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Abstract

Objective: We investigated whether an automatic retinal image analysis (ARIA)

incorporating machine learning approach can identify asymptomatic older

adults harboring high burden of white matter hyperintensities (WMH) using

MRI as gold standard. Methods: In this cross-sectional study, we evaluated 180

community-dwelling, stroke-, and dementia-free healthy subjects and performed

ARIA by acquiring a nonmydriatic retinal fundus image. The primary outcome

was the diagnostic performance of ARIA in detecting significant WMH on MRI

brain, defined as age-related white matter changes (ARWMC) grade ≥2. We

analyzed both clinical variables and retinal characteristics using logistic regres-

sion analysis. We developed a machine learning network model with ARIA to

estimate WMH and its classification. Results: All 180 subjects completed MRI

and ARIA. The mean age was 70.3 � 4.5 years, 70 (39%) were male. Risk fac-

tor profiles were: 106 (59%) hypertension, 31 (17%) diabetes, and 47 (26%)

hyperlipidemia. Severe WMH (global ARWMC grade ≥2) was found in 56

(31%) subjects. The performance for detecting severe WMH with sensitivity

(SN) 0.929 (95% CI from 0.819 to 0.977) and specificity (SP) 0.984 (95% CI

from 0.937 to 0.997) was excellent. There was a good correlation between

WMH volume (log-transformed) obtained from MRI versus those estimated

from retinal images using ARIA with a correlation coefficient of 0.897 (95% CI

from 0.864 to 0.922). Interpretation: We developed a robust algorithm to auto-

matically evaluate retinal fundus image that can identify subjects with high

WMH burden. Further community-based prospective studies should be per-

formed for early screening of population at risk of cerebral small vessel disease.

Introduction

Stroke and dementia are major diseases in the 21st cen-

tury. Strategies to maintain and improve brain health can

alleviate global healthcare burden. Primary prevention has

the greatest impact on society and healthcare.1 To date,

however, there is a lack of simple, reliable, and

reproducible tool to monitor for brain resilience and cog-

nitive reserve, and to screen for asymptomatic subjects at

risk of developing stroke and dementia.2

Cerebral small vessel disease (SVD) is a disease of the

small arteries, arterioles, venules, and capillaries of the

brain. SVD is a major cause of stroke and cognitive

impairment, and often coexists with Alzheimer pathology
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in mixed-dementia.3 It is now recognized that white mat-

ter hyperintensities (WMH) is an important and inevita-

ble substrate for the development of symptoms in SVD.2

In particular, people with SVD and high burden of WMH

are at high risk of developing incident stroke and demen-

tia.2 SVD can further compromise health by an array of

disabling symptoms including parkinsonism, gait distur-

bance, urinary incontinence, mood, and behavioral

changes. Over the past decade, community-based studies

using MRI brain to detect WMH and SVD predicted risks

of stroke, cognitive decline, dementia, and death.4 Poten-

tial screening tools such as detecting white matter hyper-

intensities (WMH) by MRI, tau or amyloid deposition in

brain by positron emission tomography are promising

but often limited by cost, expertise, and availability for

population-based application. Moreover, lack of effective

dementia treatment options had prompted the identifica-

tion of biomarker to identify high-risk individuals for

early intervention and recruitment to clinical trials.1

Using retinal imaging to study brain disease, including

presymptomatic stroke and dementia, has been increas-

ingly studied in recent years.5–7 As an extension of the

brain, retinal microvasculature features reflect changes of

cerebral microvasculature, including vessel caliber, tortu-

osity, fractal dimensions, and retinopathy.8 This is usually

studied by optical coherence tomography (OCT) and reti-

nal fundus imaging, and has been applied to study Alz-

heimer’s disease, vascular dementia, frontotemporal

dementia, and dementia with Lewy bodies. Distinct reti-

nal features are commonly associated with stroke and

dementia patients. There is great potential and advantage

to apply retinal fundus imaging as a diagnostic tool for

population-based screening to identify at-risk subjects

with a high burden of WMH.

An automatic retinal image analysis system incorporat-

ing machine learning approach has the potential to become

a simple, rapid, and reliable tool for screening population-

at-risk of cerebrovascular disease and dementia. The

method is shown to be able to identify subjects with a high

burden of WMH in an asymptomatic population.

Methods

Study subjects

Subjects were prospectively identified from a community-

based cohort called CU-RISK (The Chinese University of

Hong Kong – Risk index for Subclinical Brain Lesions in

Hong Kong), which included stroke and dementia-free

healthy adults consecutively recruited between 2013 and

2016 from local community centers and community net-

work by advertisement of the study and word-of-mouth

in the centers.9,10 This CU-RISK study aimed to develop

a risk score for screening significant SVD in symptom-

free subjects based on putative clinical correlates and

risks factors for SVD. The inclusion criteria for CU-RISK

were (1) aged from 65 years or older; (2) functional

independence by a score of 20 on the 20-point Barthel

index and <2 on the Lawton’s Instrumental of Daily Liv-

ing Scale (IADL); (3) Cantonese speaking, (4) sufficient

sensorimotor and language competency for cognitive test-

ing; and (5) provided written informed consent. The

exclusion criteria were (1) history of clinical stroke or

transient ischemic attack ascertained by medical records

on the electronic Health Record (Clinical Management

System) of the Hospital Authority Hong Kong; (2) his-

tory of neurological or psychiatric conditions affecting

cognitive functions; (3) dementia determined by medical

history; (4) evidence of brain tumors, cerebral infarcts

larger than 20 mm in diameter or hydrocephalus on

MRI; (5) subjects with medial temporal lobe atrophy

(MTLA) as defined by a rating of >2 rated on coronal

images on T1-weighted brain MRI using the Scheltens’ 5-

point (0–4) scale to exclude prodromal Alzheimer’s dis-

ease. Additional exclusion criteria for retinal-image acqui-

sition include (6) patients with known retinal disease or

disease influencing vessel structure in color retina images,

such as mild diabetic retinopathy, age-related maculopa-

thy, central serous chorioretinopathy, postcataract extrac-

tion, and retinal pigment epithelial detachment.

Information on vascular risk factors including hyper-

tension, diabetes mellitus, hyperlipidemia, and heart dis-

ease were collected. Hypertension was defined as systolic

blood pressure of ≥140 mmHg or diastolic blood pressure

of ≥90 mmHg or current treatment with anti-hyperten-

sive medications. Diabetes mellitus was defined as fasting

plasma glucose ≥ 6.1 mmol/L or HbA1c ≥ 5.8% or cur-

rent treatment with blood glucose lowering medication.

Hyperlipidemia was diagnosed according to established

guidelines or current treatment with statins medications.

Heart disease was defined as history or current cardiac

arrhythmia, atrial fibrillation, left ventricular hypertrophy,

congestive heart failure, ischemic heart disease, myocar-

dial infarction, electrocardiographic abnormalities, or pos-

sible cardiac embolic source. Trained research assistants

administered the Hong Kong version of the Montreal

Cognitive Assessment (MoCA) according to standardized

procedures in the research clinics at the Prince of Wales

Hospital in Hong Kong. All clinical, cognitive, and MRI

assessments were performed within a median of 5-months

from each subject after recruitment. Written informed

consent was obtained from all subjects, and the project

was done according to the guidelines of the Declaration

of Helsinki and approved by the Joint CUHK-NTEC

Clinical Research Ethics Committee (CREC Ref. No.

2012.085).
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Brain MRI acquisition and analysis

Brain MRI was acquired in all subjects using a 3.0-T

scanner (Achieva 3.0 T TX Series, Philips Medical System,

Best, The Netherlands) capable of parallel signal acquisi-

tion to reduce scan time. Scanning parameters included

3D FLAIR images in the sagittal plane (TR/TE: 8000/

332 msec, TI: 2400 msec, FOV:230–230 mm, contiguous

slices, 0.55 mm (RL) thickness, reconstruction matrix:

208–208, NEX 1, time of acquisition = 6 min). Fat sup-

pression was achieved using an inversion delay pulse of

220 msec. This allowed 3D quantitative measurement of

T2 WMH. Sequences including T1-weighted, T2-

weighted, and diffusion tensor imaging was acquired

using a single-shot echo planar imaging technique with

the following parameters: actual TR/TE (msec) = 250/16;

flip angle = 40; number of repetitive readout pulses = 14;

field of view (mm) = 240 9 254; matrix = 68 9 69;

voxel size (mm) = 3.5 9 3.6 9 6. All scans were rated

according to STRIVE (Standards for Reporting Vascular

changes on Neuroimaging). A lacune was defined as a

well-circumscribed lesion equivalent to the signal charac-

teristics of cerebrospinal fluid on T1-weighted images and

measuring 2–20 mm in all dimensions in the subcortical

white and gray matter, basal ganglia, cerebellum, and

brainstem. On FLAIR, a lacune was hypointense and is

commonly surrounded by a hyperintense rim. WMH was

determined as ill-defined hyperintensities ≥5 mm on

FLAIR but isointense with normal brain parenchyma on

T1-weighed images. All scans were manually rated by

independent raters who are experienced in neuroimaging

markers of SVD. WMH severity was visually rated by the

age-related white matter changes (ARWMC) scale.11 The

global ARWMC was the ARWMC score of the most sev-

ere WMC region among 10 regions, with score 0, 1, 2,

and 3 representing nil, focal lesion, early confluent, and

confluent lesions respectively.12 Severe WMH was defined

as a global ARWMC score of ≥2. ARWMC score was

graded by two independent raters (one neurologist and

one trained research assistant) using anonymized MRI

data. There was high interrater reliability, and the intra-

class correlation coefficient between the raters for the

ARWMC global score was 0.909. In addition, WMH was

measured by a validated semiautomated algorithm seg-

mentation.13 In brief, WMH lesion maps were generated

in two steps, including segmentation and registration.

The calculation of WMH volume excluded acute infarcts

through examining cases with hyperintense regions both

on the FLAIR and DWI images. Manual correction of the

mapped lesions was performed if necessary. During the

registration step, the WMH lesion maps were normalized

to adjust for individual brain size differences. Quantifica-

tion of the WMH volume was performed by multiplying

the number of voxels of WMH by the number of voxel

spacing.

Retinal imaging acquisition and analysis

Topcon nonmydriatic retinal camera (TRC-NW6S, Tokyo

Optical Co, Tokyo) was used to capture the color retinal

image using 45° field of view centered on the fovea. The

length and angle measurement tools previously developed

as part of the ARIA algorithm were used to estimate the

length and angle of vessels. The retinal characteristics

measured were described in our prior studies and

included: (i) retinal vessel measurements; (ii) arteriole-

venous nicking and arteriole occlusion; (iii) hemorrhages;

(iv) tortuosity; (v) bifurcation coefficients; (vi) asymmetry

of branches and bifurcation angles.14

Automatic retinal image analysis

We used a fully automatic retinal image analysis (ARIA)

method to acquire and analyze retinal images in our study.

ARIA was applied and validated in different disease

cohorts, including stroke, diabetes, and chronic kidney

disease.14–16 The fully automatic retinal image analysis was

developed using R and Matlab computer software. The

detailed methods of the automatic retinal imaging analysis

method have been reported (US Patent 8787638 B2;

http://www.google.com/patents/US8787638). The methods

include the use of fractal analysis, high order spectra anal-

ysis, and statistical texture analysis. These approaches were

used to accomplish the overall estimation of the global

ARWMC score.

Statistical analysis and machine learning
algorithm

Demographic data (age, gender, years of education)

among subjects with low versus high ARWMC score were

assessed using two sample t-test and chi-square test or

Fisher’s Exact Test as appropriate. Logistic regression was

used to select variables that were different between the

two groups controlling for the demographic data. Odd

ratios and the corresponding 95% confidence intervals

were obtained by logistic regressions.

For the retinal related characteristics with ARIA analy-

sis, we used MathWorks Neural Network Toolbox

(www.mathworks.com) and applied two machine learning

based methods: (1) the pattern recognition neural net-

work (PRNN) for classification; and (2) the fitting neural

network (FNN) for regression analysis. Both technologies

are a type of the multilayer feed forward networks which

use backpropagation algorithm for training. PRNN can be

trained to classify inputs according to target classes. In
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the study we used PRNN to train the generic feedforward

neural network and classify the two global ARWMC score

classes (i.e., two categorical classes of global ARWMC

score ≥2 and global ARWMC score <2). On the other

hand, we used FNN to fit an input-output relationship

(i.e., retinal characteristics and WMH relationship). In

such technique, a feed forward network with one hidden

layer and enough neurons in the hidden layers can fit any

finite input-output mapping problem.17 In general, the

FNN with learning vector quantization NN (LVQNet)

consists of two layers. The first layer maps input vectors

into clusters that are found by the network during train-

ing. The second layer maps merges groups of first layer

clusters into the classes defined by the target data.

Whereas the total number of first layer clusters is deter-

mined by the number of hidden neurons, the larger the

hidden layer the more clusters the first layer can learn. In

details, our network that is used for function fitting is a

two-layer feedforward network, with a sigmoid transfer

function in the hidden layer and a linear transfer function

in the output layer. Such network has an advantage of fit-

ting multidimension mapping problems well, given con-

sistent data and enough neurons in its hidden layer. We

train the data by using Levenbeg-Marquardt backpropaga-

tion algorithm. Corresponding to the inputs of the above

networks, a set of profile patterns are generated using

ARIA automatic approach. The goal is to build a classifier

that can distinguish between global ARWMC score ≥2
and global ARWMC score <2 patients based from fundus

images. Notice that a corresponding reduced set of mea-

surements or ‘features’ that can be used to distinguish

patients between two categorical classes of ARWMC score

(and to estimate WMH) using trained PRNN (and FNN)

classifier. Such features will be obtained from our devel-

oped ARIA system, which include retinal vascular related

characteristics like central retinal venular equivalent cali-

bre (CRVE), central retinal arteriolar equivalent (CRAE),

and so forth.

In order to ensure consistency of the selected network

and to avoid overfitting we have separated the samples

into training set and testing set. After a model (network)

has been trained with good validation results, we then

used the test data to check its performance using resam-

pling method by resampling 10 times. We have also car-

ried out 10-fold cross-validation analysis to evaluate the

performance with comparable results confirming the con-

sistency of the model.

Sample size estimation

In order to obtain a sensitivity and specificity values of

0.85 or higher with a lower bound of the 95% confidence

intervals of at least 0.7, we need to have more than 50

subjects for the estimation for sensitivity and specificity.18

In this prospective study, we recruited subjects and

assessed WMH until we have more than 50 subjects with

global ARWMC grading ≥2. The analysis was carried out

once we have achieved the adequate number of cases with

more than double for subjects with global ARWMC <2.

Results

Figure 1 showed the study flow diagram. Two hundred

and sixty subjects were identified from the CU-RISK

cohort and recruited. All underwent successful MRI and

retinal image acquisition. 80 were excluded from analysis

due to respective MRI brains were performed more than

6 months from retinal image acquisition. A total of 180

subjects was used in the final analysis. The mean age was

70.3 � 4.5 years old. 70 (39%) were male. The mean edu-

cation was 7.9 � 4.7 years. The commonest vascular risk

factor was hypertension (n = 106, 59%), followed by

hyperlipidemia (n = 47, 26%) and diabetes mellitus

(n = 31, 17%).

The distribution of global ARWMC rating for WMH

was 0 (n = 34, 19%), 1 (n = 90, 50%), 2 (n = 43, 24%),

and 3 (n = 13, 7%) respectively. Subjects with ARWMC

rate 3 has the highest proportion with hypertension (92%).

Table 1 shows the comparison between subjects with sev-

ere WMH (global ARWMC rating of 2–3) and without

severe WMH (global ARWMC rating of 0–1). Severe

WMH was found in 56 (31%) subjects. These subjects had

a significant higher proportion with hypertension (79% vs.

50%, P < 0.001), but no significant difference between age,

education, gender, diabetes mellitus, hyperlipidemia, and

ischemic heart disease, as compared to subjects without

severe WMH. On MRI, severe WMH subjects had larger

mean WMH volume (15.1, 95% CI 10.3–20.0 vs. 3.5, 95%

CI 2.9–4.0 mL, P < 0.001) and presence of lacunes (14%

vs. 1.6%, P = 0.002). There was no difference for the pres-

ence of microbleed (34% vs. 25%, P = 0.28).

In a univariate logistic regression model for prediction

of severe WMH (global ARWMC rating of 2–3), only age

(OR 1.07, 95% CI from 1.00 to 1.15, P = 0.047) and

hypertension (OR 3.67, 95% CI from 1.77 to 7.60,

P < 0.001) were significant predictors. In multivariate

model, only hypertension (OR 3.41, 95% CI from 1.63 to

7.12, P = 0.001) remained significant, after adjusting for

age, and prespecified variables (education, diabetes melli-

tus, and hyperlipidemia).

All subjects had successful retinal fundus image acquisi-

tion and analysis (Table 2).

In the univariate analysis of the retinal characteristics,19

zone C length to diameter ratio total (LDRt), asymmetry

ratio of venule (Vasymmetry) and arteriole occlusion

(Aocclusion estp) were significantly smaller (P < 0.05);
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whereas zone C Central Retinal arteriolar equivalent cal-

iber (Zc CRAE) and bifurcation angle of vennule (BAv)

were significantly larger in subjects with severe WMH

(P < 0.05).

We also used all retinal characteristics with significant

values less than 0.1 as inclusion criteria for a logistic

regression analysis for the detecting severe WMH

(ARMWC ≥2). The sensitivity and specificity using a con-

ventional logistic regression only reached 0.464 and 0.871

respectively. When ARIA incorporating machine learning

approach was used, the sensitivity and specificity for the

overall classification becomes 0.929 (95% CI from 0.819

to 0.977) and 0.984 (95% CI from 0.937 to 0.997) respec-

tively. The positive and negative predictive values are

0.963 (95% CI from 0.864 to 0.993) and 0.968 (95% CI

from 0.915 to 0.990). We have also estimated the WMH

volume using similar approach and obtained a correlation

coefficient of 0.897 (95% CI from 0.864 to 0.922) between

observed and predicted WMH volume (log-transformed)

(Fig. 2).

Discussion

Our study demonstrated that automatic retinal image

analysis (ARIA) with a nonmydriatic retinal fundus image

can detect stroke and dementia-free community-dwelling

Figure 1. Patient flow diagram. Recruited and analyzed subjects for

ARIA and MRI detection of white matter hyperintensities (WMH)

assessed by Age-related White Matter Changes rating (ARWMC).

High burden of WMH was defined as ARWMC rating of ≥2 on MRI

brain.

Table 1. Baseline characteristics of 180 Chinese with (global ARWMC score ≥2) and without (global ARWMC score <2) severe white matter

hyperintensities on MRI brain.

Global ARWMC <2

N = 124

Global ARWMC ≥2

N = 56 P-value

Age, median (IQR)1, years 69.00 (66.25–73.00) 71.00 (67.00–74.00) 0.083

Education, median (IQR)1, years 7.00 (4.00–12.00) 7.00 (3.25–12.00) 0.932

Male, N (%)2 46 (37.1%) 24 (42.9%) 0.463

MoCA, median (IQR)1 23.00 (21.00–26.00) 22.00 (19.00–25.00) 0.053

Hypertension, N (%)2 62 (50.0%) 44 (78.6%) <0.001

Diabetes Mellitus, N (%)2 17 (13.7%) 14 (25.0%) 0.063

Hyperlipidemia, N (%)2 30 (24.2%) 17 (30.4%) 0.383

IHD, N (%)3 5 (4.0%) 3 (5.4%) 0.705

Smoker 0.735

Nonsmoker, N (%)3 105 (84.68%) 46 (82.14%)

Past smoker, N (%)3 17 (13.71%) 8 (14.29%)

Current smoker, N (%)3 2 (1.61%) 2 (3.57%)

Alcoholism

Nondrinker, N (%)3 105 (84.68%) 50 (89.29%) 0.477

Occasional (1 drink/week–month), N (%)3 8 (6.45%) 4 (7.14%)

Modest drinker (1–6/week), N (%)3 11 (8.87%) 2 (3.57%)

WMH volume, median (IQR)1, mL 2.53 (1.64–4.34) 10.01 (4.89–18.17) <0.001

Log-transformed WMH volume, mean (IQR)1 0.93 (0.50–1.47) 23.00 (1.59–2.90) <0.001

Presence of Lacunes, median N (IQR)3 2 (1.6%) 8 (14.3) 0.002

Presence of Microbleed, median N (IQR)2 31 (25.0%) 19 (33.9%) 0.281

BMI, body-mass index; WMH, white matter hyperintensities; ARWMC, age-related white matter change; IQR, interquartile range.
1Mann–Whitney U test.
2Chi-square test.
3Fisher exact test.
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subjects harboring significant burden of white matter

hyperintensities in their brains. ARIA is a quick, noninva-

sive, and convenient algorithm-based tool with an overall

performance of 93% sensitivity and 98% specificity in

detecting subjects with high burden of WMH, and can be

further validated as a diagnostic tool for population at

risk of cerebrovascular disease and dementia.

Hypertension is an established and significant risk factor

for cerebral small vessel disease, yet the causality remains

an enigma. In our current study, we have also found a

strong association between hypertension and severe WMH;

hypertension is the only significant clinical predictor in the

multivariate model (OR 3.4, 95% CI from 1.6 to 7.1,

P = 0.001) for prediction of WMC ARWMC grade ≥2.
However, patients with hypertension may or may not have

significant burden of WMH, supported by a global

ARWMC grade 0 (44%) and 1 (52%), highlighting that

this group of subjects are at risk-population that warrants

more accurate screening and monitoring for development

of WMH. On the other hand, early WMH changes

(ARWMC grade 1) was found in subjects without hyper-

tension; it would be of interest to explore whether the same

mechanism drives the development of SVD and hyperten-

sion, and subjects with early WMH changes should actively

be monitored and treated for hypertension at a lower

Table 2. Univariate analysis for retinal parameters by severity of WMH according to ARWMC grading.

ARWMC score <2 (n = 124) ARWMC score ≥2 (n = 56)

P-valueMean 95% CI Mean 95% CI

Left eye retinal parameters

Zc CRVE (lm) 204.49 203.51–205.46 205.82 204.45–207.19 0.125

sTORTa 1.0863 1.0860–1.0866 1.0858 1.0854–1.0863 0.115

sTORTv 1.0946 1.0943–1.0948 1.0943 1.0939–1.0946 0.160

sTORTt 1.0897 1.0894–1.0899 1.0893 1.0889–1.0897 0.086

LDRt 11.8925 11.7789–12.0060 11.6732 11.5092–11.8372 0.032

Vasymmetry 0.7149 0.7134–0.7163 0.7108 0.7087–0.7128 0.002

Exudates_estp 0.3402 0.3325–0.3480 0.3499 0.3371–0.3627 0.184

Right eye retinal Parameters

Zb CRAE (lm) 140.2900 139.86–140.72 140.8840 140.36–141.40 0.081

Zc CRAE (lm) 142.6592 142.19–143.13 143.4571 142.88–144.04 0.035

Zc CRVE (lm) 204.1346 203.63–204.64 204.8466 204.17–205.52 0.094

JEDa �0.4387 (�0.4444)–(�0.4331) �0.4307 (�0.4396)–(�0.4218) 0.124

ZbMWt 75.9177 75.7223–76.1131 76.1502 75.8929–76.4076 0.174

LDRt 10.6449 10.5387–10.7511 10.8429 10.7004–10.9854 0.035

BAa 70.9629 70.7520–71.1739 71.3946 71.0932–71.6960 0.067

BAv 70.8327 70.6937–70.9717 71.0548 70.8764–71.2332 0.023

Aocclusion estp 0.0859 0.0805–0.0913 0.0773 0.0715–0.0831 0.032

Zb CRVE, Zone B Central retinal venular equivalent caliber; Zc CRVE, Zone C Central retinal venular equivalent caliber; Zb CRAE, Zone B Central

retinal arteriolar equivalent caliber; Zc CRAE, Zone C Central retinal arteriolar equivalent caliber; sTORTa, Simple Curvature tortuosity arteriole;

sTORTv, Simple Curvature tortuosity venule; sTORTt, Simple Curvature tortuosity total; LDRt, Zone C length to diameter ratio total; Vasymmetry,

Asysmmentry ratio of Vennule; JEDa, Zone C Junctional exponent deviation for arterioles; BMWt, Zone B Mean Width total; Exudates estp, esti-

mated probability of exudates; BAa, branching angle arteriole; BAv, branching angle vennule; Aocclusion estp, estimated probability of arterioles

occlusion.

Figure 2. Correlation between observed white matter

hyperintensities (WMH) volume measured on brain MRI and predicted

by automatic retinal image analysis (ARIA). Good correlation

(R = 0.897) was observed.
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threshold of 130/80 mmHg as proposed recently.20 We

have found that traditional risk factors for SVD, namely

age and hypertension, do not effectively identify subjects

harboring high burden of WMH.10 Complementary diag-

nostic tools are much needed in clinical practice to identify

high-risk group for further clinical evaluations including

MRI brain and neuropsychological testing, which are more

resource intensive assessments.

This is the first study to apply machine learning, a

specific approach in artificial intelligence, and retinal

imaging to evaluate presymptomatic community-dwelling

adults harboring high burden of WMH. We are encour-

aged to see that the US Food and Drug Administration

has recently approved using an artificial intelligence-

based device to detect certain diabetes-related eye prob-

lems (https://www.fda.gov/NewsEvents/Newsroom/Pre

ssAnnouncements/ucm604357.htm). Artificial intelligence

methodologies are now being applied in real life applica-

tion of eye diseases. The CU-RISK study contained a

well-defined cohort of stroke- and dementia-free com-

munity-dwelling older adults with detailed clinical, neu-

ropsychological, and MRI profiles. ARIA was setup as a

quick and convenient retinal image acquisition on an

undilated pupil for easy application in the clinical setting.

The findings from fundus retinal images can be com-

pared with those parameters of retinal neuronal struc-

tures identified from more sophisticated retinal image,

such as OCT and angiogram; these can be correlated with

vascular and nonvascular retinal imaging markers of

dementia and other neurodegenerative diseases.5,8 Retinal

vessels share important features with cerebral small ves-

sels, including size and pathophysiological characteris-

tics.6 The proposed pathogenesis of SVD, including

endothelial damage, impaired cerebral autoregulation,

venous collagenosis, and cerebral hypoperfusion, are clo-

sely related to changes of the retinal vessel, thereby

strengthening the use of retinal imaging for evaluation.

The microvascular network changes in fundus images can

therefore act as a surrogate marker for diseased cerebral

vessels.6

ARIA can be incorporated in future prospective commu-

nity-based screening programs for population at risk of

cerebrovascular disease and neurodegenerative diseases.

Population with risk factors such as hypertension, diabetes,

and advancing age can have regular retinal image acquisi-

tion and automated analysis, and subjects with high burden

of brain lesions detected by ARIA can undergo further eval-

uation by healthcare specialist and MRI brain imaging,21

ideally also with an automated analysis.22 The cost-effec-

tiveness of this two-step screening process with ARIA and

MRI should be further explored. Presymptomatic subjects

with high burden of WMH can also be recruited for pri-

mary prevention clinical trials. More importantly, subjects

with high burden of WMH who are at risk of developing

cerebral small vessel disease may be identified early with

these screening algorithm; this would have tremendous

impact on healthcare and society by using technology to

prevent and fight against dementia and stroke.23,24

Summary

We developed a robust algorithm to automatically evalu-

ate retinal fundus image that can identify community

subjects with high burden of white matter hyperintensities

by MRI brain.

Future community-based prospective studies should be

performed for early screening of population at risk of

cerebral small vessel disease.
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