analogous
to the 3D case, the satellites form structures following the vertices
of regular polygons. When a droplet with a 3D structure is
collapsed to a (relatively) flat disc, the geometrical shape is no
longer supported by the dimensionality of the space and must
collapse into a 2D configuration. Since N{(r ~ 1) = 3, flattening
a tetrahedral structure without an additional bias in a particular
dimension results in a triangular structure. However, if a nematic
droplet is deformed into a disc-like shape with a non-circular
boundary, it results in a reorientation of the structure to mimic
the geometrical asymmetry formed by the boundary. This is
expected, as geometrical constraints extend their influence
throughout the bulk of the nematic domain that they contain.
To achieve this, a glass plate was freely suspended on the surface
of a sample with radial nematic droplets, containing tetrahedral
structures, in water. Evaporating the external water resulted in the
aggregation and flattening of the nematic droplets and a collapse
of 3D structures formed by the inclusions. As before, the resulting
structures showed digonal, triangular symmetries and their
combinations. An example of this is shown in Fig. 5, where we
can see a combination these shapes, which form a structure that
resembles the shape of the deformed disc-like container.

Increasing r further creates more docking sites in the primary
orbit, allowing higher values of N to be achieved. However, most
experimental observations are unlikely to reach the maximal orbit
capacity limit for high r. Instead, each primary orbit satellite
becomes a potential docking site for the nearby dock-seeking
satellites, decreasing the statistical probability of subsequent
primary orbit satellite attachments. An example of this can be
seen in Fig. 6, which shows a confocal microscopy image of a
radial nematic droplet with a structure comprised of 6 primary
orbit satellites (forming the vertices of an octahedron) for r = 3.0
+0.5 (error from pixel size). The corresponding Ny for this core
to satellite ratio from Fig. 3 is 10 + 2, which suggests that the core
had the potential to support up to 4 + 2 additional satellites in its
primary orbit.

Fractals. Fractal structures are generated by self-similar patterns,
consisting of rescaled copies of themselves. They are often seen in
naturally occurring systems, ranging from snowflakes and sea-
shells to the properties of the human heart33, diffusion limited
aggregation34, Brownian motion3” and galaxy distributions°. To
measure the self-similarity properties of fractals, we often use the
(Hausdorff) fractal dimension, d, which describes the scale-
independent change in detail of a fractal and its ability to fill
space. For a given fractal pattern consisting of an initiator and a
generator that produces n copies of its previous evolution, scaled
down by a factor of 1/r, the fractal dimension is given by>’

Zj: =1 (3)
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Fig. 4 Switching between primary satellite configurations. Polarized microscopy images of a a nematic droplet with a tetrahedral structure in the center and
b the same nematic droplet after external agitation on the brink of the nematic to isotropic phase transition. Full waveplate is inserted at 45° to the crossed

polarizers to confirm radial orientation of the director field. Scale bar: 10 pm

Fig. 5 Triangular satellite self-assembly in 2D. Polarized microscopy image
of a nematic droplet in the shape of a deformed disc in 2D space (third
dimension close on the inclusion diameter scale) with normal boundary
conditions. Inside the nematic domain, a 2D structure comprising of linear
and triangular segments of inclusions with radial boundary conditions is
formed, mimicking the shape of its container. Scale bar: 10 pm

If the scaling factor r is the same for all evolution sites, then this
equation reduces to d = log n/log r. For example, the Cantor set is
constructed by repeatedly removing the middle third of a line
segment at every step of the evolution. This results in the fractal
dimension of log 2/log 3 = 0.63, which does not have enough
information to fill a 1D space. However, natural fractals often
consist of finite number of evolution steps with irregular gen-
erators, which causes the fractal dimension to differ between
evolution levels, as well as within them.

In cases such as the one from Fig. 6, the remaining space in the
primary satellite orbit is not filled due to a small total number of
inclusions. When there is a much larger number of inclusions,
another self-assembly process can take over expanding the space
of possibilities to the creation of fractal structures.

As satellites self-assemble into chains that extend radially
outwards from the core (see Fig. 1), they provide local distortion
fields similar to that of the original core droplet. By symmetry,
each droplet in a linear chain of satellites is separated by a series
of warped planes that lie perpendicular to the pointing directions
of each chain. Since the satellites have normal boundary
conditions, each separator plane is equivalent to a 2D disc with
radial boundary conditions. This means that a satellite situated

between two neighboring separator planes can act as a secondary
core, which acts as an additional docking space for much smaller
secondary satellites. The self-assembly process of producing
secondary satellites is very similar to that of the initial 3D
problem, but now the structures follow the vertices of regular
polyhedrons, centered at a secondary core (cf. Fig. 5). Figure 7
shows confocal microscopy images (taken from two different
perspectives) of a fractal structure with 2 steps of evolution. The
initial arrangement of the primary orbit satellites forms a
tetrahedral base structure with r=2.0 + 0.4, which is extended
at three of the four primary satellite chains into additional
secondary structures with deformed triangular symmetry or r =
2.9 +0.6. Applying Eq. (3) before averaging gives d = 2.1 + 0.4 for
the first evolution level and d=1.0+0.2 range for the second
evolution levels. With the aid of depth based color enhancement,
we can clearly see that the structures are three-dimensional and
follow the shapes described by our hypothesis.

We can extend this analogy further by allowing secondary
satellites to act as tertiary cores for much smaller quaternary
satellites, and so on. An example of this can be seen in Fig. 8a,
which shows a polarizing optical microscopy image of a fractal
structure progressing through several levels of evolving symme-
try. The structure consists of a tetrahedral base of primary
satellites (fourth primary chain hidden in the image due to the
viewing angle and the location of the focal plane) and extends
into a series of fractal structures with 3 or more steps of evolution.
This suggests that if there exists a sufficiently large number of
inclusions with a wide size distribution inside a radial nematic
droplet, then a fractal structure will form around the core.
Evaluating the fractal dimension of the first evolution level gives
d=4.1 with an undefined error, due to its divergence at r=1.
This implies that this fractal generator cannot be sustained in
subsequent evolution steps, as it will overlap itself in space. As
expected, the fractal dimension for the second level has a much
lower value of d = 0.9 + 0.1. The onset of fractal formation along
the initial satellite chain is determined by the difference between
Ny and N; (shown in Fig. 3), as well as the sizes of secondary
satellites relative to potential secondary cores. For example, if the
N; = Nj, then a fractal chain cannot form on the primary orbit
and the fractal onset must happen further along primary chain.
However, if the primary chain terminates at the primary orbit,
then a splitting of the chain can occur (e.g., Fig. 7).

In general, the Hausdorff dimension of a fractal is always greater
than its topological dimension3°, with lines producing fractals with
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Fig. 6 Octahedral satellite packing. Confocal microscopy image of a radial nematic droplet showing a structure with 6 primary orbit satellites formed by
water droplets with normal boundary conditions a and the corresponding color enhanced image b. Scale bar: 10 pm

Fig. 7 Fractal satellite packing. Confocal microscopy images showing a self-assembled fractal structure with 2 steps of evolution, formed by water
inclusions with normal boundary condition inside a radial nematic droplet. Images a, ¢ show different orientations of the same structure. Images b, d show

the corresponding visually enhanced equivalents. Scale bar: 10 pm

d> 1 and surfaces producing fractals with d > 2. In this problem, the
fractals are formed by the self-assembly of smooth spheres that are
separated by hyperbolic defects. This means that unlike the
Apollonian sphere packing, in which their surfaces touch and fill
all available space, there is no roughness associated with any of the
surfaces of these structures. Instead, the concept of fractals
manifests itself in the form of the tree-like structures of broken
up components, such that d > 0 (cf. Cantor dust?” in 3D has d = log
8/log 3 = 1.89). For a given evolution level, d describes the statistical

distribution of inclusion sizes, as it represents the logarithmic ratio
between the number of satellites and their sizes in relation to their
core. We also observe that equal inclusion sizes have the tendency
to form linear chains and a size jump is required to induce a fractal
split. The only exception to this occurs at the primary core, where
the split is symmetry driven. This means that all the relevant
size distributions that are necessary to form fractal structures are
described by the collection of fractal dimensions across the
evolution levels in each nematic droplet.
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Fig. 8 Large scale, complex fractal satellite packing. Polarizing optical microscopy photographs of a a nematic droplet with a fractal colloidal structure

(tetrahedral frame with another arm behind the focal plane) and b a nematic droplet (450 pm radius) with an incoherent cascade of fractal structures
formed by water inclusions with normal boundary conditions. A full waveplate is inserted at 45° to the crossed polarizers to see the 3D structure clearly.
Retardation difference from the waveplate is screened by the high retardation due to the thickness of the nematic droplet. Scale bar a: 10 pm, scale bar

b: 100 pm

Most of the first evolution structures from Fig. 3 have fractal
dimensions in the d € (1, 2) range, with a few exceptions close to
r=1. Since random motion is introduced during the creation of
high r systems, fractal structures are also likely to form, which
reduces the potential number of primary orbit satellites, as the
branches extend laterally and push each other away. After each
evolution step, both N and r typically increase, giving secondary
evolution fractal dimensions in the d € (0.75, 1.25) range. Due to
the limits of optical resolution, fractal structures with higher
orders of evolution become increasingly difficult to identify. The
presence of further iterations was observed but were not
individually distinguishable for accurate measurements. Addi-
tionally, the concept of a director field loses its meaning and
becomes undefined over length scales comparable to the
molecular scale. This imposes a lower limit onto the sizes of
satellites and the number of possible fractal evolution steps.
Beyond this point, liquid crystals cannot support topologically
stabilized structures. On the other hand, the effects of boundary
conditions on liquid crystals begin to lose coherence over
distances larger than a few hounded pm. In this case, the fractal
structures will still form locally but the directional symmetry will
become increasingly less prominent with greater structure size.
Figure 8b shows a nematic droplet with a 450 um radius with an
extremely complex fractal structure consisting of a large cascade
of incoherent evolutionary steps.

Discussion

In conclusion, we have investigated the properties of spontaneous
self-assembly of geometric structures formed from water inclu-
sion with normal boundary conditions inside radial nematic
liquid crystal droplets. Due to the vector-like behavior of nematic
liquid crystals, all disturbances in the director field are governed
by topology rules. We created permanent disturbances by adding
small water droplets with normal boundary conditions to the
nematic droplet domains, which resulted in the formation of
stabilizing hyperbolic defects in such emulsions. Our results
indicate that in geometrically unbiased nematic droplets, radial
inclusions spontaneously form 3D structures with symmetry
properties matching those described by the solutions to the
classical Thomson problem. Using numerical simulations of the
director field, we have shown that the ratio between the core and
the satellite inclusions plays a key role in the resulting shapes of

these self-assembled colloidal structures. We also provide a sim-
ple model to describe the maximal capacity of satellites around
the core as a function of their size ratios and the elastic constants
of the nematic liquid crystal. As expected, it suggests that as the
ratio between the splay and the bend elastic constants gets bigger,
a core can accommodate more satellites in its primary orbit.
Similarly, a larger core can provide more room for director
deformation and therefore, a higher number of satellites. The
most common shape found experimentally consisted of a core
with four dipolar satellite chains extending radially away from it
with tetrahedral symmetry. The shape was then altered by phy-
sical agitation of the samples near the nematic to isotropic phase
transition and deformation of spherical droplets to 2D disks to
obtain single linear chains and triangular structures. Following
this, we found that in systems with large distributions of satellite
sizes, the colloids self-assembled into fractal structures. The
number of symmetry evolutions depended on the distributions of
satellite sizes. Systems with large distributions were able to
achieve several evolutionary steps, surpassing the resolution of
optical microscopy. Due to the length scales of director fields, the
structures formed in nematic liquid crystals have a finite number
of possible fractal evolution steps in the formation process of
fractal colloids. This can be used for designing a variety of pho-
tonic structures with different complexity levels. For example,
microfluidics can be used to create a core that accommodate a
specific structure consisting of fluorescent intrusions or gold
nano-particles.

Methods

Experimental. Room temperature nematic E7 liquid crystal mixture (from Syn-
thon) and deionized water (containing 0.5 mass % of hexadecyl-
trimethylammonium bromide (CTAB) surfactant) were used to create fractal
structures inside liquid crystal droplets. CTAB provides radial alignment and
stabilizes the emulsions. Polydimethylsiloxane was used to create the double
emulsion microfluidics devices in accordance to the methods described in ref. 38.
Double emulsions of water in liquid crystal in water were achieved using a com-
bination of three Harvard Apparatus PHD ULTRA syringe pumps and controlled
shaking. Samples were extracted onto glass slides and covered with glass covering
slips and studied using a Leica 2700 cross polarizing microscope. Optical micro-
scopy photographs were taken using a Nikon D7100 camera. Counting the number
of primary satellites was performed by drying the outer water phase, which caused
the nematic droplets to roll and rotate the structures inside them. Confocal
microscopy was performed using a Zeiss Elyra PS1 microscope with an alpha Plan-
Apochromat x100 oil immersion objective and captured using an Andor EMCCD
detector.
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Numerical. Simulations of nematic director fields were performed using com-
mercial finite element analysis software (COMSOL 5.3a) through a minimization of
the Frank free energy’

5:57{ [K (V-n)* + Ky(n- Vxn)’ + K |nx (Vxn)[*] dV, (4)
J vV

with the following values of Frank elastic constants K; = 10.8 pN, K, = 6.5 pN and
K5 =17.5pN. The domain radius was set to be 30 um, satellite size was fixed to 1
pum and r (ratio of the core to satellite radii) was varied from 1 to 10 in 0.1 step
increments.

Data availability
The data that support the findings of this study are available in Research Data
Leeds Repository with the identifier https://doi.org/10.5518/469 (ref. ).
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