REVIEW

Vascular Mineralocorticoid Receptor: Evolutionary Mediator
of Wound Healing Turned Harmful by Our Modern Lifestyle

Lauren A. Biwer," Mary C. Wallingford,"? and Iris Z. Jaffe'

The mineralocorticoid receptor (MR) is indispensable for survival
through its critical role in maintaining blood pressure in response
to sodium scarcity or bleeding. Activation of MR by aldosterone in
the kidney controls water and electrolyte homeostasis. This review
summarizes recent advances in our understanding of MR function,
specifically in vascular endothelial and smooth muscle cells. The
evolving roles for vascular MR are summarized in the areas of (i) vascular
tone regulation, (i) thrombosis, (iii) inflammation, and (iv) vascular
remodeling/fibrosis. Synthesis of the data supports the concept that
vascular MR does not contribute substantially to basal homeostasis
but rather, MR is poised to be activated when the vasculature is
damaged to coordinate blood pressure maintenance and wound
healing. Specifically, MR activation in the vascular wall promotes
vasoconstriction, inflammation, and exuberant vascular remodeling

The transition by vertebrates to terrestrial life outside the
high sodium environment of the sea required a closed cir-
culatory system with tight control of water and electrolyte
homeostasis and the ability to rapidly heal wounds that
threaten vascular integrity. The machinery to produce
the mineralocorticoid hormone aldosterone developed at
this critical phase of vertebrate evolution.!? By activating
mineralocorticoid receptors (MR) in the kidney, aldoste-
rone promotes renal sodium reabsorption and potassium
excretion thereby conserving sodium in an environment
of scarcity. Like all steroid hormone receptors, the MR is
an intracellular receptor that is poised to translate systemic
hormonal signals into tissue-specific actions. MR activa-
tion produces rapid effects via cytoplasmic signaling and
long-term genomic effects by acting as a ligand-activated
transcription factor.?

The renin-angiotensin-aldosterone system (RAAS) is
triggered by a decline in blood pressure sensed by the kidney.
This culminates in renal MR activation and function to
restore volume and blood pressure homeostasis. The critical
role of MR in sodium reabsorption and volume maintenance
is evidenced in humans with pseudohypoaldosteronism, a
condition caused by MR inactivating variants characterized
by elevated plasma aldosterone, sodium wasting,
hyperkalemia, and neonatal death if not supplemented with
sodium.* Similarly, mice with global MR deletion have severe

with fibrosis. A teleological model is proposed in which these functions
of vascular MR may have provided a critical evolutionary survival advan-
tage in the face of mechanical vascular injury with bleeding. However,
modern lifestyle is characterized by physical inactivity and high fat/
high sodium diet resulting in diffuse vascular damage. Under these
modern conditions, diffuse, persistent and unregulated activation of
vascular MR contributes to post-reproductive cardiovascular disease
in growing populations with hypertension, obesity, and advanced age.
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dehydration, hyperaldosteronism, hyperkalemia, and death
unless rescued with sodium supplementation,®” supporting
the potential to model aspects of MR function in rodents.

It might be imagined that evolutionary pressure in the
face of terrestrial life would also select for mechanisms that
can restore vascular integrity in the face of acute injury.
Consider the fate of an early human after an unfortunate
encounter with a saber-toothed cat resulting in loss of a
finger (Figure 1, left). The RAAS would be triggered by
hypotension from bleeding and while renal MR activation
would contribute to slow volume restoration by sodium avid-
ity, survival would depend on rapid vasoconstriction, blood
clotting, infection control, vascular wound healing, and scar
formation (fibrosis). Beyond the renal epithelium, the MR is
expressed in non-epithelial cells including neurons, immune
cells, adipocytes, cardiomyocytes, and vascular endothelial
(EC) and smooth muscle cells (SMCs).

This review focuses on MR in the vasculature. MR has
been found in all vascular beds and vessel sizes tested
including the aorta, carotid, coronary, renal, and mesenteric
vessels, consistent with a role in global responses to vascular
stress via large conduit arteries and small resistance
vessels.*? In addition to aldosterone, the stress hormone
cortisol circulates in high abundance and can compete
with aldosterone for binding to MR. Cortisol is inactivated
by 11-beta hydroxysteroid dehydrogenase-2 (11BHSD2)
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Figure 1. Proposed evolutionary model for the detrimental role of vascular mineralocorticoid receptors with modern lifestyle. Recent studies support
the concept that mineralocorticoid receptors (MR) in the vasculature are poised to be activated in response to vascular injury to promote vascular
constriction, inflammation, thrombosis, remodeling, and fibrosis. Such effects are seen in animal models and humans in response to mechanical vascular
injury, obesity, hypertension, and aging. Such a localized vascular MR response might have benefited early humans by contributing to recovery from
traumatic injury and survival to reproduce. In the modern age, vessel damage from a sedentary lifestyle and poor diet promotes diffuse vascular MR
activation that contributes to post-reproductive cardiovascular diseases including hypertension, heart attack, stroke, aortic aneurism, and heart and

kidney failure.

in aldosterone-responsive tissues such as the kidney.!
11BHSD?2 has also been found in human EC and SMC,!}12
thus vascular MR can respond to aldosterone, although
a role for cortisol under conditions of stress has not been
ruled out. Substantial progress has recently been made in
our understanding of the role of MR in vascular function
based on in vitro studies and in vivo models using MR antag-
onist drugs or mice with MR levels modulated in specific cell
types. As the roles of MR in the vasculature were previously
summarized,'>17 this review focuses on the most current
advances and on contextualizing these data into an evolving
model in which vascular MR does not substantially regulate
basal vascular homeostasis but rather is poised to maintain
blood pressure and activate wound healing when necessary.

This review focuses on the role of vascular MR yet it
should be noted that MR signaling in myeloid cells also
impacts vascular inflammation and function and has
recently been reviewed elsewhere.!®-2! Here, we summarize
recent advances in our understanding of how MR activa-
tion in SMC and EC under conditions of vascular injury/
damage contributes to: (i) vascular tone, (ii) thrombosis,
(iil) inflammation, and (iv) wound healing with fibrosis. It is
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concluded that while all of these processes could be lifesaving
in the aftermath of an encounter with a saber-toothed cat,
they become maladaptive in an environment where our
most dangerous predator is our modern lifestyle (Figure 1).

Vascular MR in regulation of vascular tone

MR contributes to vessel tone in response to vascular
stress. Conduit arteries such as the aorta and carotid
contribute to vascular pulsatility and stiffness with little
impact on blood pressure control. Smaller diameter arteries
that contain SMCs, including mesenteric and coronary
resistance arteries, can influence systemic arterial pressure
and/or regional blood flow by modulating smooth muscle
myogenic tone. Ample data in mouse models support a role
for vascular MR in promoting a state of increased myogenic
tone, either by directly enhancing vessel contraction or
impairing vessel dilation. Comparison between published
studies reveals differences in the genetic models used, the
cardiovascular risk factors to which they are exposed, the
investigative methods, and the vascular bed tested. These
differences are summarized in Tables 1 and 2. In the text, we
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attempt to synthesize these data, focusing on the similarities
to gain insight into the overall role of MR in vasomotor
function. In all cases in which renal function was tested,
the influence of vascular MR on vessel function appears
to be independent of renal mechanisms as neither SMC
nor EC MR deletion affected renal sodium handling or salt
sensitivity of blood pressure.®?2-2* In the absence of vascular
injury or cardiovascular risk factors, deletion of MR from
SMCs or ECs had minimal effect on vasomotor function.
However, vascular MR contributes to increased vasomotor
tone under conditions of vascular stress.

SMC-MR contributes to vasoconstriction in hypertension
and aging  Young healthy mice with constitutive or induc-
ible knockout of SMC-MR (SMC-MR-KO mice) maintain
normal basal blood pressure compared to MR-intact lit-
termates.”>?> However, when hypertension is induced by
Angll, SMC-MR-KO mice have lower blood pressure and
decreased Angll-induced vasoconstriction in mesenteric
arteries.” Similarly, with aging, SMC-MR-KO mice have
lower blood pressure?*?* and decreased mesenteric myo-
genic tone and vasoconstriction.”? In MR-intact mice, AnglI
signaling contributes to oxidative stress that is necessary to
induce hypertension and is also prevented in the carotid
arteries of SMC-MR-KO mice.** One molecular mecha-
nism by which SMC-MR drives vasoconstriction with aging
involves ligand-independent repression of microRNA-155
that increases target gene expression including Cavl.2, the
pore forming subunit of the L-type calcium channel, and
the angiotensin type-1 receptor.?® Similarly, when renal arte-
riolar vasoconstriction was induced by cyclosporine, SMC-
MR-KO (but not EC-MR-KO) prevented L-type calcium
channel-induced vasoconstriction, thereby improving renal
function.”’” SMC-MR-KO has also been shown to protect
from the impairment of coronary vasodilation that occurs
after myocardial ischemia.?® To date, published studies com-
paring vasomotor function in the presence and absence of
SMC-MR (Table 1) have been performed only in male mice,
with the exception of 1 study exploring renal perfusion only
in females.?” Thus, whether SMC-MR controls vasocon-
striction by similar mechanisms in females remains to be
explored.

EC-MR contributes to endothelial dysfunction in response to
cardiovascular risk factors In addition to enhanced vessel
contraction induced by MR in SMC, MR activation in ECs
contributes to vascular tone regulation by impairing vaso-
dilation. Vasodilation mediators in ECs include potassium
channels that contribute to endothelial-derived hyperpolar-
ization (EDH) of the underlying SMCs and nitric oxide (NO)
or prostaglandins that are released from ECs and induce
SMC-mediated vasodilation. Studies with EC-MR-KO mice
generally reveal no changes in endothelial function under
healthy conditions; however, there are diverse effects of
EC-MR on vasodilation in response to cardiovascular risk
factors (Table 2).

Obesity is a potent contributor to cardiovascular disease
risk. One mechanism described in rodent models and
humans involves adipose tissue release of factors (including
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leptin) that increase aldosterone levels to activate MR, a
mechanism that is more prominent in females.’:%-36 An
early step in the development of cardiovascular disease is
impairment of EC function, as measured by a decreased
vasodilation to acetylcholine. In mouse models of obesity,
acetylcholine-induced vasodilation is impaired in large-
and small-diameter arteries, but this is prevented when
EC-MR has been knocked out (Table 2).28303! In addition
to obesity, hypertension induced by Angll or aldosterone
also impairs vasomotor function globally that is ameliorated
by EC-MR-KO.%?*?° Conversely, overexpression of EC-MR
induces hypertension with impaired mesenteric vasodilation
and enhanced constriction.® Similarly, changes in coronary
vasoconstriction induced by hypertension are attenuated
by EC-MR-KO.?* The vasodilatory dysfunction induced by
risk factors is EC mediated as evidenced by intact sodium
nitroprusside dilation, which depends only on SMC
function. Despite these general trends, further research
is needed to tease out mechanistic differences in each
experimental model and delineate EC-specific functions of
MR throughout the vasculature (Table 2).

One important variable to consider is sex. Virtually all
studies were performed in only 1 sex, a factor that might also
contribute to disparate outcomes. One recent study directly
compared the impact of obesity and hyperlipidemia on EC
function in males and females. Davel et al.*' demonstrated
a sex difference in the mechanism of risk factor-induced
mesenteric endothelial dysfunction, with males being more
dependent on NO and females on EDH. NO-induced dila-
tion was impaired by obesity and hyperlipidemia in males
with no apparent role of EC-MR. In contrast, endothe-
lial dysfunction induced by obesity and hyperlipidemia in
females was due to a decline in EDH and the improved dila-
tion in female EC-MR-KO mice was mediated by a com-
pensatory increase in NO.?! EC-MR may also contribute to
endothelial dysfunction by upregulating epithelial sodium
channel (ENaC) to induce EC stiffness and impair NO pro-
duction. Aldosterone-infused female mice developed aortic
endothelial dysfunction that was prevented in EC-MR-KO
or EC-ENaC-KO mice.”” Further exploration of these sex-
specific mechanisms is needed, but the data support the
potential for MR antagonists to prevent vascular dysfunc-
tion induced by cardiometabolic risk factors, particularly in
females.

MR in thrombosis

The vasculature allows blood to flow over a large surface
area to distribute oxygen while simultaneously supporting
rapid thrombus formation to maintain vascular integrity
when injured. Damage to the EC monolayer exposes the
underlying basement membrane, resulting in clot forma-
tion by interaction between the endothelium and platelets to
restore homeostasis until vascular repair occurs. Thrombosis
can become pathological with dysregulation of any compo-
nent leading to vascular occlusion that contributes to heart
attack, stroke, and limb ischemia.

Although some data support that aldosterone is pro-
thrombotic, the concept remains controversial and requires
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Vascular Mineralocorticoid Receptor

more investigation. It has been hypothesized that MR acti-
vation enhances thrombosis based on studies in cultured
SMC and EC in which aldosterone upregulated plasminogen
activator inhibitor-1 (PAI-1), thereby inhibiting fibrinolysis
and promoting thrombosis.**** Infusion of aldosterone in
rats, albeit at supraphysiological levels (30 pg/kg/h = 720 pg/
kg/day), decreased bleeding time and increased ex vivo
platelet adhesion to fibrillar collagen, supporting a pro-
thrombotic effect.*! If aldosterone indeed promotes coag-
ulation and thrombosis, inhibiting MR should antagonize
these effects. However, co-treatment with the MR antagonist
eplerenone with aldosterone did not restore bleeding time
despite decreasing platelet adhesion.**? The human data
are also conflicting. Some studies suggest that RAAS acti-
vation disturbs the fibrinolytic balance between activators
and inhibitors of plasminogen. Specifically, MR inhibition
in hypertensives shifted the balance toward fibrinolysis
independently of potassium, a key mediator of the coagu-
lation cascade.*® However, a large meta-analysis did not find
any impact of MR antagonism on the incidence of bleeding
or thrombotic events in human clinical trials.**

Aldosterone may be pro-thrombotic specifically in the
contextofvasculardamagewhich, likevasoconstriction, could
be induced by cardiometabolic risk factors or mechanical
damage. Aldosterone application to an intact, non-damaged
EC monolayer decreased thrombin formation.*> However,
ferric chloride induced-EC injury paradoxically resulted in
decreased thrombus formation in EC-MR overexpressing
mice in association with increased expression of the anti-
thrombotic endothelial protein C receptor.*> One limitation
to the interpretation of these data is that the EC-MR
overexpressing mice have increased blood pressure,” which
could be a source of vascular damage that complicates
the data interpretation. Thus, although it is tempting to
conclude that vascular MR promotes thrombosis specifically
when the vessel is injured, there are currently insufficient
and conflicting data, which limits such a conclusion. In
addition, some of the available data are confounded by the
use of supraphysiological aldosterone levels and comparison
of models with different blood pressures. Moreover, tissue-
specific effects of MR on thrombosis have not been explored.

MR and vascular inflammation

The healthy vasculature is an anti-inflammatory barrier.
However, in response to invading pathogens, SMC and EC
contribute to host defense by releasing chemokines and
expressing adhesion molecules to recruit inflammatory cells
and by increasing oxidative stress that, together with leukocytes,
combats local infection and prevents progression to sepsis and
death.*® Although this acute, localized vascular inflammation
is critical to survival from an infected wound, chronic diffuse
vascular inflammation due to cardiovascular risk factors
contributes to atherosclerosis development and triggers plaque
rupture, the cause of myocardial infarction and stroke.04748

In patients with cardiovascular risk factors, elevated
aldosterone levels are associated with increased risk of
myocardial infarction or stroke, independent of blood
pressure,*** prompting exploration of the role of MR

in inflammatory atherosclerosis (reviewed in Moss and
Jaffe’! and McGraw et al.>2). In vitro studies support a role
for SMC-MR and EC-MR in vascular inflammation by
promoting leukocyte recruitment and adhesion, respectively.
Specifically, conditioned media from aldosterone-treated
human coronary SMC, but not HEK293 cells, enhanced
monocyte chemotaxis.”® This was inhibited by spironolactone
and by anti-vascular endothelial growth factor receptor
type-1 (VEGFR1) blocking antibody, implicating MR and
VEGF signaling in the mechanism. In human coronary
ECs, aldosterone increased transcription and cell surface
expression of intracellular adhesion molecule-1 (ICAM1),
promoting leukocyte adhesion to EC in an MR-dependent
manner.!! Aldosterone-induced ICAMI transcriptional
regulation and leukocyte adhesion were prevented by
estrogen,'** supporting a potential mechanism for sex
differences in coronary disease outcomes that warrants
further exploration.

These in vitro mechanisms have recently been tested in
atherosclerosis models in vivo. MR inhibition was previously
showntoattenuate plaque progressionin severalatherosclerosis
models.>>* Conversely, in the apolipoprotein-E knockout
mouse (ApoE-KO), aldosterone infusion (at a low dose that
did not raise blood pressure) significantly increased plaque
size and the number of infiltrating monocytes, macrophages,
and T cells in aorta, as measured by flow cytometry.>
Aldosterone treatment increased vascular ICAM1 mRNA
expression and aldosterone-induced atherosclerosis was
prevented in ICAMI-deficient ApoE-KO mice.” The
specific role of EC-MR in atherosclerosis remains to be
explored. In the deoxycorticosterone/salt-induced model
of cardiac remodeling, EC-MR deletion prevented cardiac
inflammation® yet in the trans-aortic constriction model of
cardiac dysfunction, cardiac inflammation required ICAM1
but was independent of EC-MR (despite protection of
EC-MR-KO mice from systolic dysfunction in that model).>%>
Thus, further studies are needed to clarify the role of EC-MR
regulation of ICAM1 in distinct cardiovascular pathologies.

The specific role of SMC-MR was recently tested in
an ApoE-KO model with inducible SMC-MR deletion.
Despite in vitro data suggesting a pro-inflammatory effect of
SMC-MR activation, extensive studies in male mice showed
no effect of SMC-MR deletion on early or late atherogenesis
in either the aortic root or the brachiocephalic artery.%
Leukocyte infiltration was also not affected as SMC-MR-KO
did not affect the total number of leukocytes or the T-cell
or monocyte/macrophage subsets in the vasculature.®
Although MR in SMC has been implicated in vascular
calcification in vitro and in kidney disease models,®!-63
SMC-MR deletion also did not affect atherosclerotic
calcification in this model.®® Overall, the available data
support that aldosterone promotes, and MR blockade
attenuates, atherosclerosis and vascular inflammation. This
does not appear to require SMC-MR, but in vivo testing is
needed to determine MR requirements in other cell types
including EC (although macrophage MR deletion attenuates
atherosclerosis in mouse models®?).

Immune and EC production of reactive oxygen species
(ROS), particularly superoxide, is an evolutionary line of
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defense against bacterial and fungal infection. Aldosterone
activation of MR contributes to superoxide production by EC
in vitro.%>% The mechanism involves increased transcription
and plasma membrane translocation of subunits of the
nicotinamide adenine dinucleotide phosphate oxidase
including Nox2 and Nox4!!3%, p22phox?** and p47phox.%
In vivo, chronic aldosterone infusion increased vascular
oxidative stress in the cerebral circulation and this can be
prevented by Nox2-KO or EC-MR-KO.5”:¢8 In the ApoE-KO
model, MRantagonism similarly decreased vascular oxidative
stress and inflammation resulting in improved endothelial
function.® Normal EC metabolism generates oxidative
stress that is ameliorated by antioxidant pathways. However,
when ROS production exceeds antioxidant defenses in the
setting of cardiometabolic risk factors, ROS is no longer
beneficial and rather contributes to endothelial dysfunction
and atherosclerosis. Thus, EC-MR is strategically poised to
respond to vascular damage and invading pathogens by its
role in regulating pro-inflammatory and pro-oxidative stress
genes.

Vascular MR in wound healing and fibrosis

When physical vascular damage occurs, formerly quies-
cent SMCs migrate and proliferate to form neointima and
produce extracellular matrix proteins that restore arterial
integrity whereas re-endothelialization restores barrier func-
tion. Systemic MR antagonism with eplerenone attenuated
neointima formation in pig models of coronary injury, sug-
gesting a role for MR in vascular remodeling after injury.”%"!
A recent study showed a similar benefit of MR inhibition,
using the novel nonsteroidal MR antagonist finerenone, with
decreased SMC proliferation and neointima formation after
mouse femoral wire injury and attenuation of SMC prolifera-
tion and decreased EC apoptosis in vitro.”> Conversely, aldo-
sterone enhanced SMC proliferation and vascular fibrosis in
a mouse wire carotid injury model.”? Importantly, when the
contralateral uninjured carotid was examined, aldosterone
had no effect on the uninjured vessel structure, consistent
with the notion that MR is primed to respond only when
the vessel is damaged. Specifically, SMC-MR deletion did
not affect basal vessel structure yet SMC-MR-KO mice were
protected from carotid fibrosis after injury and from aldo-
sterone-induced SMC proliferation in injured carotids.”
EC-MR-KO did not affect cerebral artery structure (outer
diameter, inner diameter, or wall cross-sectional area) under
normotensive conditions but protected from hypertensive
remodeling.” There is a similar lack of effect of EC-MR-KO
on basal cardiac structure and function as measured by frac-
tional shortening and ejection fraction.®

Multiple pathways have been implicated in the mecha-
nism by which SMC-MR contributes to vascular healing
including Rho-kinase signaling, placental growth factor sig-
naling through VEGFR1, and galectin signaling (reviewed in
Koenig and Jaffe!®). The absence of SMC-MR did not affect
re-endothelialization after wire injury,’* yet re-endothelial-
ization after electrical injury was accelerated by finerenone”?
supporting a potential role for EC-MR in that process that
remains to be tested.
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In the setting of a traumatic injury, aldosterone induction of
vascular healing by promoting SMC proliferation and fibrosis
may be life-saving, however, when induced by internal wire
injury, exuberant neointima is often detrimental. Clinically rel-
evant scenarios include in-stent restenosis and vein graft fail-
ure where SMC neointimal proliferation limits patency after
vascular procedures. MR antagonism attenuated coronary
stent neointimal hyperplasia in swine models, but this ben-
efit has not been confirmed in humans.”®’%”” Bypass surgery
exposes the compliant vein to high arterial pressure resulting
in venous damage, neointimal hyperplasia, and high rates of
vein graft failure. MR is expressed in venous SMC and MR
expression is higher in explanted grafted veins compared to
normal venous tissue.”® In both a mouse model of aortic inter-
position vein grafting and a pig model of carotid interposition
vein grafting, MR inhibition significantly attenuated vein graft
remodeling.”*”® No studies have examined the potential ben-
efit of inhibiting MR in human vein graft patients.

Hypertension causes vascular damage that also induces
vascular remodeling. MR inhibition prevents vascular
remodeling in response to high blood pressure.®® In the
uninephrectomy/aldosterone/salt  hypertension  model,
SMC-MR deletion protected from vascular remodeling
and stiffness in association with decreased alpha-5 integrin
expression.?? Increased integrin expression and activation
contributes to vascular stiffness by enhancing interactions
between the SMC cytoskeleton and the extracellular matrix.
Eplerenone prevented inward hypotrophic remodeling of
both parenchymal arterioles and posterior cerebral arteries
in the Angll-induced hypertension model and EC-MR-KO
recapitulated these beneficial effects of global MR inhibi-
tion.”> MR antagonism also decreases vascular stiffness in
hypertensive humans when compared to the same degree of
blood pressure lowering with a beta blocker.®! Hypertension
is associated with increased risk of aortic aneurism forma-
tion and rupture in humans and in a recent mouse study,
eplerenone attenuated aortic aneurism progression in asso-
ciation with decreased vascular inflammation and expres-
sion of the matrix metalloprotease, MMP2.82

Another stimulus to vascular remodeling is aging. Aortic
stiffness measured by pulse wave velocity increases with age in
humans and is associated with increased cardiovascular dis-
ease risk independent of other risk factors.®>3* Multiple stud-
ies indicate that MR expression in SMC increases with age in
rodent vessels and cells.”>% In aging mice, MR antagonism or
SMC-MR deletion attenuated the progression of aortic stiff-
ness as measured by pulse wave velocity. The protective mech-
anism induced by MR antagonism or SMC-MR-KO involved
recruitment of an anti-fibrotic vascular gene expression pro-
gram in aged mice, with decreased MMP2 and connective tis-
sue growth factor expression and decreased vascular fibrosis.3

Overall, the data support that vascular MR becomes acti-
vated in response to injury to promote SMC proliferation,
neointima formation, remodeling, and increased vascular
fibrosis and stiffness. These potentially beneficial effects
of vascular MR in the setting of external traumatic injury
may contribute to cardiovascular morbidity when injury is
induced by revascularization procedures, hypertension, or
aging (Figure 1).
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How is MR activated to specifically respond to vascular
injury?

If indeed increased MR activity provides a selective
evolutionary advantage through its rapid response to
vascular injury and coordination of EC and SMC-mediated
wound healing, it is critical to understand the signals that
induce vascular MR activation and how those might be
dysregulated in our modern environment. In the setting
of hypotension from bleeding or sodium depletion, the
RAAS would be activated to increase circulating AnglII and
aldosterone levels. Aldosterone levels are also elevated in
obesity and in heart failure. Obesity is a growing epidemic
that preferentially affects women and the obesity-induced
rise in aldosterone is greater in females than males.?*
Similarly in animal models females are more susceptible
to obesity-induced microvascular dysfunction that can
be rescued by EC-MR deletion.*! Hyperaldosteronism is
also associated with resistant hypertension and obstructive
sleep apnea®”® (in part due to obesity) and hence could be
a source of SMC-MR activation to induce adverse vascular
remodeling leading to vascular stiffness and/or aneurism
formation with aging or hypertension.

Enhanced vascular MR activity could also be induced by
upregulation of MR expression in response to risk factors or
in local areas of vascular injury. Indeed, SMC-MR expression
increases in rodent arteries with aging?>® and in grafted
human veins exposed to arterial pressure.” This could explain
the enhanced MR activation even in the absence of changes
in hormone levels that may contribute to vasoconstriction,
fibrosis, and stiffness with aging and to vein graft failure.
Whether MR expression is changed in SMC locally in
response to wire or other mechanical injury has not been
tested. Similarly, whether MR expression changes in ECs in
response to cardiovascular risk factors remains to be explored
but this idea would be consistent with the development
of hypertension in mice in which MR is overexpressed in
ECs.? Early studies found that MR has 2 alternatively spliced
promoter regions that can be regulated by hormone receptors
and other transcription factors®; however, the mechanisms-
regulating MR expression in vascular cells has never been
explored. It is also possible that the cortisol-inactivating
11PHSD2 enzyme could be overwhelmed or dysregulated at
sites of injury or in times of stress resulting in MR activation
by corticosteroids, although this has not been formally tested.

Finally, MR can be activated in a ligand-independent
manner by rapid signaling pathways and posttranslational
modifications. AnglIl directly activates MR in SMC in
vitro? and SMC-MR is necessary for Angll-mediated
vasoconstriction and blood pressure elevation in vivo.?*?
Localized changes in vascular Angll signaling induced
by injury or aging could thereby contribute to SMC-MR
activation in a hormone-independent manner. MR can also
be activated by the small GTPase Racl, a mechanism that
contributes to cardiac and renal dysfunction in response
to various injury models.”*-2 Recently, protection from
ischemia-induced renal failure by MR inhibition was shown
to be mediated by SMC-MR via Racl activation in SMCs.”
Importantly, Racl can be activated by oxidative stress
or high sodium, potentiators of MR activation in aging,

obesity, or hypertension. Because localized vascular damage
also enhances vascular oxidative stress, the oxidative stress-
Racl-MR activation mechanism might also contribute to
MR activation, specifically in areas of vascular injury. Thus,
although further studies are needed to confirm specific
mechanisms, MR may be overexpressed or overactivated in
EC and SMC in response to conditions that are extremely
common in our modern society including obesity,
dyslipidemia, hypertension, vascular injury, and aging,
thereby contributing to the adverse vascular responses from
those risk factors.

CONCLUSION

Thethreat ofattack by asaber-toothed cathasbeenreplaced
by an environment in which life expectancy is increased and
characterized by physical inactivity and chronic exposure
of the vasculature to damage from high salt intake, hyper-
lipidemia, obesity, and glucose intolerance (Figure 1, right).
In this modern environment, one would rarely benefit from
the potential survival advantage of a receptor that is poised
to retain sodium in the kidney, promote vasoconstriction,
cell proliferation, and fibrosis in SMCs, and decrease vaso-
dilation and promote inflammation and thrombosis in the
endothelium. Rather, in this modern scenario, vascular MR
may contribute to hypertension and vascular stiffness with
aging and obesity, inflammatory atherosclerosis, stent and
vein graft failure, and cardiac and renal dysfunction. As
these disorders are post-reproductive, there is no evolution-
ary pressure to rectify this detrimental role of vascular MR.
Until we succeed at lifestyle modification, enhanced under-
standing of the mechanisms and consequences of vascular
MR activation can assist in developing strategies to block
MR activation by environmental factors, inhibit MR func-
tion once activated, or block the downstream pathways by
which MR contributes to adverse cardiovascular outcomes.
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