Skip to main content
. 2018 Sep 28;10(1):90–98. doi: 10.1039/c8sc03858a

Scheme 2. Zn2+ competition and transfer among PyAHs. (a) Zn2+ distribution in the mixture of 1 equiv. of 1A1B and 1A3B (3.5 mM each) and 0.5 equiv. of Zn2+. (b) Zn2+ distribution in the mixture of 1 equiv. of 1A1B and 1A2B (3.5 mM each) and 0.5 equiv. of Zn2+. (c) Zn2+ distribution in the mixture of 1 equiv. of N-methylated and N–H PyAHs (pA1B and bAhB) with different substituents on the R group of the hydrazide side (3.5 mM each) and 0.5 equiv. of Zn2+. (c) Zn2+ distribution in the mixture of 1 equiv. of N-methylated and N–H PyAHs with different substituents on the R group of the hydrazide side (3.5 mM each); (d) 0.5 equiv. of Zn2+ and 1 equiv. of Et3N. The CH2OCH3 group was merely used to improve the solubility of N–H PyAHs bearing a para NO2 group. In all cases, thermal equilibration was achieved by heating at 60 °C for 6 h. The size of the blue dots qualitatively indicates the relative amount of zinc complex within the pair of complexes formed in a given reaction.

Scheme 2