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Abstract

Due to excellent separation capacity for complex mixtures of chemicals, comprehensive two-

dimensional gas chromatography (GC × GC) is being utilized with increasing frequency for 

metabolomics analyses. This review describes recent advances in GC × GC method development 

for metabolomics, organismal sampling techniques compatible with GC × GC, metabolomic 

discoveries made using GC × GC, and recommendations and best practices for collecting and 

reporting GC × GC metabolomics data.
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1. Introduction

Metabolism, which is the sum of chemical reactions of an organism, can be investigated at 

multiple scales, from a singular biochemical reaction, to metabolic pathways, to cellular, 

multicellular, tissue, organism, and population-scale analyses. As a part of the functional 

genome [1], metabolic analyses shed light on the translation of genes, transcriptomes, and 

proteomes to phenotypes, and the influence of the environment on this process. 

Characterizations of changes in the metabolome as a function of an external or internal 

perturbation are important for understanding how development, disease, diet, toxins, 

medications, stress, the microbiome, etc. govern living systems, and metabolome studies are 

therefore relevant to a broad range of the basic biological sciences (Fig. 1). Metabolome data 

are also useful in the applied sciences and industry, and consequently are of high economic 

importance; for instance, metabolome data play a central role in the discovery of new 

pharmaceutical targets and diagnostic biomarkers, in the production of fermented foods and 

beverages, and in the development of novel biosynthetic pathways and bioremediation 

strategies (Fig. 1).
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As defined by Fiehn in a seminal review of metabolic analyses published in 2002 [2], studies 

typically fall into four broad categories based on the amount of the metabolome that is 

characterized, and the degree to which metabolites are identified:

1. Target analysis to measure the substrate or product of an enzyme or group of 

enzymes,

2. Metabolite profiling to identify and/or quantify a class of metabolites (e.g., fatty 

acid methyl esters (FAMEs)),

3. Metabolic fingerprinting to rapidly classify samples, where individual 

metabolites are not identified (e.g., via direct-injection mass spectral methods 

[3]), and

4. Metabolomics to comprehensively analyze the metabolome (or large fractions 

thereof), including identifying and quantitating individual metabolites.

Metabolomics aims to universally detect, characterize, and quantify all metabolites in a 

biological system [4], but of all of the ‘omics approaches (i.e., genomics, transcriptomics, 

proteomics), metabolomics is the most analytically challenging. Like mRNA transcripts and 

proteins, metabolites can be present in hugely disparate concentrations, from single 

molecules to mole fractions, and the absolute and relative concentrations are context 

specific. However, unlike nucleic acids and proteins, made up of combinations of 4 and 22 

chemical moieties, respectively, the metabolome contains thousands to hundreds of 

thousands of unique chemical species [5]. No single analytical platform can separate and 

detect all metabolites in a specimen, and to-date, even in the extensively studied human 

metabolome that is predicted to contain over 114,000 total metabolites, more than 80% are 

yet to be detected [5]. The key to advancing the field of metabolomics is developing the 

analytical tools to detect, identify, and quantify unknown metabolites, the software tools to 

manage and process large quantities of raw metabolomics data, and the chemometric tools to 

extract information from the data [2, 5].

Due to excellent separation capacity for complex mixtures of chemicals, comprehensive 

two-dimensional gas chromatography (GC × GC) is being utilized with increasing frequency 

for metabolite profiling and metabolomics analyses [4]. Typically, when compared to one 

dimensional gas chromatography (GC), three to ten-fold more peaks are detectable using GC 

× GC [4], and therefore, GC × GC metabolomics is rapidly increasing the metabolic catalogs 

for microbes [6, 7], plants [8], animals [9], and humans [10]. Here, we review recent 

advances in GC × GC method development for metabolomics, organismal sampling 

techniques compatible with GC × GC, and a selection of GC × GC metabolomic 

applications and discoveries that, in our opinion, will push the boundaries of their fields. 

Additionally, we provide recommendations and best practices for collecting and reporting 

GC × GC metabolomics data and perspectives on the future directions of GC × GC in 

metabolomics. An excellent review of GC × GC and metabolomics was published by 

Almstetter, et al. in 2012 [4], so we have focused our efforts on reviewing studies that have 

been published since.
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2. Method development for GC × GC metabolomics

There have been significant efforts and advancements in creating robust methods for 

generalized GC × GC analyses. However, there is still great need for the development of 

methods specialized for metabolomics, particularly validated protocols for specimen 

preparation, sampling, data collection, and data processing. Other reviews in this Special 

Issue summarize advancements in modulators, stationary phases, mass spectrometry, and 

novel instrumentation, but a few studies that are specifically focused on methods for 

metabolomics are reviewed here.

2.1 Sampling and sample preparation

Analytical robustness in metabolomics is significantly impacted by uneven extraction 

efficiencies across chemical families as well as sample inhomogeneity in solid and semi-

solid specimens. Therefore optimized methods for sampling and sample preparation are 

critically important. Several recent studies explored the impact of sample preparation on the 

GC × GC metabolomes of tissues and viscous biofluids, and provide recommendations for 

obtaining more comprehensive and reproducible metabolomes.

The metabolic profiling of organs and tissues has been explored as a strategy to obtain a 

variety of information about human health, however, the amount of blood in the samples can 

distort the information gained from these approaches. To explore this, Ly-Verdú, et al. used 

GC × GC with time-of-flight mass spectrometry (TOFMS) to study the effects that 

phosphate buffered saline (PBS) perfusion may have on the metabolite composition of the 

liver, and whether or not perfusion may constitute an essential experimental step in liver 

profiling [11]. Livers were collected from healthy male mice, and were either perfused with 

PBS or unperfused prior to harvesting, homogenization, extraction, derivatization, and GC × 

GC analysis. Results following multivariate analysis revealed more than 35 metabolites 

significantly differed between the profiles of unperfused and perfused livers. The authors 

observed that the GC × GC metabolomes of perfused livers were slightly less variable and 

concluded that the presence of blood metabolites can interfere with interpreting liver-

specific metabolism in some cases. As a result, the authors suggest that the choice to perfuse 

organ and tissue samples must be carefully considered in the context of each study 

hypothesis since the metabolome will be influenced by the presence or absence of blood.

Sputum is an oft-used specimen for lung metabolomics analyses, but its high viscosity and 

inhomogeneity can impact the recovery and reproducibility of metabolites. To determine the 

best pretreatment method for sputum prior to chloroform/methanol/water extraction, 

derivatization, and GC × GC analyses, Schoeman, du Preez, and Loots compared four 

protocols using sputum spiked with Mycobacterium tuberculosis, the causative agent of 

tuberculosis (TB) [12]. The four methods evaluated included incubations with 1) a 1:1 v/v 

ratio of sputum and Sputolysin (a concentrate of dithiothreitol in phosphate buffer), 2) a 1:1 

v/v ratio of sputum and 0.5 N NaOH with 20% w/v N-acetyl-L-cysteine, 3) a 1:2 v/v ratio of 

sputum and 1 N NaOH, and 4) a simple homogenization of sputum with 45% ethanol in a 

1:2 v/v ratio. In the first three methods the pretreated mixtures were centrifuged and the cell 

pellets harvested for further extraction, and in the fourth method the entire homogenate was 

retained and dried prior to CHCl3/CH3OH/H2O (1:3:1) extraction and silylation. By 
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analyzing the extraction efficiency (i.e., number and intensity of compounds extracted), 

repeatability, limits of detection (LOD), and the predictive accuracy of biomarkers selected 

from the GC × GC metabolomes, they determined ethanol homogenization is the superior 

pretreatment method, which allowed them to identify 19 metabolic biomarkers of TB using 

only 250 μL sputum. While it is not surprising that the ethanol extraction method, which 

retains the entire sputum sample, produces the greatest number and concentration of 

metabolites (roughly 80% more than Sputolysin, in second place), it is interesting to note 

that it also generated metabolite profiles that were highly discriminatory between the M. 
tuberculosis spiked sputum vs. unspiked controls and these metabolites correctly classified 

TB-positive vs. TB-negative patient samples. These data suggest that the secreted M. 
tuberculosis metabolites serve as useful biomarkers, not just the intracellular metabolites, 

which may be the key to diagnosing the presence of TB disease using sputum specimens 

with typically low bacterial cell densities (< 105 cells/mL).

The success of untargeted metabolomics studies that utilize relative quantitative data (e.g., 

multi-marker studies, biomarker panel discoveries) relies upon the ability to reproducibly 

and quantitatively extract a wide variety of metabolites while mitigating matrix effects. 

Pérez Vasquez, Crosnier de bellaistre-Bonose, et al. developed a novel double extraction 

method to capture additional urine metabolites, and analyzed the derivatized compounds by 

GC × GC-qMS [13]. The first urine extraction was modified from a commonly-used 

procedure wherein urea is removed via urease incubation, then the organic acids are 

extracted via a liquid-liquid extraction with ethyl acetate. They performed the second 

extraction on the remaining aqueous phase, which was first incubated with triethylamine at 

pH 9, then extracted recursively with tetrahydrofuran. The organic phases from both steps 

were pooled and silylated for analysis. This time-intensive sample preparation protocol 

combined with greater peak resolution achieved by GC × GC-qMS facilitated the detection 

of 92 additional compounds in urine compared to a commonly-used sample preparation 

method and GC-MS analysis. The validated GC × GC method is used in their hospital to 

analyze urine samples of children with neurological disorders of unknown origin, and the 

authors posit that their approach may be adaptable for metabolic profiling of other body 

fluids, such as cerebrospinal fluid, saliva, or breath condensates.

Marney, Synovec, and colleagues explored how the ratio of sample mass to solvent volume 

impacts the extraction efficiency of soluble metabolites from mouse heart tissues by 

measuring the GC × GC-TOFMS signal intensity of eight representative metabolites: 

fumarate, malate, glutamate, citrate, succinyl-CoA, myo-inosotol, glycerol-3-phosphate, and 

glycerol [14]. By recursive extraction experiments on 40 mg tissue in 1 mL solvent (3:1:1 

v/v/v CHCl3/CH3OH/H2O), they determined that five of the metabolites were quantitatively 

extracted on the first round, while fumarate, glycerol, and citrate required four to five 

extractions to achieve quantitative results. To determine a ratio of tissue mass to solvent 

volume that would yield more universally quantitative extraction in a single step, they 

measured the linearity and reproducibility of each metabolite when using 2 mL solvent to 

extract tissue at four masses ranging from 5 – 40 mg. They found that a 20 mg sample 

provided an average relative standard deviation (RSD) of 20-30% in their metabolomics 

analyses, which was sufficiently low to detect relevant metabolic changes in their 

experiments. These data show that efforts to optimize extraction efficiency and enhance 
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reproducibility prior to specimen analysis will yield higher quality relative quantitation data 

when extraction is a significant source of variation in an experiment.

Uniform extraction efficiency is also a concern for volatile metabolomics analyses in which 

a sorbent is used for sampling. Solid phase microextraction (SPME) has become an essential 

gas phase sampling technique, and several sorbents are commercially available to optimize 

sampling for each investigation. Purcaro, et al. conducted an analysis of five different SPME 

fibers consisting of combinations of three sorbents – divinylbenzene (DVB), carboxen 

(CAR), and polydimethylsiloxane (PDMS) – to determine the best fiber and sampling 

conditions for analyzing the volatile metabolites of cell cultures infected with human 

rhinovirus [15]. Based on the normalized peak areas of 12 volatile and semi-volatile 

standards extracted from the cell culture media at 43°C for 30 min, they identified the 

DVB/CAR/PDMS triphase fiber as the best option for their analyses as it yielded the highest 

chromatographic peak areas. They further optimized their sampling method by using a 

central composite design and response surface modeling to identify the best time (15 – 45 

min) and temperature (37 – 50°C) combination to yield the highest peak intensities for each 

individual standard. While six of their standards were modeled to produce the highest peak 

areas when sampled at 43°C for 30 min, the other six standards did not produce peak area 

maxima, and therefore quantitative sampling may not be achievable under the experimental 

parameters that were tested. Because SPME sampling is often performed in parallel to GC – 

GC analysis, there are practical limits to the length of the sampling period, which are usually 

limited by the duration of the GC – GC runtime. Therefore, unequal extraction rates are a 

significant concern for relative quantitation by SPME. Another factor that can impact 

quantitation is interanalyte displacement, which has been of persistent concern for 

DVB/CAR/PDMS triphase fibers, and could have played a role in the differences in optimal 

sampling conditions for the 12 standards used by Purcaro and colleagues. To determine the 

extent of this problem among SPME fibers, Risticevic and Pawliszyn analyzed the 

performance of seven commercial phases, measuring analyte extraction efficiency and 

sensitivity, desorption carryover, linear dynamic range, and interanalyte displacement by 

performing headspace (HS)-SPME on apple homogenates and analyzing the volatile profiles 

using GC – GC-TOFMS [16]. The DVB/CAR/PDMS triphase coating outperformed other 

phases on extraction efficiency, as reported by Purcaro and colleagues [15], but were also 

more prone to carryover and interanalyte displacement of a subset of metabolites in the 

apples. However, decreasing the extraction time significantly improved both issues, with the 

tradeoff of increasing the LOD for some analytes.

The physical properties of samples (e.g., ionic strength) also influence the number and 

concentration of volatile metabolites that are detected, and salt is routinely used to increase 

the partitioning of semi-volatile compounds from the liquid phase to the headspace. In a 

comprehensive analysis of urine volatile metabolomes by HS-SPME and GC × GC-TOFMS, 

Rocha, et al. considered the influence of pH on metabolite detection [17]. When comparing 

chromatograms of aliquots of the same urine sample at pH 5.8 (physiological), pH 2.0, and 

pH 12.0, more than 40% of the approximately 700 GC × GC peaks could be tentatively 

identified in the pH 2.0 and pH 12.0 samples, whereas only 163 compounds were identified 

in the physiological sample (pH 5.8). The highest chromatographic area and compound 

numbers were obtained under acidic conditions; therefore Rocha, et al. concluded untargeted 
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urine volatile metabolomics should be performed at pH 2.0. However, they also noted that 

targeted analysis or metabolite profiling might be more appropriate at a higher pH, 

depending on the metabolites of interest.

2.2 Instrumentation

The majority of GC×GC analyses – metabolomics analyses included – are conducted using 

cryomodulation, which generates peak widths on the order of 100 ms. The narrowness of the 

peaks necessitates using MS detectors that can collect full scan spectra at a rate of 100 Hz to 

facilitate accurate peak quantitation and deconvolution. TOFMS is the most common 

method of ion separation used with GC × GC, capable of full spectrum collection rates up to 

500 Hz, but these instruments are expensive, which limits accessibility. Compared to 

TOFMS, quadrupole mass spectrometers (qMS) are comparatively inexpensive, generally 

have a smaller footprint, and provide lower LODs via selected ion monitoring (SIM). 

However, typical “fast” qMS instruments have maximum acquisition rates of 20,000 amu/s, 

and therefore the mass spectral scan range will be restricted to 200 amu to meet the 

minimum scan rate for cryomodulation, which is often too narrow for metabolomics 

analyses, but can be sufficient for metabolic profiling.

GC × GC flow modulation is gaining in popularity and market share due to the significant 

advantage that it reduces consumable costs by forgoing the need for cryogens. Flow 

modulation produces broader peaks than cryomodulation, which reduces peak capacity and 

increases LODs, but the wider peaks are more compatible with qMS detectors. Tranchida, 

Mondello, and colleagues utilized qMS in a study to optimize a flow-modulated GC × GC 

method for the metabolic profiling of FAMEs [18]. After optimizing column diameters, gas 

flows, temperature programming, and modulation periods, they identified FAMEs in fish oil 

and human serum with limits of identification in the range of 100-200 pg on column, and 

limits of quantification (LOQ) as low as 3.4 pg in SIM mode. These results demonstrate that 

GC × GC-qMS is well suited for metabolite profiling, using only a few microliters of 

biofluid or micrograms of cells for analysis. Weinert, et al. set out to optimize GC × GC 

equipped with a fast-scanning qMS detector for large-scale untargeted metabolomics, and 

compared their results to TOFMS [19]. Their GC × GC-qMS method provided good 

separation in under an hour for 90% of the urine analytes detected by TOFMS. Scanning the 

range of m/z 60 – 500 at the maximum rate on the qMS (20,000 amu/s), they typically 

obtained 7 - 9 data points per peak above 10% peak height, providing good peak area and 

height precision (2.7 % and 2.4 % mean RSD, respectively). A potential concern with qMS 

is mass spectral skewing, which negatively impacts mass spectral library matching and peak 

alignment across chromatograms. Weinert, et al. quantitated skewing by a variety of metrics, 

observing 15 % mean RSD for apex spectra relative intensities (range 6.0 – 29.8 %) when 

they included trace-level peaks, and 10 % RSD (range 5.9 – 21.6 %) when trace peaks were 

excluded. While skewing was not insignificant, the quality and reproducibility of the apex 

spectra was sufficient for aligning the majority of peaks across their samples.

The application of high resolution (HR) mass spectrometry to GC × GC metabolomics is in 

its infancy, representing only three percent of the metabolomics studies published since 2012 

(Appendix Table) [20-22]. The impact of using HRMS is greatest for untargeted 
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metabolomics, where the accurate mass data provides molecular formulae for unknown 

compounds. However, their use remains niche because GC × GC-HRMS instruments are 

expensive, which precludes them from being purchased by most independent investigators. 

Further, the high resolution analyses generate very large data files, which makes them less 

amenable than nominal mass detectors for large scale comparative metabolomics studies for 

biomarker identification. As GC × GC metabolomics studies mature to the point of 

confirming the chemical identities of metabolites that were putatively identified in nominal 

mass analyses, the logical next step will be to obtain accurate mass data, and with that the 

proportion of publications that include GC × GC-HRMS data will increase.

Compared to MS detectors, vacuum ultraviolet absorption spectroscopy (VUVAS) has two 

significant hardware advantages: a small footprint and a lack of intensive vacuum 

requirements. Gruber, Groeger, et al. used a cryomodulated GC × GC-VUVAS to analyze 

four breath samples from an individual before and during a glucose challenge [23]. Results 

showed that detection with VUVAS, with selective monitoring for aromatics, provided 

similar performance to GC × GC-TOFMS, and gave good detection for small-oxygenated 

volatile metabolites (e.g. alcohols and ketones).

2.3 Data processing, analysis, and visualization

The ultimate goal of any GC × GC metabolomics analysis is to turn the data collected into 

chemical and biological information, which is strongly dependent upon reliable methods for 

processing, analyzing, and visualizing the data. The development of methods for GC × GC 

data processing and analysis is a rapidly-growing area, including novel approaches designed 

for metabolomics, or validated using metabolomics data [24-31]. Because this important 

topic is outside the authors’ area of expertise, we refer readers to the GC × GC 

chemometrics review in this Special Issue and other reviews [32] for details on recent 

advancements and recommendations in data processing.

3. Applications of GC × GC in metabolomics

Due to the complexity of the metabolome and the heterogeneity that exists within and 

between organisms, many metabolomics studies are begun using reductionist models (e.g., 

cell culture), and then may graduate to more complex model systems (e.g., animal models), 

biospecimens (e.g., urine, blood, tissue), and ultimately, living organisms in natural and 

artificial environments. While the in vitro experiments may lack direct translation to 

organismal-level metabolism in native environments, they do provide important information 

on fundamentals of metabolism, with broad accessibility and low costs (Fig. 2). In this 

section we highlight applications of GC × GC to in vitro cultures, analysis of biospecimens, 

and organisms, and we review studies that used interesting biological and analytical designs 

to investigate the underlying mechanisms of metabolism and the roles metabolites play in 

multitrophic interactions. The handful of studies we review in this section were selected to 

demonstrate how GC × GC metabolomics studies can facilitate discoveries and push the 

boundaries of their fields. A more comprehensive list of GC × GC metabolomics studies 

published between the end of 2011 and June 2018 is available in Appendix Table.
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3.1 In vitro analyses

The recent implementation of GC × GC for untargeted metabolomics of bacterial cultures 

has vastly expanded the volatile metabolome (or “volatilome”) catalog for human pathogens, 

which have been studied for decades using GC-MS. Bean, Dimandja, and Hill pioneered the 

use of GC × GC for untargeted bacterial volatile metabolomics with a characterization of the 

volatilome of Pseudomonas aeruginosa strain PA14, detecting 56 chromatographic peaks 

associated with the bacterium, which nearly doubled the published volatilome of this well-

studied organism [33]. The ability to detect more chemical diversity in in vitro samples via 

GC × GC has facilitated the exploration of the biological diversity within species, and 

underscores the degree to which study design impacts the volatilome. In order to investigate 

strain-to-strain diversity, Bean, Rees, and Hill used GC × GC to compare the volatilomes of 

24 clinical isolates of P. aeruginosa [7]. They were able to detect 391 chromatographic peaks 

associated with P. aeruginosa, of which only 70 volatiles were detected in all 24 isolates, 

termed the core volatilome. Using accumulation and rarefaction curves of the pan-

volatilome and core volatilome, respectively, they showed that they analyzed a sufficient 

number of samples to capture the volatilome diversity of P. aeruginosa clinical isolates under 

the studied conditions. Their curves also show that to approximate the core metabolome 

(with a 50% inflation in its size), a median of 12 and minimum of three isolates were 

required, and the pan-volatilome – or the collection of all volatile metabolites produced – 

required a median of 14 and minimum of six isolates to cover 95% of the metabolome. 

These data demonstrate that defining the metabolome of a species based on a single 

specimen (or a small collection of specimens) is likely to be misleading.

Growth conditions can also significantly influence the microbial metabolome in in vitro 
analyses. In a study of nine clinical Klebsiella pneumonia isolates grown in four rich media 

(lysogeny broth, brain heart infusion, Mueller-Hinton broth, and tryptic soy broth), a total of 

365 K.pneumoniae-associated volatiles were detected by GC × GC-TOFMS, of which only 

10% were conserved across all media [34]. Using principle components analysis (PCA) of 

the volatilomes, Rees, Hill, and colleagues showed that the bacterial samples clustered based 

on their growth medium and not bacterial strain. This finding was true even when only the 

36 volatiles that were conserved across all four media were used as variables in the PCA. 

Therefore, the volatilome of K. pneumoniae is strongly dependent on the growth medium 

used, and the authors conclude that the choice of medium should be carefully considered in 

microbial metabolomics studies. Together Rees’s [34] and Bean’s [7] findings underscore 

the challenge in capturing the essence of an organism’s metabolome with a single set of 

experiments, much less identifying in vitro growth conditions that can robustly mimic the in 
vivo infection environment. However, these experiments are still useful; the more variations 

in in vitro growth conditions we explore, the more we can understand the broad metabolic 

capabilities of individual organisms.

3.2 Animal models of human disease

Primates, pigs, mice, and rats are used extensively in biomedical research to model human 

diseases and treatments, and the use of GC × GC to measure metabolic changes in these 

model systems is rapidly expanding. Juul and colleagues have used a primate model and GC 

× GC-TOFMS to investigate metabolic changes of the fetal-to-neonatal transition in healthy 
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[35] and diseased animals [36]. To establish the healthy metabolome, six late-preterm 

Macaca nemestrina were delivered via hysterotomy, with plasma drawn from cord blood and 

eight additional post-birth time points through 72 h of age. A total of 100 metabolites were 

identified, of which 23 exhibited significant changes in concentration over the 72 h sampling 

period and were categorized by their association with signaling pathways, glucose 

metabolism, carbohydrates, and amino acids [35]. Beckstrom, et al. proposed that these 

metabolites could be used as baseline markers of normal birth transition in future perinatal 

metabolomics research. Chun, Juul, and colleagues built upon that hypothesis by utilizing 

the M. nemestrina primate model to investigate the plasma metabolome of hypoxic ischemic 

encephalopathy (HIE), a common complication of birth that can lead to early and/or long-

term neurodevelopmental consequences, including cerebral palsy or death [36]. They used 

GC × GC-TOFMS to analyze blood samples from 33 macaques that were exposed to 0, 15, 

or 18 minutes of in utero umbilical cord occlusion to induce HIE. They treated a subset of 

the animals by two methods, hypothermia or hypothermia + erythropoietin, and obtained 

serial blood samples at baseline, 0.1,24, 48, and 72 h after hysterotomy. They identified 

twelve potential biomarkers of HIE that showed statistically-significant differences between 

the diseased and control animal groups. By collecting neurodevelopmental data of the 

macaques up to nine months of age, they identified eight metabolites that were correlated to 

early and/or long-term outcomes, and four metabolites (citric acid, fumaric acid, lactic acid, 

and propanoic acid) that predicted death or cerebral palsy.

Mellors, Hill, and colleagues posited that macaques would also be excellent models for 

identifying breath biomarkers of TB for novel diagnostics in humans [37]. In a feasibility 

study, they used GC × GC-TOFMS to analyze breath from three cynomolgus macaques (M. 
fascicularis) and two rhesus macaques (M. mulatta) before and one to two months after M. 
tuberculosis infection. Using random forest (RF) analysis, they identified 49 compounds – 

represented strongly (65%) by hydrocarbons – that significantly changed during the course 

of infection. They demonstrated that breath sampling and analysis is feasible in animal 

models, and that breath metabolites can serve as useful markers of infection. The fact that 

the same animal models are being used in diverse GC × GC metabolomics studies (e.g., the 

three macaque studies described here [35-37]), and that metabolomes are being compared 

across model systems (e.g., primate, murine [38], and cell culture [39] models of TB) and 

with human specimens [12, 40-42], a more comprehensive view of the animal models’ 

applicability to human diseases can be built.

3.3 Human biospecimens

Because blood, serum, and plasma carry metabolites from all parts of the body and are 

routinely collected in a clinical setting, they are excellent biofluids for metabolomic analyses 

and the identification of biomarkers of disease. Winnike, Zhang, et al. compared the utility 

of GC-TOFMS and GC × GC-TOFMS in metabolic biomarker quantitation using pooled 

serum samples from 109 individuals, 54 of whom have a chronic neurodegenerative disorder 

[43]. When comparing metabolomic profiles between the healthy and unwell subject groups, 

23 compounds detected by GC had statistically significant differences, compared to 34 

detected using GC × GC. Similar advantages for metabolite detection were observed by 

Menéndez-Carreño et al., who developed and validated a method using GC × GC-TOFMS 
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for phytosterol oxidation products (POPs) in human plasma [44]. Eleven POPs were spiked 

into human plasma samples to validate the detection method. The LODs and LOQs of GC × 

GC-TOFMS were found to be approximately 10-fold lower compared with GC-MS. In 

addition to the 11 known POPs, GC × GC facilitated the identification and quantitation of 

unsaturated brassicasterol and stigmasterol, reported in human plasma for the first time.

Like blood, urine is a rich source of metabolites from the entire body, and bears some 

significant advantages for biomarker research since it is plentiful and able to be collected 

non-invasively. Zhang, Brenna, and co-workers published a pair of studies in which they 

used GC × GC-qMS with positive chemical ionization (PCI) to detect complex steroid 

mixtures in urine of subjects on therapeutic steroid treatment [45] and of human athletes 

[46]. The steroids were extracted from urine, derivatized, and analyzed using GC × GC-qMS 

using either electron impact ionization (EI), CH4 PCI, or NH3 PCI.

Ionization with NH3 preserved structure-specific ions and the combination with GC × GC 

facilitated the identification of endogenous target steroids at physiological concentrations. 

Additionally, their results indicate that chromatographic structure provided by GC × GC 

may facilitate the detection of novel designer steroids in urine by anti-doping agencies. 

Luies and Loots measured urine metabolites to investigate host-pathogen interactions during 

active TB disease [41]. They extracted and derivatized the organic acid fraction of urine 

metabolites from 76 subjects: 30 TB-negative, and 46 with active TB. Using a multi-

statistical approach on the 507 compounds they detected by GC × GC, they identified 12 

metabolite markers in urine that could be used to distinguish the presence or absence of TB. 

The majority of the metabolic markers they discovered could be explained by changes in the 

host metabolome due to infection from M. tuberculosis. In particular, host fatty acid and 

aromatic amino acid metabolism is perturbed by infection, providing insights into symptom 

management and treatment.

Breath can be considered the headspace of the blood, and like urine, is plentiful and 

relatively easy to collect. Therefore, breath metabolomics is attractive for the development 

of sensitive, non-invasive diagnostics for a plethora of human ailments. To expand the 

catalog of the human breath volatilome, Phillips, et al. used GC × GC-TOFMS to analyze 

breath samples from 34 healthy individuals [10]. They detected approximately 2000 volatile 

metabolites, including numerous compounds that had not previously been described. 

Acetone, isoprene, benzene derivatives and alkane derivatives comprised the most abundant 

chemical species in the breath samples. Importantly, only 95 of these metabolites (out of the 

2000) were shared among at least 90% of subjects, highlighting the inherent variation 

between individuals. This degree of variability indicates that human biomarker studies are 

likely to require large training cohorts and supervised machine learning methods to identify 

putative biomarkers, and independent testing cohorts to determine the accuracy of the 

biomarkers for predicting disease.

3.4 Non-human animals

A few GC × GC metabolomics studies have been published on animals that are not 

considered human analogs, but these experiments have interesting study designs and 

observations that are relevant to human investigations. Rocha, et al. used GC × GC-TOFMS 
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to examine differences in the volatile metabolomes from homogenized and salted tissues of 

wild Venerupis decussata and V. philippinarum, which are clams that can be found in the 

same geographical locations, but in different positions in the water column [47]. An average 

of 229 compounds were detected per species. Using multivariate analyses to reduce their 

data set and identify the most discriminatory compounds, they found 63 metabolites that 

significantly differed between the two species. The authors posited that the differences they 

observed between the two species could be due to the differences in clams’ environments 

rather than their biology: dissimilarities in alkanes, alkenes, and terpenes were attributed to 

heterogeneous distributions of organic matter in the water column and marine sediments, 

while distinctions in aldehydes and alcohols were attributed to peroxidation of lipids from 

different dietary sources for the two species.

Rainbow trout (Oncorhynchus mykiss) naturally experience periods of starvation in their life 

cycle, which Baumgarner and Cooper hypothesized would cause different metabolic changes 

in different tissues [48]. They used GC × GC-TOFMS to compare the global metabolomes 

of serum, liver, and muscle tissues of 12 fish reared in captivity for two weeks, then split into 

two groups: six that were fed and six that were starved for four wks. They observed evidence 

that starved fish catabolize cellular protein in the liver for energy, but not in peripheral 

tissues. Additionally, they detected elevated xenobiotics (specifically n-alkanes) in fed fish 

that they posited were accumulated from fish food. However, in contrast to other 

xenobiotics, heptacosane was increased in starved fish, which they hypothesized was being 

liberated as specific tissues' energy reserves were being mobilized during starvation.

These two studies highlight a vexing complication of metabolomics analyses: parsing out 

metabolites versus xenobiotics, which we narrowly define here as exogenous substances that 

are accumulated from the environment and stored without chemical modification. 

Identifying xenobiotics is particularly difficult in cross-sectional studies of wild organisms, 

where past environmental conditions and exposures are not recorded. However, even 

experiments in captive organisms, like Baumgarner and Cooper’s trout study [48], cannot 

definitively separate metabolites from xenobiotics without chemical characterization of the 

environment (i.e., food and water) and longitudinal sampling of tissues and biofluids to 

document bioaccumulation and/or release of xenobiotics. Alternatively, catabolism and 

anabolism of organic compounds can be traced using stable isotopes, examples of which are 

described in Section 3.6.

3.5 Plants

GC×GC is being used to characterize the complex metabolomes of plants to understand 

wide-ranging aspects of their physiology, ecology, and qualities as feedstocks and foods. For 

this review, we have chosen to exclude plant metabolomics studies that focus on food plant 

quality (spoilage, ripening, flavor, or aroma) or authenticity, and instead refer the reader to 

other reviews published in this Special Issue, as well as additional recent reviews on the 

topic of GC χ GC foodomics [49, 50].

To characterize the volatile and semi-volatile metabolomes of maturing ‘Honeycrisp’ apples 

(Malus × domestics Borkh.), Risticevic, Pawliszyn, and colleagues developed and optimized 

direct immersion (DI)-SPME for in vivo sampling [51]. In an earlier comparison of HS-
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SPME versus DI-SPME sampling of apple homogenates using a triphase fiber (DVB/CAR/

PDMS), they obtained a 63% increase in metabolites using the latter method (555 vs. 906 

compounds), and observed less bias against high molecular weight and polar metabolites [8]. 

For in vivo sampling Risticevic, et al. used DVB/CAR/PDMS fibers overcoated with PDMS, 

which were exposed to the apple tissue at a depth of 3 cm for 60 min at ambient 

temperatures. To remove interfering tissue material prior to analysis, they cleaned the fibers 

with lint-free wipes, washed the fibers in nanopure water for 10 s, then wiped the fibers 

again. By sampling in triplicate five apples of early maturity and five apples of late-harvest 

maturity, they found that inter-specimen variance was high, but they were able to clearly 

define the two groups of apples based on PCA of 225 peaks that were manually curated 

based upon high chromatographic quality.

As part of their natural defense systems, plants produce metabolites that deter attacks by 

other organisms. Wojciechowska, Geisen, and co-workers investigated the metabolic 

differences between two strains of tomatoes (Schmucktomate (ST) and Resi), which show 

differential resistance to the common fungal pathogen, Alternaria altemata [52]. They 

performed untargeted GC × GC metabolomics on the polar metabolites of ST and Resi, 

reproducibly detecting 267 metabolites from the tomatoes. Using volcano plot analysis, they 

identified 21 metabolites that were significantly elevated in ST, with chlorogenic acid (CGA) 

being the most discriminatory. Wojciechowska, et al. experimentally confirmed that CGA 

protects tomatoes from A. alternata colonization in a dose-dependent manner. Hantao, 

Augusto, and colleagues also used HS-SPME/GC × GC-qMS coupled with multivariate data 

analyses to identify biomarkers of Eucalyptus fungal infections [53], as well as disease-

resistant clones [54]. Comparing biogenic volatile organic compounds produced by 

Eucalyptus globulus with and without infection by Teratosphaeria nubilosa fungus, they 

identified more than 40 volatiles that are putative biomarkers of infection [53]. Hantao, et al. 

also aimed to speed the selection of disease-resistant Eucalyptus hybrids by identifying 

volatile biomarkers of resistance to Eucalyptus rust [54]. They compared the volatilomes of 

E. grandis × E. urophylla hybrids resistant and susceptible to Puccinia psidii fungal 

infection, identifying two resistance biomarkers: eucalyptol and α-terpinyl acetate.

3.6 Moving toward metabolic mechanisms

Most of the published GC χ GC metabolomics studies are descriptive, where the primary 

aim was to discover previously unidentified metabolites in a specimen, organism, or 

organismal interaction. While there is boundless need for these kinds of analyses, the data 

will obtain their greatest meaning when we are able to tie the metabolites to cellular 

mechanisms that produce or regulate their production, phenotypes they create, or 

interactions they facilitate. With these types of investigations, the data become information. 

Several groups are venturing in that direction by tying GC × GC metabolomics data to other 

chemical, biological, behavioral, and statistical analyses that contextualize the metabolome.

In vitro digestion models combined with GC × GC metabolomics have been used in two 

studies to characterize biotransformation of polyphenols in vivo. Aura, et al. measured the 

metabolic fate of polyphenols from Syrah red grapes, Syrah red wine, and extracted 

proanthocyanidins (PA) using a colonic model with fecal microbiota [55]. They observed a 
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higher degree of C1-C3 phenolic acid formation from red wine than the fruit or PA in the 

colonic model. Vetrani and colleagues investigated the roles of the liver and of gut 

microbiota on transforming ingested polyphenols [56]. They analyzed the urine 

metabolomes of subjects consuming polyphenol-rich foods and beverages, and compared 

these data to the metabolomes generated by fecal microbiota fed the same diets in an in vitro 
colon model, and to hepatocytes cultured with green tea extracts. They found several 

associations between the urinary and colonic model metabolomes that partially explained 

polyphenol biotransformation in vivo, but complementing the colon model with hepatic 

metabolism significantly increased the correlation between in vivo and in vitro metabolism.

A technique that facilitates metabolic mapping is stable isotope labeling, which was 

employed by Žáček, Válterova, and coworkers to investigate the metabolic fate of dietary 

fatty acids (FAs) in the biosynthesis of bumblebee male marking pheromones [9]. The 

investigators fed or injected three species of bumble bees, Bombus lucorum, B. lapidaries, 

and B. terrestris, with 2H- or 13C-labeled C12, C14, C16, and C18 saturated FAs, then later 

harvested and analyzed the fat bodies and labial glands to characterized how the FAs had 

been stored and modified. They determined that FAs were stored as triacylglycerols in the 

fat body, and then modified and used for biosynthesis of pheromone precursors and 

pheromonal components. Importantly, Žáček et al. included an analysis on the effect of 

deuterium and carbon isotopes on the first and second dimension retention times (1tR and 
2tR, respectively) in GC × GC. They observed larger shifts in 1tR with perdeuterated FAs 

(versus 13C-labeled FAs), and therefore used 2H labels for most analyses so they could more 

easily detect and quantify trace amounts of the labeled compounds in their untargeted 

analyses, even when a thousand times more unlabeled compound may be present. However, 

for confirmations of bioactivity, they relied upon the 13C-labeled FAs since the deuterated 

compounds can affect metabolism.

Cordero and colleagues used HS-SPME/GC × GC-qMS to investigate the metabolome of 

multitrophic interactions between mint plants (Mentha spp.) and their insect predator, the 

mint beetle (Chrysolina herbacea) [57. 58]. The first study explored how the mint beetle is 

able to tolerate the mono-terpenoids produced by the plant as a defense against insect 

herbivory [57]. They measured the volatile metabolomes of three different species of mint – 

two susceptible and one resistant to the pest – identifying four characteristic mint terpenoids 

in addition to 76 additional volatiles emanating from the leaves. By comparing the beetle 

frass (excrement) volatiles to the mint species on which they were reared, they were able to 

determine that the insects are biotransforming the toxic terpenoids during digestion, 

primarily by oxidation and acetylation. In a follow-up study, Pizzolante, et al. investigated 

the role of the gut microbiota in metabolizing Mentha aquatica terpenoids into sex-specific 

volatiles in beetle frass [58]. They identified 60 volatiles in the mint leaves and in beetle 

frass, including 9 terpenoid compounds that were nearly absent in the leaves but abundant in 

the frass, indicative of biotransformation of plant compounds during digestion. Additionally, 

they observed significant differences between the volatile metabolites in male and female 

frass that corresponded to differences in the cultivable species of bacteria that are found in 

their guts. To establish that the gut microbes were capable of metabolizing and 

biotransforming M. aquatica volatiles, they grew 16 C. herbacea gut bacterial isolates (10 

from females, 6 from males) on mint extracts and measured the volatiles that were produced. 
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They confirmed that the female and male gut microbiota biotransform the mint metabolites 

in unique ways, which they hypothesized may contribute to C. herbacea sex pheromone 

production.

As illustrated by these examples, deriving meaning from metabolic data requires a 

multidisciplinary approach. The most successful studies arise from deep collaborations 

between experts in disparate fields – chemistry, biology, medicine, mathematics – where all 

parties are involved in every stage of the project, from development to data analysis and 

publication.

4. Recommendations and best practices

The growth of the field of metabolomics is reflected by the recent investments by the 

National Institutes of Health (NIH) into the Common Fund Metabolomics program, which 

supports technology development, infrastructure, training, and an international repository for 

metabolomics data, the Metabolomics Workbench (metabolomicsworkbench.org) [59]. The 

goal is to generate publicly accessible metabolomics data, following the models of data 

sharing for genomics and transcriptomics via the GenBank and Gene Expression Omnibus 

(GEO) databases, respectively. Currently, depositing metabolomics data into public 

repositories is only encouraged under the NIH Data Sharing policies; however, it is possible 

that in the near future journal publishers may require data sharing as a condition of 

publication, as in genomics and transcriptomics. Under ideal circumstances, metabolomics 

databases will facilitate meta-analyses of multiple metabolomics experiments to generate 

new hypotheses and enhance translation of the data to practical applications in industry, 

medicine, and policy. In practice, achieving these ideals will require meticulous reporting of 

experimental metadata and very well designed experiments.

The Metabolomics Workbench and the Chemical Analysis Working Group (CAWG) 

Metabolomics Standards Initiative (MSI) [60] provide excellent guidelines on the biological 

and analytical metadata that should be included with metabolite data, and these parameters 

should be considered during experimental planning. When obtaining samples, thoughtful 

choices should be made regarding the source and selection of specimens, and data should be 

provided on the taxonomy of species, organs and tissues, cell types/lines, and strains. More 

detailed information such as animal husbandry, diet, growth media, and human data such as 

age, sex, body mass index, etc., are encouraged, as they can all impact metabolism. The 

CAWG provide detailed lists of analytical metadata to report for sample preparation, 

injection, separation, detection, method validation, and data preprocessing. Additionally, 

they provide recommendations on reporting the certainty to which chemical identity of 

metabolites have been determined using retention times/indices and mass spectral data [60]. 

Here, we review some important findings from GC × GC metabolomics studies that support 

the recommendations by the CAWG and inform clinical and analytical study design, and we 

make some recommendations for GC × GC metabolomics experiments to improve 

robustness and data sharing potential.
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4.1 Clinical design and confounders

The Karlsruhe Metabolomics and Nutrition (KarMeN) Study is a large German cohort study 

(n = 301) of blood and urine metabolomes from healthy non-smoking adults [61]. Targeted 

and untargeted metabolomics analyses were performed using LC-MS/MS, 1H NMR, GC-

MS, and GC × GC-MS, and metabolic differences due to body composition, age, sex, 

physical activity and diet are being characterized in the KarMeN Study. Due to the size of 

the cohort, the data being collected about each subject, and the variety of analytical 

techniques being applied, the metabolomics data from this study are providing a wealth of 

information on human health and metabolomics study design. A striking finding from their 

analysis is the degree to which the fasting plasma and urine metabolomes correlate with 

subject gender and age [62]. Using machine learning algorithms on the combined 

metabolomics data from all four analytical platforms, Rist and colleagues found that they 

could correctly predict the sex of the study participants with > 90 % accuracy from the urine 

metabolome, and > 95% accuracy from plasma. The correlation of the plasma and urine 

metabolomes to age were weaker, but still significant. A subset of the plasma metabolites in 

men correlated with age with R2 = 0.77, and a combination of plasma and urine metabolites 

in women predicted menopausal status with 90% accuracy. This study of healthy adults 

demonstrates that both sex and age are confounders of the human metabolome, and the 

authors recommend that sex, age, and sex-age interactions are included in statistical analyses 

of metabolomics data and reported with published results.

4.2 Chromatography

To obtain high-quality GC × GC metabolomics data, it is imperative to use the best 

chromatography available, as the data processing methods, chemometrics, and statistical 

analyses are only as good as the separations. There have been exciting developments in 

stationary phases and column configurations to optimize separations (reviewed in this 

Special Issue), however, phase thickness and phase ratio [63] are also important parameters 

to consider, which are often overlooked. While deconvolution procedures can enable 

identification and quantification of partially co-eluting peaks, they are impaired when peak 

shapes are compromised by column overloading. The problems created by poor peak shapes 

are compounded when multiple samples need to be aligned prior to downstream analyses 

[64]. Optimally, to obtain excellent data for mixtures of metabolites at concentrations that 

differ by many orders of magnitude, it is advisable to perform split and splitless injections 

and combine the data [64, 65]. However, this approach requires more supervised 

preprocessing and therefore is not amenable for large studies. An effective compromise can 

be reached by increasing stationary phase film volume by using thicker films and/or larger 

diameter columns, which increases loadability and therefore improves peak shapes for high 

concentration metabolites, but which requires longer separation times [66-68].

4.3 Sample handling and batch effects

Sample handling and batch effects can play a significant role in metabolomics analyses, as 

described by Nizio, Forbes, and colleagues, [69] and should be closely controlled and 

accurately reported. Nizio, et al. set out to compare the volatilomes of six bacterial species, 

preparing four biological replicates of each bacterium and growth condition. Two biological 
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replicates for each sample type were stored at −18°C for 2-5 d prior to GC × GC analysis, 

and the other two replicates were stored at −18°C for 48-50 d. They observed that the 

samples stored long-term produced more complex volatile profiles, as 200 more volatile 

metabolites were detected per sample, on average, compared to short-term storage. As a 

result, they posited that sample contamination, degradation, and/or biological activity may 

have contributed volatiles during storage [69]. However, a study by Wandro, et al., designed 

to test the stability of metabolites in cold storage [70] suggests that other factors may have 

been at play in Nizio’s study. Wandro and colleagues measured the change in metabolites of 

sputum stored at 4°C, −20°C, and −80°C for up to eight weeks before extraction, 

derivatization, and GC-MS analysis was performed in a single batch. Samples stored at 4°C 

showed appreciable changes in their metabolome after one day of storage, whereas samples 

stored at −20°C for 1-56 days were statistically indistinguishable from samples stored at 

−80°C.

While Wandro’s study does not specifically address the stability of volatile metabolites, 

which Nizio and colleagues were reporting, an important confounder to consider in Nizio’s 

study is batch effects caused by instrumental drift, which can impact peak areas, and 

consequently metabolic profiles. In a five week long GC × GC-qMS run of 300 urine 

samples, Weinert et al., quantified the intra-day, inter-day, and inter-week RSD in peak 

height of 15 internal standards [19]. The intra-day and inter-day reproducibility was good (< 

10 %), but despite weekly system maintenance to minimize matrix impacts (e.g., liner 

exchange, MS tuning), they observed a steady increase in peak heights of their internal 

standards (which was not explained by baseline drift), creating a mean inter-week RSD of 

18 %. Weinert and colleagues did not use the internal standards to correct for the drift, as 

this method of normalization increased inter-week RSD of their sample analytes. However, 

the use of internal standards allowed them to track the performance of their system and 

quantify and report time-dependent variation in their data.

It is important to be aware of the natural structure of each study’s GC × GC metabolomics 

data, especially in biomarker studies or other comparative analyses, so that biases can be 

accounted for and potentially corrected. An easy method to identify data structures that are 

not attributed to biological differences (e.g., batch effects) is to use PCA [71]. Figure 3 is an 

illustration of how we used PCA to uncover batch effects in a bacterial volatile 

metabolomics study of 81 P. aeruginosa clinical isolates analyzed in biological triplicates 

along with 15 media blanks. To briefly describe this study, isolates from 16 subjects, who 

provided 3-35 bacterial isolates over a span of at least five years of their chronic lung 

infections, were obtained from a biorepository. The 81 isolates were divided into two groups 

for HS-SPME/GC × GC-TOFMS volatile metabolomics, with 32 isolates placed into a 

“priority” group for the generation of preliminary data for a grant proposal, and the other 49 

isolates placed into a “non-priority” group. Isolates from 11 subjects were divided between 

the priority and non-priority groups, while the isolates from five subjects were all in one 

group or the other. To minimize batch effects within each group, the order in which the 

isolates and their individual biological replicates were cultured and analyzed were 

randomized. Between culturing and analysis, samples were stored at −20°C, with a 

maximum storage time of 13 d. Table 1 summarizes the time frames for the preparation and 

analysis of the study samples.

Keppler et al. Page 16

Trends Analyt Chem. Author manuscript; available in PMC 2019 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



All 258 chromatograms from both groups were processed, aligned, normalized, and 

statistically analyzed together. Without any prior feature selection, we performed PCA on all 

metabolite variables and sample observations, which shows that while the most significant 

variance in the metabolomes is accounted for by the metabolic differences between isolates 

and the media blanks (Fig. 3; PC1, 19.7%), approximately 10% of the sample variance is 

explained by priority vs. non-priority grouping (i.e., preparation batch), with samples in the 

priority group clustering in PC2 > 0, and samples in the non-priority group in PC2 < 0. As 

indicated by the marker colors in Fig. 3b, there is bias in the storage times between the 

priority and non-priority groups, but short and long storage times do not sufficiently explain 

the PC2 variance. Instrumental drift (visualized by analysis day, Fig. 3c) and growth media 

batches (not shown) also do not fully explain the separations in PC2. While we do not know 

all of the factors contributing to our data’s structure, this unsupervised analysis of the entire 

data set revealed inherent correlations between a subset of the metabolites and the sample 

preparation batch. With this knowledge we can either exclude the batch-correlated 

metabolites from subsequent multivariate analyses, and/or conduct post-hoc testing for 

priority vs. non-priority group biases in the outcomes of supervised machine learning 

analyses of these data.

To minimize batch effects the unattainable ideal is to prepare or collect samples in a single 

small batch, store them for the same amount of time under the same (frozen) conditions, and 

analyze them in a single small batch. However, in practice it is not possible to meet these 

criteria when analyzing large numbers of samples or performing longitudinal studies. At a 

minimum, it is recommended that biological or technical replicates are obtained when 

possible, samples and replicates are prepared or collected in random order, and analyzed in a 

different random order. Most importantly, recognize that batch effects are impossible to 

avoid entirely and can arise due to unknown variables in sample collection, preparation, and 

analysis; therefore biases in the metabolomics data should be quantified, potentially 

corrected, and always reported.

4.4 Statistical analyses and overfitting

The large number of metabolites that are revealed by GC × GC analyses causes a statistical 

conundrum, wherein the number of variables is often one or two orders of magnitude larger 

than the number of observations made. Therefore, statistical models that are employed to 

identify differences in group comparisons (e.g., putative biomarkers of disease) are at risk of 

overfitting. To address this problem, it is becoming more common for investigators to use 

multiple statistical models to identify the most discriminatory metabolites, and report the 

consensus set as the putative biomarkers of disease. For example, Phillips, et al. identified 

breath biomarkers of therapeutic radiation exposure by analyzing the breath of 31 

individuals who received varying doses of radiation (180-1200 cGy/d) over five days [72]. 

Multiple Monte Carlo simulations were used to identify approximately 50 metabolites that 

significantly changed pre and post radiation. The 15 breath volatiles that were observed in 7 

of 8 simulations were 99% accurate in identifying subjects who received at least 1.8 Gy. The 

approach of using multiple statistical analyses to identify putative biomarkers has been used 

in several other GC × GC metabolomics studies of lung specimens. To identify biomarkers 

of M. tuberculosis infection, du Preez and Loots analyzed methanol-extracted metabolites 
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from the sputum of 61 TB-negative and 34 TB-positive subjects, detecting a total of 498 

metabolites [40]. They applied a combination of supervised and unsupervised univariate and 

multivariate statistical analyses to select 22 metabolite markers of infection, which were 

identified as putative biomarkers by all three statistical methods (PLS-DA, fold-change, and 

t-tests). Beccaria et al. used GC × GC-TOFMS to identify M. tuberculosis infection 

biomarkers in breath [42]. By using three cutoffs for the frequency of observation of 1513 

volatiles in 34 breath samples (20 %, 50 %, and 80 %), they generated three pools of 

variables for RF analysis. Twenty two breath volatiles were in common across all three RF 

analyses, which the authors considered the most promising leads for discriminating TB-

positive and TB-negative breath samples.

5. Concluding remarks

Comprehensive two-dimensional gas chromatography is gaining popularity for 

metabolomics analyses, and has significantly expanded the metabolic catalogs of microbes, 

plants, animals, and humans. The field is progressing into studies of causality by 

incorporating longitudinal analyses, isotopic tracers, flux analysis, model systems, and 

multitrophic interactions into GC × GC metabolomics analyses. However, despite the clear 

analytical advantages that GC × GC offers for characterizing complex mixtures, especially 

for untargeted metabolomics studies, its adoption by new users is relatively slow. A 

significant barrier to growth is the availability of user-friendly software that can handle the 

entire data processing and analysis pipeline. While there have been brisk advancements in 

investigator-developed packages for peak picking, peak alignment, deconvolution, etc. [32, 

73], utilizing them requires fluency with Matlab, R, Python, and/or other programming 

languages. The ideal software platform will incorporate a user-friendly interface and several 

different approaches for each step in the data analysis pipeline, allowing users to optimize 

the workflow for their particular samples. Obtaining the GC × GC metabolomics peak list is 

just the first step of linking the chemical data to biology, and as future studies aim to 

integrate metabolomics with transcriptomics, proteomics, and genomics information, easily-

manipulated graphical displays of chromatographic and statistical data will be required.

For GC × GC metabolomics to be adopted by new investigators, and for the field of 

metabolomics, writ large, to continue to receive new investments, we in the field must 

demonstrate that the data we are generating are of high quality and can be independently 

validated. This requires excellence in study design, sample collection and storage, 

chromatographic analysis, data processing, and statistical analyses, and in order to 

objectively judge quality in all of these domains we must record and report ample metadata 

for all steps. It is not only incumbent upon investigators to be diligent in these pursuits, but 

also upon manuscript peer reviewers and journal editors to insist that methods are fully 

described and statistical evaluations of the data are appropriate and complete. Only with this 

level of rigor will GC × GC metabolomics become an essential component of any multi-

omics study design.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights:

• The excellent separation capacity of GC × GC is well suited for metabolomics

• Methods are being developed to optimize metabolome sampling and analysis

• GC × GC metabolome analyses are moving toward identifying mechanisms

• Data reporting recommendations are provided to optimize data sharing via 

new metabolomics databases

• Best practices for GC × GC metabolomics analyses are described
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Fig. 1. 
Metabolome data inform the influences of internal and external perturbations on biological 

systems (dark boxes, left), and have industrial, technological, and medical applications (light 

boxes, right).
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Fig. 2. 
There are trade-offs between feasibility (i.e., costs, sample access) and translatability to 

living organisms for metabolomics experiments conducted with in vitro cultures, animal 

models, biospecimens collected non-invasively (e.g., urine, breath) or invasively (e.g., tissue 

biopsy), and in vivo or human studies.

Keppler et al. Page 26

Trends Analyt Chem. Author manuscript; available in PMC 2019 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
PCA score plot of GC × GC metabolomics data of 258 bacterial samples and 472 

metabolites, with samples colored based on priority vs. non-priority preparation batches (a), 

sample storage time (b) or analysis day (c). Peaks were normalized across samples to 

account for dilution effects, log10-transformed, and mean-centered and scaled to unit 

variance.
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Table 1:

Summary of GC × GC metabolomics study of 81 bacterial isolates

Full Study Priority Non-Priority

Subjects 16 14 13

Isolates 81 32 49

Sample Prep Sep 10 - Oct 6 Sep 10 - 16 Sep 24 - Oct 6

Sample Analysis Sep 23 - Oct 12* Sep 23 - 29** Sep 29 - Oct 12

*
During this period the columns and the inlet liner were not changed. The SPME fiber was replaced Oct 5 (analysis day 13).

**
Due to an error in the sequence table, one sample in the priority group had to be re-prepared and analysed on Oct 3 (analysis day 11).

Trends Analyt Chem. Author manuscript; available in PMC 2019 December 01.


	Abstract
	Introduction
	Method development for GC × GC metabolomics
	Sampling and sample preparation
	Instrumentation
	Data processing, analysis, and visualization

	Applications of GC × GC in metabolomics
	In vitro analyses
	Animal models of human disease
	Human biospecimens
	Non-human animals
	Plants
	Moving toward metabolic mechanisms

	Recommendations and best practices
	Clinical design and confounders
	Chromatography
	Sample handling and batch effects
	Statistical analyses and overfitting

	Concluding remarks
	References
	Fig. 1.
	Fig. 2.
	Fig. 3.
	Table 1:

